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Abstract We define and compute the (analog) shear viscos-
ity to entropy density ratio η̃/s for the QFTs dual to spherical
AdS black holes both in Einstein and Gauss–Bonnet gravity
in five spacetime dimensions. Although in this case, owing
to the lack of translational symmetry of the background, η̃

does not have the usual hydrodynamic meaning, it can be still
interpreted as the rate of entropy production due to a strain.
At large and small temperatures it is found that η̃/s is a mono-
tonic increasing function of the temperature. In particular, at
large temperatures it approaches a constant value, whereas at
small temperatures, when the black hole has a regular, stable
extremal limit, η̃/s goes to zero with scaling law behavior.
Whenever the phase diagram of the black hole has a Van der
Waals-like behavior, i.e. it is characterized by the presence
of two stable states (small and large black holes), connected
by a meta-stable region (intermediate black holes), the sys-
tem evolution must occur through the meta-stable region-
and temperature-dependent hysteresis of η̃/s is generated by
non-equilibrium thermodynamics.

1 Introduction

In recent times many efforts have been devoted to the investi-
gation of the low-frequency, hydrodynamic limit of quantum
field theories (QFTs) with holographic gravitational duals
in the AdS/CFT framework. This hydrodynamic limit is a
powerful tool to compute transport coefficients for strongly
coupled QFTs, e.g. the quark–gluon plasma phase of QCD. In
the hydrodynamic regime of thermal QFTs with gravitational
duals, the shear viscosity to entropy density ratio η/s is of
particular interest. In fact, this ratio takes the universal value
1/4π for all QFTs with Einstein gravity duals [1–8]. This
has led to the conjecture of the existence of a fundamental
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lower bound η/s � 1/4π – the Kovtun–Son–Starinets (KSS)
bound [9] – which is supported both by energy-time uncer-
tainty principle arguments and by quark–gluon plasma exper-
imental data [9–11].

In the usual setting of the AdS/CFT correspondence, the
holographic dualities are utilized to learn about transport
coefficients in the hydrodynamic limit of strongly coupled
QFTs by investigating bulk gravity configurations, typically
black branes. However, this paradigm can be reversed and
the properties of the dual QFT can be used to infer about
the behavior of bulk gravity solutions.1 In this perspective,
transport coefficients computed in the hydrodynamic limit of
the dual QFT can lead to a deeper understanding of black-
hole (BH) physics. In particular, the aim of this paper is to
better understand the rich thermodynamical phase structure
of AdS BHs with spherical horizons (characterized by meta-
stabilities and Van der Waals-like behavior [14–16]) by inves-
tigating the relationship between the shear viscosity of the
dual QFT and the thermodynamics of these BHs.

It is well known that the KSS bound can be violated by
two different kinds of effects: higher-curvature terms in the
Einstein–Hilbert action [17–28] and breaking of the trans-
lational or rotational symmetry of the black brane back-
ground [28–37]. These two effects were the motivation to
consider spherical AdS BHs for which the translational sym-
metry is intrinsically broken, both in general relativity (GR)
and in a higher-curvature theory, namely the Gauss–Bonnet
(GB) gravity.

The violation of the KSS bound in higher-curvature grav-
ity theories, although not completely understood, can be
traced back to finite-N , finite-λt H effects and to the inequal-
ity of the two central charges of the dual QFT [38,39].
This lends support to the possibility of formulating modified

1 For instance, this approach has been particularly fruitful for the com-
putation of the microscopic entropy of black holes. In several cases the
Bekenstein–Hawking entropy has been matched by counting states in
the dual CFT – see e.g. Refs. [12,13].
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bounds on η/s, based for instance on causality and positivity
of energy in the dual QFT [18,40,41].

On the other hand, the violation of the KSS bound due to
the breaking of the translational symmetry has a more funda-
mental nature. In this case the shear viscosity does not have
the usual hydrodynamic meaning but might be interpreted
as the rate of entropy production due to a strain [31–35,42].
In this framework, the behavior of η/s as a function of the
temperature T is non-trivial [43,44] and carries information
about the infrared (IR) and ultraviolet (UV) behavior of the
QFT, the existence of global diffusive modes of the system
and the nature of the effect responsible for the breaking of
translational invariance. For instance, when this breaking is
generated by the presence of a non-homogeneous scalar field
in the bulk, the behavior of η/s at small T is determined by
the flow of the QFT in the IR. If the translational invariance
is restored in the IR then η/s goes to a constant as T → 0,
signalizing the presence of an IR collective diffusive mode.
Conversely, if the translational invariance is not restored, η/s
scales as T 2ν for T → 0 and the IR geometry in D+2 dimen-
sions is typically AdS2 × RD [34]. We will discuss the gen-
eral validity of this behavior for spherical BH backgrounds.
In this case the translational symmetry is intrinsically bro-
ken and cannot be restored in the IR but holds only in the UV
where the spherical horizon can be approximated by a plane.

In a recent letter [45], a definition of the shear viscos-
ity for QFTs living in manifolds whose spatial sections are
spheres is proposed. This has allowed us to compute the
spherical analog of the shear viscosity η̃ for QFTs dual to
five-dimensional AdS–Reissner–Nordström (AdS-RN) BHs
in GR. Here a detailed derivation of these results is presented
and the discussion to five-dimensional asymptotically AdS
neutral and charged BHs in GB gravity is extended.

We start by defining the (analog) shear viscosity η̃ for
a QFT living on a D-sphere in the hydrodynamic limit.
Although the shear viscosity does not have the usual inter-
pretation pertaining to a QFT in a translation-invariant back-
ground, it is shown that it still satisfies a Kubo formula and
can be interpreted in terms of entropy production due to a
strain.

