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Abstract It was argued recently that conformal invariance
in flat spacetime implies Weyl invariance in a general curved
background for unitary theories and possible anomalies in
the Weyl variation of scalar operators are identified. We argue
that generically unitarity alone is not sufficient for a confor-
mal field theory to be Weyl invariant. Furthermore, we show
explicitly that when a unitary conformal field theory couples
to gravity in a Weyl-invariant way, each primary scalar opera-
tor that is either relevant or marginal in the unitary conformal
field theory corresponds to a Weyl-covariant operator in the
curved background.

1 Introduction and summary

Scale and conformal symmetries are essential concepts in
quantum field theory. In particular, the renormalization group
evolution of a Poincaré-invariant quantum field theory, being
a primary theme of field theory, is controlled by its dynamical
behavior under scale transformations. In the study of this
subject, the energy-momentum tensor plays a crucial role. In
the specific case where a field theory is scale-invariant, it can
be shown that the trace of its energy-momentum tensor Tμ

μ

must take the form

Tμ
μ = ∂μV

μ, (1)

where Vμ is referred to as the “virial current”. If, moreover,
the virial current is a total derivative, then the theory is not just
a scale-invariant field theory, but it is in fact a conformal field
theory. In this case, one can further construct an “improved”
energy-momentum tensor, which is traceless [1].

Although only been proved in two dimensions [2] and
perturbatively in four dimensions [3–5], it is believed that
a Poincaré-invariant interacting field theory that is scale-
invariant but not conformally invariant must be non-unitary.
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This means that with unitarity, the spacetime symmetry
group of a Poincaré-invariant quantum field theory with scale
invariance is enhanced to the conformal group.

In Ref. [6] it is argued that, for unitary theories, conformal
invariance in flat spacetime implies local Weyl invariance in
a general curved background spacetime. Because of diffeo-
morphism invariance, a scale transformation of the coordi-
nates and that of the fields in flat spacetime are equivalent to
the global Weyl transformations on the metric and fields in
a curved spacetime, and hence a quantum field theory with
scale invariance in the flat spacetime is globally Weyl invari-
ant when coupled to a general curved background. Thus, it
appears that conformal invariance provides a link between
global and local Weyl invariance in unitary theories. Early
work on this subject includes Refs. [2,7–11].

Also, the Weyl transformation of local scalar operators
that correspond to primary operators in the flat limit are iden-
tified in Ref. [6] and the authors find that there are possible
“anomalous terms” in the transformation formulas that pre-
vent some of these operators from transforming covariantly.
They argued that these anomalous terms cannot be eliminated
based on the constraints originating from the Abelian nature
of the Weyl transformations.

In this note, with explicit examples provided as demon-
stration, we show that generally unitarity alone is not suf-
ficient for a conformal field theory to be Weyl invariant. In
addition, we show that in the case where a unitary confor-
mal field theory does couple to gravity in a Weyl-invariant
fashion, each of the relevant and marginal primary scalar
operators in the unitary conformal field theory corresponds
to a Weyl-covariant operator in the curved background. Thus,
although the work of this note is highly inspired by Ref. [6],
our analysis has reached different conclusions.

It is clear that the existence of the local energy-momentum
tensor is essential in our analysis. Thus, we have implicitly
assumed the existence of the action. Without this assumption,
we do not know how to construct a local energy-momentum
tensor, not to mention how to couple the theory to gravity. The
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conclusions of this work may or may not apply to the context
where the energy-momentum tensor is not well defined. We
leave it for future investigation.