For a given tensorial perturbation of the spherical back-
ground it is possible to define three different correlators
corresponding to shear, sound and transverse propagating
modes [17]. If all the background symmetries are unbroken
they lead to the same value of the shear viscosity. If this
is not the case, in general the value of η̃ becomes channel
dependent [46]. Therefore, in the case under consideration
there will be three different determinations of the viscosity
for shear, sound and transverse modes. In this paper the focus
will be only on the shear viscosity for transverse perturba-
tions for which computations are easier.

Following the approach of Refs. [34,47] η̃/s for QFTs dual
to five-dimensional asymptotically AdS neutral and charged

BHs in GR and GB gravity are computed. By considering lin-
ear perturbations of the field equations the computation of η̃

is reduced to the determination of the non-normalizable mode
of the perturbation evaluated at the horizon. The perturbation
satisfies a linear second-order differential equation analog to
a massive scalar equation in a curved background whose non-
vanishing mass term encodes the breaking of the translational
invariance. Whereas the large and small T behavior of η̃/s
is determined analytically, its global behavior is determined
numerically. It is shown that for certain regimes of the tem-
perature η̃/s is a monotonic function. It saturates the KSS
bound at large T (or the GB coupling constant dependent
bound in the GB case) where the translational invariance is
restored. When the BH has a regular, stable extremal limit
η̃/s goes to zero with a T 2ν scaling law at small temperatures.

An interesting and somehow unexpected behavior of η̃/s
emerges in the parameter regions where the BH has a Van
der Wall-like behavior, characterized by the presence of both
a second- and a first-order phase transition. Once the control
parameter (the GB coupling constant or the BH charge) falls
below a critical value, the system undergoes a second-order
phase transition. In this condition BHs may undergo a first-
order phase transition from small to large BHs, controlled by
the temperature. Small and large black holes are connected
through a meta-stable intermediate region. As a result it is
found that η̃/s exhibits a temperature-dependent hysteresis
and, close to the phase transition, it becomes multi-valued
as expected for a first-order phase transition [29]. We further
explain this behavior in terms of the non-equilibrium thermo-
dynamics underlying the Van der Waals-like phase portrait.

The structure of the paper is as follows. In Sect. 2 the
problems related to the hydrodynamic limit for QFTs dual
to spherical BHs, the definition and the computation of η̃ is
discussed and the Kubo formula for η̃ is derived. In Sect. 3
known facts about solutions, thermodynamics, phase struc-
ture and perturbations for AdS spherical BHs in GR and GB
gravity are reviewed. In Sect. 4 the general formula for η̃/s
is given, its large and small T behavior is computed, the
numerical results for its global behavior is given and its rela-
tionship with the thermodynamical phase portrait of the dual
BH solutions is discussed. Finally, in Sect. 5 our conclusions
are stated.

Throughout this paper indices a, b, . . . refer either to the
whole D + 2-dimensional bulk spacetime or to its D + 1-
dimensional conformal boundary, while i, j, . . . refer to the
transverse D-dimensional spatial sections.

2 Hydrodynamic limit for QFTs dual to spherical black
holes and the analog viscosity

Relativistic hydrodynamics is an effective long-distance
description for a classical or quantum many-body system at
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non-zero temperature. In particular, it can be used to describe
the non-equilibrium real-time macroscopic slow evolution of
the system, both in space and time, with respect to a certain
microscopic scale.

In the holographic framework of the AdS/CFT correspon-
dence, the QFT lives in the boundary of a certain gravitational
bulk region. In some cases, the QFT can be described by a
kinetic theory and the microscopic scale is determined by the
mean free path of particles lmfp and the typical momentum
scale of the process k. When the kinetic theory is absent
or unknown it is still possible to give a thermal descrip-
tion and interpret the inverse temperature as the microscopic
scale [48,49]. Thus, the hydrodynamic limit of a QFT cor-
responds to large relaxation time, i.e. small frequencies, and
large scales compared to the typical one of the system, i.e.
λ̃ � 1/T ∼ lmfp, where λ̃ is the wavelength of the excita-
tions of the system.

In general, the existence of a hydrodynamic description is
essentially due to the presence of conserved quantities, i.e.
to the isometries of the system, whose densities can evolve
(oscillate or relax to equilibrium) at arbitrarily long times pro-
vided the fluctuations are of large spatial size. Correspond-
ingly, the expectation values of such densities are the hydro-
dynamic fields. However, it is still possible to give a hydrody-
namic description of a system without conserved quantities
in terms of expansion in derivatives of hydrodynamic fields
(as the fluid velocity) [48]. This approach is followed to for-
mulate the hydrodynamic description of a fluid in a spherical
background holographically dual to AdS spherical BHs.

On the sphere, due to its intrinsic geometry, the transla-
tional invariance is broken. As a consequence, the momentum
is not conserved and it is not possible to define an associated
conserved current. At first sight this should prevent us from
studying transport coefficients as the shear viscosity η, which
is, by definition, a measure of the momentum diffusivity due
to a strain in a fluid. Hence, in principle, without translational
symmetry it is not possible to define a conserved current from
which the Fick law of diffusion [50] can be derived. Never-
theless, as seen below, these difficulties can be circumvented
and a rigorous definition of η for the hydrodynamic limit of a
QFT in a spatial background without translational isometries
can be given.

Consider a QFT living on the boundary of AdSD+2 whose
spatial sections have spherical topology. Although bulk BHs
allow for dual QFTs living on a sphere [51–54], in the explicit
form of the holographically dual QFT is not of interest here.
However, its hydrodynamic limit can be studied in the sense
described above. The boundary metric is conformal toR×SD

ds2 = r2

L2

(
−dt2 + L2 dΩ̄2

D

)
, (1)

where dΩ̄2
D = ḡi j dxi dx j is the metric of a D-sphere. In this

case, due to the spherical shape of the boundary, the metric

perturbations used to describe the non-equilibrium real-time
macroscopic slow evolution of the system are characterized
by two parameters, the relaxation time or the frequency ω and
L/� which “measures” angular distances on the sphere. The
integer number � parametrizes the eigenvalue of the Lich-
nerowicz operator on the sphere (see Eq. (7) below) and is
analog to the momentum scale k for a flat topology. In the
spacetime (1), the hydrodynamic limit of the holographic
QFT is defined as the limit in which the metric perturbations
have slow relaxation time and are much larger than the typ-
ical scale of the system, i.e. ω → 0 and L/� � 1/T . Since
we are dealing with a D-sphere, the number � cannot be arbi-
trarily small, i.e. there is a minimum value �0 [55–57] which
corresponds to a maximum spatial scale and to a maximum
size for the global modes propagating on the sphere. On the
contrary, in flat space is no constraint on the values of k.
Thus, one can set k → 0 which corresponds to fluctuations
of very large (in principle infinite) wavelength.

2.1 Hydrodynamics in curved spacetime

Relativistic hydrodynamics for a fluid in curved spacetimes
can be formulated starting from the following definition for
the stress-energy tensor [42,48]

T ab = εuaub + T ab⊥ , (2)

where ε is the energy density and the fluid velocity ua (com-
monly evaluated in the frame in which the fluid is at rest)
is time-like. The tensor T ab⊥ is the spatial part of the stress-
energy tensor and it is made by time-independent functions
of the hydrodynamic variables ε, ua and their derivatives.
In a generic curved background it is not always possible to
globally define conserved currents associated with symme-
tries of the system. However, the hydrodynamic equations
can always be derived by requiring the stress-energy tensor
to be covariantly conserved, i.e. ∇aT ab = 0. In general,
the hydrodynamic modes are infinitely slower than all other
modes and the latter can be integrated out. Thus, all quanti-
ties appearing in the hydrodynamic equations are averaged
over these fast modes and are functions of the slow-varying
hydrodynamic variables.

Equation (2) can be expanded in powers of derivatives of
the velocity. At first order the most general expansion is given
by

T ab = (ε + P) uaub + Pgab + Πab , (3)

where P = P(ε) is a scalar function and it can be interpreted
as the thermodynamical pressure. The tensor Πab contains
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the derivatives of the fluid velocities, i.e. the dissipative con-
tributions to T ab. Its explicit form is given by [42,48]2

Πab = −ησ ab − ητΠ

[〈Dσ ab〉 + 1
Dσ ab(∇cuc)

]

+κ
[
R〈ab〉 − (D − 1)ucRc〈ab〉dud

] + · · · (4)

where the dots represent the non-linear terms in the fluid
velocity and η, τΠ and κ are transport coefficients. The sym-
bol D represents the derivative with respect to the velocity
direction, i.e. D = ua∇a . The tensor σ ab is a symmetric,
transverse uaσ ab = 0 and traceless gabσ ab = 0 tensor con-
structed with the first derivative in the fluid velocity given
by σ ab = 2〈∇aub〉. The parameter η = η(ε) is the shear
viscosity and τΠ is the relaxation time.

2.2 Kubo formulas and the analog viscosity

The Kubo formula relates thermal correlators to kinetic coef-
ficients such as dissipative ones. For a relativistic QFT in flat
spacetime, the Kubo formula gives a general definition of the
shear viscosity in terms of the retarded Green function for
the stress-energy tensor [10,34,58]

η = lim
ω→0

1

ω
Im GR

T i j T i j (ω, k → 0) , (5)

where i = x, j = y and T i j are the spatial components of
the stress-energy tensor. ω and k are the frequency and wave
vector of the perturbation. When the translational invariance
is preserved and a hydrodynamic limit exists Eq. (5) becomes
the Kubo formula for the transverse momentum. In this case
η defined by Eq. (5) coincides with the usual hydrodynamical
definition in terms of conserved quantities obtained from the
Einstein relation C = η/sT , where C is the diffusion con-
stant appearing in the Fick law [34]. In a holographic setup
based on the AdS/CFT correspondence, GT i j T i j can be cal-
culated using the usual AdS/CFT rules by considering small
perturbations of the bulk metric.

In order to extend the Kubo formula (5) to spherical back-
grounds, small metric perturbations around the boundary
background metric (1) are considered, i.e. gab → gab + hab.
In general, three different types of perturbations can be con-
sidered: shear, sound and transverse (scalar) modes. The
behavior of these modes will be encoded in three differ-
ent correlators G1,2,3(ω, k). In the translationally invariant
case (and also when translation invariance is broken by exter-
nal matter fields) at k = 0 these three functions are equal,
due to rotational symmetry [17]. By contrast, in the spher-
ical case under consideration k cannot be taken to zero by
construction and the correlators will be different. Thus, in

2 For a rank-2 tensor, 〈Aab〉 = A〈ab〉 ≡ 1
2 ΔcaΔdb (Aab + Aba) −

1
DΔabΔcd Acd , where Δab is a symmetric and transverse tensor given
by Δab = gab + uaub. In the local rest frame, it is the projector tensor
on the spatial subspace.

general, any definition of the shear viscosity in a spherical
background based on linear response to small disturbances
will be channel dependent. In this paper the focus will be on
the transverse perturbations. The computations for the sound
and shear channel is left for future investigations.