2 Conformal vs. Weyl

It is well known that the consequences of symmetries of field
theories can be expressed in terms of Ward identities relating
Green’s functions. For a conformal field theory, the Ward
identity for primary operators O(x) under an infinitesimal
conformal transformation takes the form

σ̂ (x)〈Tμ
μ (x)O(x1) . . . O(xn)〉

=
∑

i

δ(d)(x − xi )〈O(x1) . . . (−�σ̂(xi )O(xi )) · · · O(xn)〉,

(2)

where σ̂ (x) = 1
d ∂μεμ(x) is the restricted local Weyl rescal-

ing factor with the infinitesimal coordinate change εμ(x)
given by

εμ(x) = aμ + ωμ
νx

ν + cxμ + 2(b · x)xμ − x2bμ (3)

for translation, Lorentz transformations, scale and special
conformal transformations, respectively, in d-dimensional
flat spacetime. � is the Weyl dimension of the operator O(x).
We recall that in flat spacetime the energy-momentum tensor
can be generated by the diffeomorphism. That is, under an
infinitesimal diffeomorphism

xμ′ = xμ − ξμ(x), (4)

the action transforms as

δS = 1

2

∫
dd x(∂μξν + ∂νξμ)Tμν. (5)

On the other hand, when the theory is coupled to a general
curved metric gμν , the energy-momentum tensor can also be
determined by the response of the action to a local variation
of the metric. Explicitly, under the variation

gμν → gμν + δgμν, (6)

we have

δS = −1

2

∫
dd x

√|g|δgμνT
μν. (7)

This is consistent with the expression of Eq. (5) in flat space
by general covariance.

For a Weyl-invariant theory, it is straightforward to show
that the response of the n-point correlator for O(x) to an

infinitesimal Weyl transformation δgμν(x) = 2σ(x)gμν(x)
in odd dimensions contains only contact terms:

σ(x)〈Tμ
μ (x)O(x1) . . . O(xn)〉

=
∑

i

δ(d)(x − xi )〈O(x1) . . . δσ O(xi ) . . . O(xn)〉, (8)

where δσ O(xi ) is the variation of the operator O(xi ) under
the infinitesimal Weyl transformation. Meanwhile, due to
the Weyl anomaly [12,13], the Weyl Ward identity in even
dimensions is modified to take the form

σ(x)〈Tμ
μ (x)O(x1) . . . O(xn)〉

=
∑

i

δ(d)(x − xi )〈O(x1) . . . δσ O(xi ) . . . O(xn)〉

+ σ(x)〈A(x)O(x1) . . . O(xn)〉, (9)

where the local function A(x) stands for the Weyl anomaly
terms.

In Ref. [6], it is argued that conformal invariance in flat
spacetime implies Weyl invariance in a general curved back-
ground for unitary theories. Showing that a conformal field
theory in flat spacetime is Weyl invariant in a curved back-
ground metric is equivalent to showing that Eq. (2) implies
Eqs. (8) and (9) in odd and even dimensions, respectively.
The argument begins with the statement that because the
“improved” energy-momentum tensor Tμν vanishes for a
unitary conformal field theory in flat spacetime, the theory
coupling to gravity in curved spacetime would have Tμν

proportional to at least one power of the Riemann curvature
tensor R. Constraints from unitarity and commutativity of
Weyl transformations are then used to eliminate all possible
contributions to Tμν . If correct, the above argument would
imply that a unitary non-Weyl-invariant theory in a curved
background cannot be a conformal field theory in the flat
space limit.

Now, we discuss the potential loophole in the above argu-
ment. First, we should note that if one uses Eq. (7) to calculate
the energy-momentum tensor of a theory and find a traceless
one, it means that the theory being considered has already
coupled to gravity in a Weyl-invariant way. In this case, it is
not meaningful to use the argument of Ref. [6] to show that
this theory is Weyl invariant, since it would seem that one is
attempting to shut a box that is already closed.

The better question is: given a unitary conformal field the-
ory whose energy-momentum tensor is generated by the dif-
feomorphism in flat space, does conformal invariance along
with unitarity implies Weyl invariance in curved space?

Given a conformal field theory in flat space, there is no
unique way to couple it to gravity. Indeed, this ambiguity
is the origin of the improvement of the energy-momentum
tensor. Thus, Tμ

μ = 0 in flat space does not guarantee
Tμ

μ = O(R) in curved space. For example, there could be
terms in the Lagrangian of a conformal field theory that gen-
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erate nonvanishing contributions to the energy-momentum
tensor under the diffeomorphism in flat space, but whose
Weyl variations in a curved space are surface terms.