Choosing transverse and traceless perturbations with
hab = 0 if (a, b) 
= (i, j), hi j = hi j (t, x) (where x denote
the angular directions) in Eq. (3) and considering the fluid at
rest, i.e. ua = (1, 0), we obtain

T i j = −Phi j − ηḣi j + ητΠ ḧi j

−κ

2

[
(D − 2)ḧi j + L2�̄Lhi j

]
, (6)

where �̄L = ∇̄k∇̄k is the Lichnerowicz operator and it cor-
responds to a generalization of the Laplacian for the D-
sphere, with D � 3. Equation (6) is analog to the one
obtained in Ref. [48] for planar topology. As required by the
linear response theory, the retarded Green function for the
tensor channel is computed: by choosing a harmonic time
dependence for the perturbation, hi j (t, x) = e−iωt hi j (x)
and by expanding in hyper-spherical harmonics [59–61], the
retarded Green function from Eq. (6) can be extracted

GR
T i j T i j (ω, �) = − P − iωη − ω2ητΠ

− κ

2

[
(D − 2)ω2 + L2γ

]
, (7)

where γ = �(� + D − 1) − 2 are the eigenvalues of the
Lichnerowicz operator and � = 1, 2, 3, . . . is an integer
associated with the hyper-spherical harmonic expansion. The
eigenvalues γ are positive and form a discrete set [55–57,61].
Given the retarded Green function above the dissipative coef-
ficients, η and τΠ can be extracted. In particular, the analog
of shear viscosity in the hydrodynamic limit for a QFT in a
spatial spherical background in the transverse channel can be
defined

η̃ ≡ − lim
ω→0

1

ω
Im GR

T i j T i j (ω, � → �0) , (8)

where �0 is the minimum value of �. Notice that the shear
viscosity η̃ in Eq. (8) is defined as the � → �0 limit of the
retarded Green function in analogy with Eq. (5). In planar
hydrodynamics the k → 0 limit describes long-wavelength
modes and probes large scales on the plane. In the spherical
case, the � → �0 modes probe large angles on the sphere.

It is also important to stress that, with respect to the pla-
nar case, the expression in square brackets in Eq. (6) has an
additional contribution to the stress-energy tensor ruled by
the transport coefficient κ . However, this contribution drops
out in the Kubo formula (8) when we take the imaginary part
of the Green function.

We conclude with some remarks about the conservation
of the stress-energy tensor. For translation-invariant back-
grounds the conservation of the stress-energy tensor leads to
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the conservation of global currents and to the Fick law [50].
More generally, from the projection of ∇aT ab along the fluid
velocity ub, second-order hydrodynamics can be related with
the second law of thermodynamics [48]. In particular, by
using Eqs. (3) and (4) at linear order the following can be
found:

ṡ = η

2T
σi jσ

i j , (9)

where s is the entropy density. Equation (9) represents the
rate of entropy production in a fluid due to a slowly varying
strain hi j . It can be used to define the shear viscosity [34].

In this case only local conservation can be considered with
the background metric (1) since the translational invariance
is broken and the Fick law is not satisfied but Eq. (9) still
holds.

3 Black-hole solutions in five dimensions

The field equations of five-dimensional Einstein–Gauss–
Bonnet gravity sourced by any form of matter fields described
by the stress-energy tensor T(M)

b
a are [62–64]

G(1)
b
a + α2 G(2)

b
a = 8πG5 T(M)

b
a , (10)

where G(1)
b
a ≡ Rb

a − 1
2 Rδba is the Einstein tensor, α2 is the

GB coupling constant, G5 is the five-dimensional Newton
constant, and G(2)

b
a is the GB contribution,

G(2)
b
a ≡ Rca

deRde
cb − 2Rc

d Rca
db − 2Rc

a R
b
c + RRb

a

−1

4
δba

(
Rcd

e f Ref
cd − 4Rd

c R
c
d + R2

)
. (11)

For later convenience λ ≡ α2/L2 is defined. L is the AdS
length. Throughout this paper the source term contains only a
negative cosmological constant and an electromagnetic field.
In particular, static BH solutions are considered to (10) i.e.
solutions with spherical horizons in the form

ds2 = − f (r) dt2 + dr2

f (r)
+ r2 dΩ̄2

3 . (12)

For the AdS-RN BHs of GR the metric function is

fRN(r) = 1 + r2

L2 − 8G5M

3πr2 + 4πG5Q2

3r4 , (13)

while, in the branch that allows for BH solutions, the metric
function for GB gravity is

fGB(r) =1 + r2

2λL2

[
1 −

√
1 − 4λL2

(
1

L2 − 8G5M

3πr4 + 4πG5Q2

3r6

)]
.

(14)

In Eqs. (13) and (14), M and Q are, respectively, the BH
mass and charge.

3.1 Black holes in Gauss–Bonnet gravity

As in the black brane case asymptotically AdS BH solutions
of GB gravity exist only for λ < 1/4. Moreover, it is well
known that the unitarity bounds for the dual QFT constrain
the value of λ [17,20,65], so that in this paper we will take
λ in the following range: 0 < λ � 9/100.

The BH horizons are determined by the positive zeros of
the function

h(Y ) = Y 3

L2 + Y 2 − σY + ρ , (15)

where Y = r2, σ = 8G5M/3π − λL2, ρ = 4πG5Q2/3.
The BH becomes extremal when h′(Y ) = 0.

Asymptotically AdS BH solutions with inner (r−) and
outer (r+) horizons exist for

M � 3π

8G5

[
λL2 + L2

3

(
z2

0 + 2z0

)]
, (16)

where z0 is the real, positive solution of the cubic equation
2z3 + 3z2 − 27ρ/L4 = 0. When the inequality is saturated
the inner and outer horizons merge, i.e. the BH becomes
extremal and in the near-horizon regime the solution factor-
izes as AdS2 × S3

ds2 = −r2

l2
dt2 + l2dr2

r2 + r2
0 dΩ̄2

3 , (17)

where r0 is BH radius at extremality, determined by the solu-
tion Y0 = r2

0 of the cubic equation

hext(Y ) = 2Y 3

L2 + Y 2 − ρ = 0 , (18)

and l is the AdS2 length

l−2 = 2h′′(r0)

r2
0 + 2λL2

= 2(6r2
0 + 2L2)

L2(r2
0 + 2λL2)

. (19)

The BH thermodynamical parameters temperature T ,
mass M and entropy S can be expressed in terms of the hori-
zon radius r+ as [64]

T (r+) =
4r4+
L2 + 2r2+ − 8πG5Q2

3r2+
4πr+(r2+ + 2λL2)

, (20)

M(r+) = 3πr4+
8G5

(
1

L2 + 1

r2+
+ λL2

r4+
+ 4πG5Q2

3r6+

)
, (21)

S(r+) = π2r3+
2G5

(
1 + 6λL2

r2+

)
. (22)
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The spherical geometry of the horizon introduces another
scale in the system, i.e. the radius of the sphere, which cou-
ples in a non-trivial way to the higher-curvature terms in
the equations of motion (10). This scale introduces depen-
dency on the GB coupling in the mass bound (16) and in
the thermodynamical expression (20) to (22). As a result the
thermodynamical- and near-horizon behavior of the GB BHs
is completely different from their brane counterparts. Indeed,
for charged GB black branes such behavior is universal, i.e.
does not depend on λ, and is essentially the same as the RN
black branes of GR [28].

Notice that although the extremal radius r0 is determined
only by the BH charge and the cosmological constant, the
AdS2 length l and hence the extremal geometry (17) depend
on the GB coupling constant. Notice also that the expres-
sion in the parenthesis in Eq. (20) is proportional to hext(Y+)

meaning that the extremal geometry is obtained at zero tem-
perature.

The thermodynamical parameters (20) to (22) near
extremality are

T (r+) = 2

πL2

3r2
0 + L2

r2
0 + 2λL2

(r+ − r0) + O
(
(r+ − r0)

2
)

,

(23)

M(T ) = 3π

8G5

(
3r4

0

L2 + 2r2
0 + λL2

)

+ 3π3

8G5

L2(r2
0 + 2λL2)2

L2 + 3r2
0

T 2 + O
(
T 3

)
, (24)

S(T ) = π2r3
0

2G5

(
1 + 6λL2

r2
0

)

+ 3π3

4G5

L2(r2
0 + 2λL2)2

L2 + 3r2
0

T + O
(
T 2

)
. (25)

The first terms in Eqs. (24) and (25) represent, respectively,
the BH mass and entropy at extremality.

3.2 Phase structure of AdS–Reissner–Nordström black
holes

Although the metric function fGB in Eq. (14) is singular for
λ = 0, the thermodynamical behavior of the charged AdS-
RN solution can be simply obtained by putting λ = 0 in
Eqs. (16) and (20) to (22).

To characterize the phase structure of these BHs, a distinc-
tion can be made between two cases: fixed electric potential
or fixed electric charge [14,15]. In this paper we only discuss
the canonical ensemble, i.e. we work at fixed charge. We will
not consider the grand canonical ensemble, i.e. the case of
fixed chemical potential. As the charge of BH decreases to a
critical value Qc, the system undergoes a second-order phase
transition. Below the critical charge there are three possible

branches of solutions that depend on the radius and therefore
on the temperature of the system. For small temperatures a
small BH is the only locally stable solution; as the temper-
ature increases a meta-stable configuration describing inter-
mediate BHs can be found; for sufficiently high temperatures
large BHs are globally preferred. The evolution from small
to large BHs through the meta-stable region corresponds to
a first-order phase transition. Above the critical charge the
BH solution is always globally preferred. This behavior can
be understood by analyzing the temperature as a function of
the BH radius given by Eq. (20) with λ = 0. For Q > Qc it
is a monotonic function, whereas it develops local extrema
for 0 < Q < Qc and an inflection point for Q = Qc.
Notice that the case Q = 0 is not included in the range of
existence of the first-order phase transition. In fact, Q = 0
corresponds to the AdS-Schwarzschild BH. The phase por-
trait of the AdS-RN BHs is very similar to a liquid/gas Van
der Waals phase transition where the BH temperature plays
the role of the pressure, the BH radius that of the volume and
the BH charge that of the temperature [14,15]. This portrait
has been extended by Kubizňák et al. in Refs. [66,67] and to
topological AdS BHs in massive gravity [68].

We make a brief comment on the zero-charge limit.
For Q = 0 the metric (13) reduces to that of an AdS-
Schwarzschild BH. However, from the thermodynamical
point of view, this limit is singular. There is a discontinu-
ity at Q = 0. The phase diagram of an AdS-Schwarzschild
BH cannot be obtained as the Q → 0 limit of the AdS-RN
one. In fact, the BH temperature serves as a function of the
radius, Eq. (20), when Q = 0 becomes a monotonic func-
tion and shows no Van der Waals-like behavior as in the RN
case [45].

3.3 Phase structure of neutral Gauss–Bonnet black holes

Neutral GB BH solutions and their thermodynamical param-
eters are obtained by putting Q = 0 in Eqs. (14) and (20) to
(22). These BHs are characterized by the absence of a reg-
ular, zero temperature extremal limit which, in turn, means
the absence of an IR fixed point for the dual QFT in the
holographic description. For positive λ the T = 0 extremal
limit is a state with r+ = 0, zero entropy and positive non-
vanishing mass. Therefore, the small temperature thermody-
namical behavior is always singular.