To be more explicit, consider the action of a free massless
scalar φ given by

S =
∫

dd x

(
1

2
∂μφ∂μφ − d − 2

4(d − 1)
∂2φ2

)
. (10)

This unitary theory is conformally invariant, since the vari-
ation of the second term by a diffeomorphism, Eq. (4), gen-
erates the “improved” contribution to the traceless energy-
momentum tensor [14]. Note that although the second term in
Eq. (10) is a surface term, and thus not affecting the equation
of motion, it varies under the diffeomorphism and produces
a nonzero contribution to the energy-momentum tensor.

However, when minimally coupled to a background met-
ric, it is straightforward to show that the action

S =
∫

dd x
√|g|

(
1

2
gμν∂

μφ∂νφ − d − 2

4(d − 1)
∇μ∂μφ2

)

(11)

is not Weyl invariant unless d = 2. In fact, under an infinites-
imal Weyl variation δgμν = 2σgμν and δφ = − d−2

2 σφ, the
action transforms as

δσ S = d − 2

4

∫
dd x

√|g|(�σ)φ2. (12)

This is an example showing that a non-Weyl-invariant theory
can reduce to a unitary conformal field theory in the flat space
limit. In other words, we can have a unitary conformal field
theory that couples to gravity in a non-Weyl-invariant way.

Certainly, there exist other possibilities such that a unitary
conformal field theory cannot couple to gravity in a Weyl-
invariant way. For example, a theory can fail to be Weyl
invariant in the curved background because of the specific
symmetry that prevents one from constructing the would-be
Weyl-invariant Lagrangian. A free massless scalar with the
shift symmetry φ → φ + c is such an example [4,15]. In this
case, the well-known “improved” coupling term d−2

8(d−1)
Rφ2

with R being the Ricci scalar is not allowed to be included
in the action by symmetry, and thus this theory is not Weyl
invariant in curved spacetime unless d = 2. Therefore, uni-
tarity alone is not sufficient for a conformal field theory to
be Weyl invariant.

3 Contact terms

Having shown that a unitary conformal field theory might
not couple to gravity in a Weyl-invariant way, we will now

concentrate our attention to the specific situation of interest
where a conformal field theory does couple to gravity in a
Weyl-invariant way and consider contact terms in Eqs. (8)
and (9).

As described in Ref. [6], one must have δσ O → −�σ̂O
in the flat limit and σ → σ̂ , with σ̂ given below Eq. (2). In the
special case where O does not contain the metric tensor gμν ,
δσ O must transform covariantly, that is, δσ O = −�σO . The
reason that the Weyl variation of the scalar operator O does
not contain terms involving the derivatives of σ is simply
because, without the metric tensor, no scalar operator can be
formed out of derivatives of σ .

Now, let us consider the general case where O consists
of matter fields, the metric tensor and their derivatives. As
already mentioned above, scale transformations in flat space-
time are equivalent to global Weyl transformations in the
curved background. Thus, when σ = c with c being a con-
stant, we shall have

δσ=cO = −�cO, (13)

from which it follows that under a general Weyl transfor-
mation, the operator O transforms either covariantly or as

δσ O = −�σO + O(∂σ ). (14)

Note that the first term in the variation Eq. (14) is the only
permitted term that is proportional to σ . Terms that violate
Weyl covariance are at least of order ∂σ . Terms such asσ R2U
or σWμναβWμναβU (where the shorthand notation R stands
for the curvature tensor, the Ricci tensor and the Ricci scalar,
Wμναβ is the Weyl tensor, and U is a scalar operator with
Weyl dimension �−4), referred to as the “anomalous terms”
in [6], are not allowed unless the operator O is itself propor-
tional to R2U or WμναβWμναβU .

Then, requiring the Wess–Zumino consistency condition
[16] for the Weyl variation, that is, [δσ1 , δσ2 ]O = 0, the most
general Weyl variation of O allowed by symmetries and uni-
tarity constraints on the dimensions of operators can be iden-
tified. Since we do not know of any example of an interacting
conformal theory with spacetime dimension d > 6, we will
restrict our attention to spacetime dimension d ≤ 6. The cal-
culations are straightforward but not very illuminating. The
results for relevant and marginal scalar operators in d ≤ 6
are presented as follows.