Neutral GB BHs exhibit an interesting phase structure.
Different from Einstein gravity where small BHs are not sta-
ble and a thermal AdS state is energetically preferred [69,70],
in GB gravity exists a stable small BH.3 It starts with a small
positive free energy, becomes unstable and evolves to a ther-
mal AdS phase. Additionally, we also have the usual stable

3 Small BHs can be gravitationally unstable for values of λ larger than
those considered here [71].
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BH phase for large radii [53]. By inspecting the behavior
of the specific heat and the free energy, it is found that the
phase structure of neutral GB BHs strictly depends on the
values of the GB coupling constant and the BH radius [63].
For values of the GB coupling constant below the critical
one, λc = 1/36, there are three different branches of solu-
tions, corresponding to small, intermediate and large BHs.
The specific heat is positive in the first and third branch,
whereas it is negative in the second branch. This behavior is
a consequence of the fact that T (r+), given by Eq. (20) with
Q = 0, is monotonically increasing for λ > λc, whereas
it develops local extrema for λ < λc [63]. For λ � λc the
second branch disappears and BHs are always locally sta-
ble but not necessarily globally preferred. Computing the
free energy one finds that the BH solution is globally stable
and energetically preferred with respect to thermal AdS in
the parameter region λ1(r+) � λ � λ2(r+), where λ1(r+)

and λ2(r+) are some functions of the horizon radius [63].
Outside this region a Hawking–Page phase transition exists.
BHs become globally unstable and thermal AdS is energet-
ically preferred. Therefore, in the parameter region where
BHs are energetically preferred with respect to thermal AdS,
the phase diagram of uncharged GB BHs has the same Van
der Waals form described in the previous section for AdS-
RN BHs, with the GB parameter λ playing the role of the BH
charge Q.

Analog to the Q → 0 limit, the limit λ → 0 is singular
from the thermodynamical point of view. In fact for λ → 0
the phase diagram of an AdS-Schwarzschild BH can not be
recovered. First, the metric (14) becomes singular. Second,
similarly to what we have seen for charged BHs in GR, the
temperature as a function of the horizon radius exhibits a
discontinuous behavior in the λ → 0 limit. The limits Q → 0
and λ → 0 have a similar singular behavior also in the case
of charged GB BHs.

3.4 Phase structure of charged Gauss–Bonnet black holes

The thermodynamical description of charged GB BHs is
determined by the GB coupling constant λ and the charge
Q. There are critical values of these parameters, such that
these BHs can exhibit the typical Van der Waals gas behavior
in the T –S plane [72,73].4 Thus, charged GB BHs possess
the Hawking–Page phase transition [16,69] and a second-
order one [73]. The former represents the transition from a
stable AdS thermal state to a stable BH spacetime. When
Tc is the r+-dependent critical value of the temperature and
r2
c = 6λL2, for T > Tc and r+ > rc (or T < Tc and r+ < rc)

AdS is preferred with respect to the BH, whereas for T < Tc
and r+ > rc (or T > Tc and r+ < rc), the BH is preferred

4 This is analogous to consider the cosmological constant as a pressure
term in the BH equation of state [74].

with respect to AdS. It is remarkable that due to presence of
λ and Q the standard critical point becomes a critical line in
the T -r+ phase diagram [16].

Again, the phase portrait has the Van der Waals-like form
described in Sects. 3.2 and 3.3 if one considers only the
parameter region where the BH phase is globally preferred
with respect to the thermal AdS phase and if one holds either
Q or λ fixed. In the former (latter) case, at the critical value
λc (Qc) the system undergoes a second-order phase transi-
tion. For λ < λc (Q < Qc), varying the temperature we have
again a stable small BH phase and a stable large BH phase
connected by a meta-stable phase. Moreover, the function
T (r+) always has the typical behavior described in Sects. 3.2
and 3.3.

3.5 Linear perturbations in Einstein–Gauss–Bonnet gravity

In this section, linear tensorial perturbations about the back-
ground (12) in Einstein–Gauss–Bonnet gravity, i.e. gab →
gab + hab, are studied. After suitable manipulations the lin-
earized equation of motion (10) is

δR j
i + λL2 δG(2)

j
i + 8π G5

(
T(M)

k
i h

j
k − δT(M)i j

hi j
h j
i

)
= 0,

(26)

where δT(M)i j =
(

δT(M)i j
hi j

)
hi j and the explicit form of the

tensors δR j
i and δG(2)

j
i can be found in Refs. [75,76]. In the

transverse and traceless gauge (∇ahab = gabhab = 0), with
hab = 0 unless (a, b) = (i, j) the following can be written:

hi j (r, t, x) = r2 φ(r, t) h̄i j (x) , (27)

where x is the direction of the sphere along which the per-
turbation propagates and h̄i j is the eigentensor of the Lich-
nerowicz operator built on the background 3-sphere

(�̄L + γ
)
h̄i j = 0 , γ = �(� + 2) − 2 . (28)

The perturbations hi j are both gauge-invariant and decou-
ple [55–57,75,76]. This decoupling is a consequence of the
spherical symmetry of the background and occurs for every
value of � and not only in the hydrodynamic limit � = �0.
Furthermore, assuming a harmonic time dependence of the
perturbation, h j

i = φ(r, t) h̄ j
i (x) = ψ(r) e−iωt h̄ j

i (x), the

perturbation h j
i factorizes leading to a set of equations which

depend only on t and r [75,76]. Thus Eq. (26) reduces to a
massive scalar equation

1

r3
d

dr

[
r3 f (r)F(r)

dψ

dr

]
+ ω2 F(r)

f (r)
ψ − m2(r) ψ = 0 , (29)
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where F(r) ≡ 1 − λL2 f ′(r)/r and the mass term is

m2(r) = 2 − γ

r2

[
1 − λL2 f ′′(r)

]
+ T(M)

i
i − δT(M)i j

δgi j
.

(30)

Notice that the mass term depends on the angular part of the
perturbation through the eigenvalue γ of the Lichnerowicz
operator (28) and on higher-curvature corrections through
the GB constant λ. In the black brane case, if translational
invariance is preserved, the mass term is identically zero [10].
We stress that, although Eq. (29) holds for any � since we
are interested in computing the shear viscosity (8), in the
following � will be taken equal to its minimum value �0 = 1
implying γ = 1.

There are no general exact analytical solutions of Eq. (29)
but approximate analytical solutions can be found for r → ∞
and in the near-horizon limit. In the generic case the solutions
can only be computed numerically.

The asymptotic solutions of Eq. (29) with ω = 0 are
given in terms of the modified Bessel functions of the first
and second kind. For r → ∞, the non-normalizable mode
ψ0 and the normalizable mode ψ1 behave as

ψ0 = 1 − λL2

2
(
1 − √

1 − 4λ
)
r2

+ O
(

log r/r4
)

, (31)

ψ1 = 1

r4 + O
(

1/r6
)

. (32)

In Eq. (31) the integration constant is chosen such that the
non-normalizable mode ψ0 goes to 1 as r → ∞.

The near-horizon behavior of ψ0(r) is different for non-
extremal and extremal BHs. In the case of non-extremal BHs
at temperatureT and extremalT = 0 BHs the metric function
is written, respectively,

f (r) = 4πT (r − r+) + f ′′(r+)

2
(r − r+)2 + O

(
(r − r+)3

)
,

(33)

f (r) = (r − r0)2

l2
+ O

(
(r − r+)3

)
, (34)

where the extremal BH radius r0 is defined in Eq. (18) and the
AdS2 length l is given by Eq. (19). In the non-extremal case
we write ψ0(r) using a power-series expansion and Eq. (29)
is solved order by order. At leading order the following is
found:

ψ0(r) = ψ0(r+)

[
1 + 1 − λL2 f ′′(r+)

4πTr2+ − λL2r+(4πT )2
(r − r+)

]

+ O
(
(r − r+)2

)
. (35)

For the extremal case, the leading quadratic behavior of f (r)
implies ψ0(r+) = 0. The behavior of ψ0(r) in the near-
horizon region is

ψ0(r) = (r − r0)
ν, ν = 1

2

(
−1 +

√
1 + 4l2 − 8λL2

r2
0

)
.

(36)

4 The shear viscosity to entropy density ratio

In this section, following the method proposed in Refs. [34,
47], the shear viscosity to the entropy ratio for the QFTs
dual to the BH solutions discussed in Sect. 3 is computed.
For Einstein gravity coupled to matter η̃/s of the dual QFT
is determined by means of the retarded Green function in
Eq. (8). It is given by the non-normalizable mode ψ0 of the
perturbation evaluated at the horizon,

η̃

s
= 1

4π
ψ0(r+)2 . (37)

This method can be generalized to include higher-curvature
contributions. The computation uses a Wronskian method to
determine the relation between the normalizable mode ψ1

and the non-normalizable mode ψ0. Since this relation does
not depend on the mass term m2(r) in Eq. (29), the formula
of Ref. [34] also holds for BHs in GB gravity:

η̃

s
= 1

4π
ψ0(r+)2

×
[

1 − 4λ

(
1 − 2πG5Q2L2

3r6+

)] (
1 + 6λL2

r2+

)−1

,

(38)

where ψ0(r) is the non-normalizable solution of Eq. (29)
with ω = 0.

For background solutions which do not break translational
invariance, e.g. branes, the mass term m2(r) is identically
zero and the zero-frequency solution is ψ0(r) = 1 every-
where [28,34]. On the contrary, in BH backgrounds, the
translational invariance is broken, the mass term m2(r) is
non-vanishing, the ω = 0 solution for ψ0(r) is not constant
and ψ0(r+) must be calculated by integrating Eq. (29) with
ω = 0.

Large radius BHs r+ � L correspond to the large tem-
perature regime T � 1/L . In this approximation T (r+) can
be inverted in Eq. (20) to get r+(T ) = πL2T + O (1/T ).
Then, using Eq. (31) and (38),

η̃

s
= 1 − 4λ

4π

[
1 − λL2 (

7 − 6
√

1 − 4λ
)

π2
(
1 − √

1 − 4λ
)
L4T 2

+ O
(

1/T 4
)]

.

(39)

As expected, in the large T regime η̃/s does not depend on
the charge. For GR BHs Eq. (39) is a decreasing function
of the temperature. Thus the KSS bound is violated and the
universal value 1/4π is attained only for T → ∞. For GB
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Fig. 1 Global behavior of η̃/s as a function of the temperature for GR
BHs. Left panel: neutral AdS BHs. The solid line is the region above
the critical radius and the dotted line represents (part of) the region
below the critical radius, where the BH is unstable and a thermal AdS
solution is preferred; the dot marks the critical radius at T = √

2/π .

Right panel: AdS-RN BHs. η̃/s are plotted for three selected values of
the BH charge: above, at and below the critical value Qc = 1/6

√
5π ,

at which the system undergoes the second-order phase transition. The
dots (square) mark the maximum (minimum) of the temperature as a
function of the BH radius

BHs the behavior is qualitatively similar but as T → ∞ the
value of η̃/s tends to (1 − 4λ)/4π .

In the extremal case the metric function and its first
derivative vanish when evaluated on the horizon. Following
Ref. [34] the shear viscosity to entropy ratio is given by

η̃

s
= 1

4π
ψ0(r+)2

(
1 + 6λL2

r2
0

)−1

. (40)

Equation (36) tells that ψ0(r+) = 0 which substituted in
Eq. (40) means that η̃/s goes to zero in the T = 0 extremal
limit. The scaling at low temperatures of η̃/s follows from
simple matching argument [34] between scaling of the Green
function and the near-horizon scaling (36)

η̃

s
∼ T 2ν , (41)

where ν is given by (36). The scaling exponent satisfies ν � 1
for

λ � l4

L2r2
0

+ l2

2L2 . (42)

The global behavior of η̃/s as a function of T is obtained
by numerically integrating Eq. (29) supplied with a power-
series boundary condition for ψ0(r). In the following, we
choose units G5 = L = 1. For each value of the charge
and the GB parameter there exists a minimum mass (and
hence a minimum radius) given by Eq. (16). Equation (29) is
then integrated outwards from the horizon to infinity. Next,
a shooting method is used to determine ψ0(r+) by requiring
that ψ0(∞) = 1. Finally, the temperature and η̃/s for each
solution are computed with Eqs. (20) and (38).