For � ≥ d+2
2 and � 	= 2n, n = 1, 2, 3, we have

δσ O = −�σO + A�σ, (15)

where A is a Weyl-covariant scalar with Weyl dimension
�A = � − 2. As shown in [6], the new operator O ′ defined
as
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O ′ = O + 1

2(d − 1)
RA (16)

transforms covariantly as δσ O ′ = −�σO ′.
Operators with � = 2n are special. For � = 2, the vari-

ation reads

δσ O2 = −2σO2 + c1�σ. (17)

For � = 4, we have

δσ O4 = −4σO4 + B�σ + c2R�σ in d = 4, 5, (18)

with the Weyl dimension 2 operator B transforming accord-
ing to δσ B = −2σ B + c′

1�σ , whereas

δσ O4 = −4σO4 + B�σ + c2R�σ + c3�2σ in d = 6.

(19)

Note that the term involving �2σ is allowed only in d = 6.
This is due to the fact that, under the Weyl variation,

δσ2�2σ1 = −4σ2�2σ1 + (d − 6)gμν∇ν(�σ1)∇μσ2

−2�σ1�σ2 + (d − 2)�(gμν∇μσ1∇νσ2). (20)

Thus, if the variation δσ O4 contains the term involving �2σ ,
the commutativity of Weyl transformations cannot be satis-
fied unless d = 6.

Finally, for � = d = 6, we have

δσ O6 = −6σO6 + A′�σ + B ′�2σ + B ′′R�σ + c4R
2�σ,

(21)

where the Weyl variations of the operators A′, B ′ and B ′′ are
given, respectively, by

δσ A
′ = −4σ A′ + B ′′′�σ + c5R�σ (22)

with δσ B ′′′ = −2σ B ′′′ + c′′′
1 �σ ,

δσ B
′ = −2σ B ′, (23)

and

δσ B
′′ = −2σ B ′′ + c′′

1�σ. (24)

Now, let us introduce the operators

O ′
2 ≡ O2 + c1

2(d − 1)
R, (25)

O ′
4 ≡ O4 + 1

2(d − 1)
RB

+ 1

4(d − 1)

(
c2 + c′

1

2(d − 1)

)
R2 in d = 4, 5,

(26)

O ′′
4 ≡ O4 + 1

10
RB + 1

20

(
c2 + c′

1

10

−c3

5

)
R2 + c3

10
�R in d = 6, (27)

and

O ′
6 ≡ O6 + 1

10
A′R + 1

20

(
−1

5
B ′ + B ′′ + 1

10
B ′′′

)
R2

+ 1

10
B ′�R + 1

30

(
c4 + c5

10
+ c′′

1

20
+ c′′′

1

200

)
R3;

(28)

it is straightforward to show that the operators O ′
2, O ′

4, O ′′
4

and O ′
6 all transform covariantly under an infinitesimal Weyl

transformation.
With these results, we conclude that when a conformal

field theory in d ≤ 6 is coupled to a general curved back-
ground metric gμν in a Weyl-invariant way, every primary
scalar operator O(x) that is either relevant or marginal
corresponds to a Weyl-covariant operator O ′(x) such that
O ′(x) → O(x) in the flat limit, and the operators O ′(x)
obey the infinitesimal form of the Ward identities for Weyl
invariance given by

σ(x)〈Tμ
μ (x)O ′(x1) . . . O ′(xn)〉

=
∑

i

δ(d)(x − xi )〈O ′(x1) . . . (−�σ(xi )O
′(xi )) . . . O ′(xn)〉

(29)

and

σ(x)〈Tμ
μ (x)O ′(x1) . . . O ′(xn)〉

=
∑

i

δ(d)(x − xi )〈O ′(x1) . . . (−�σ(xi )O
′(xi )) . . . O ′(xn)〉

+ σ(x)〈A(x)O ′(x1) . . . O ′(xn)〉 (30)

in odd and even dimensions, respectively.
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