4.1 AdS–Reissner–Nordström black holes

The plots of η̃/s resulting from our numerical calculations
for GR are shown in Fig. 1 for electrically neutral (left panel)
and charged (right panel) BHs.

The KSS bound is always violated for small and intermedi-
ate values of temperature, whereas it is saturated from below
for large temperatures. In this section we extend the discus-
sion of Ref. [45]. For neutral AdS BHs η̃/s starts at the univer-
sal value 1/4π at large temperatures and decreases monoton-
ically as T decreases, reaching a minimum non-zero value
for the non-vanishing minimum temperature T = √

2/π .
Such a temperature corresponds to the minimum value of the
BH radius, r0 = 1/

√
2. At r = r0 there is the Hawking–Page

transition. For r+ � r0 there are no stable BH solutions [70]
and thermal AdS is energetically preferred with respect to the
BH. The dotted line in the left panel of Fig.1 gives η̃/s for
BHs with radii less than r0 whose behavior is a consequence
of the growing of T for r+ � r0.

For AdS-RN BHs η̃/s decreases from 1/4π at large tem-
peratures (independently from the charge) but the behav-
ior for small and intermediate temperatures depends on the
charge. As explained in Sect.3.2 there exists a critical value of
the charge Qc = 1/6

√
5π under which the system undergoes

a phase transition. On the right panel of Fig. 1, the numeri-
cal results are plotted for η̃/s for the critical charge and for
representative values of the charge above, at and below the
critical value. The dots (squares) in the curves with Q � Qc

mark the critical temperature Tmax (Tmin), corresponding to
the two local extrema of the function T (r+) of Eq. (20).
At these critical temperatures the specific heat changes sign
according to the discussion in Sect. 3.2. For Q = Qc it is
found that Tmin = Tmax and the function T (r+) has an inflec-
tion point. For Q > Qc the function T (r+) is monotonically
increasing and BHs are always stable. The numerical values
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Tmin and Tmax are listed in Table 1 for a representative value
of the charge below and at Qc.

Interestingly, η̃/s develops hysteresis for 0 < Q < Qc.
This is evident for the Q = 1/100 solid black curve in the
right panel of Fig. 1. We have also checked that curves with
Q < Qc have a similar hysteretic behavior, whereas those
with Q > Qc (as the Q = 1/10 orange dashed line) do not
show this feature. Notice that the limit Q → 0 in the plot of
l.h.s. of Fig. 1 is singular. As explained in Sect. 3.2 we have
a discontinuity for Q → 0, i.e. there is no phase transition
at Q = 0. Because the existence of the phase transition is a
necessary condition for having hysteresis in η̃/s, this means
that also η̃/s as a function of the temperature is discontinuous
at Q = 0: there is a more pronounced hysteretical behavior
for Q → 0 but hysteresis disappears completely at Q = 0.
This hysteretic behavior is a direct consequence of the Van
der Waals-like behavior of the AdS-RN BHs discussed in
Sect. 3.2. It is related to the presence of two local extrema in
the function T (r+) in Eq. (20) or, equivalently, to the pres-
ence of two stable states (small and large BHs) connected by
a meta-stable region (intermediate BHs). This phase portrait
has been considered as a general explanation of hysteretic
behavior for some variables of the system [77]. In particular,
when the system evolves from high (low) to lower (higher)
temperatures, a potential barrier prevents the evolution of the
system from occurring as an equilibrium path between the
two stable states [78]. Equilibrium will be reached passing
through a meta-stable region. Then a path-dependence of η̃/s
is generated. In particular, starting from high temperatures,
the system will reach low temperatures going directly from
the minimum and vice versa. The presence of these local
extrema determines the patterns of signs of the BH specific
heat and free energy, hence the local thermodynamical sta-
bility [14,63]. Thus, hysteresis in η̃/s and thermodynamical
phase transition have the same origin and pattern. In fact,
as already noted in Sect. 3.2, the phase diagram of AdS-RN
BHs is very similar to that of a Van der Waals liquid/gas
transition.

This is a very interesting result: η̃/s for the dual QFT car-
ries direct information about the thermodynamic phase tran-
sitions of the system. In the holographic context a hysteretic
behavior in the shear viscosity has been already observed in
Ref. [29,30] for AdS BHs with broken rotational symmetry
and with a p-wave holographic superfluid dual. Moreover, it
is well known that nanofluids may exhibit hysteresis in the
η–T plane [79].

Notice that, even though solutions with Q > Qc describe
stable BHs in the overall range of T , our numerical com-
putation does not hold in the small T regime as it uses a
power-series near-horizon expansion. However, η̃/s → 0 as
T → 0 with analytical scaling law (41) and scaling exponent
ν given by Eq. (36) with λ = 0.

Fig. 2 Global behavior of η̃/s as a function of the temperature for
GB BHs with Q = 0 for selected values of the GB coupling constant
above, at and below the critical value. Dots (squares) mark the maximum
(minimum) of the temperature as a function of the BH radius

4.2 Neutral Gauss–Bonnet black holes

Our numerical results for η̃/s as a function of T for neutral
GB BHs are shown in Fig. 2 for selected values of the GB
parameter λ in the range 0 < λ � 5/100.

For large temperatures, the KSS bound is always violated
due to the GB contribution and 4πη̃/s → 1 − 4λ. At inter-
mediate temperatures the behavior is qualitatively similar to
that of RN BHs, with the GB parameter λ playing the role of
the charge Q. As discussed in Sect. 3.3 there exists a critical
value λc under which GB BHs can undergo a phase transi-
tion: by numerical investigation this value is λc = 1/36, in
good agreement with Refs. [63,73]. Curves with 0 < λ < λc
(black solid and red dotted lines) show a hysteretic behavior
of η̃/s as a function of the temperature, whereas those with
λ > λc do not. For a given value λ < λc there are two critical
temperatures Tmax, Tmin, which are marked, respectively, by
dots and squares in the curves of Fig. 2. Their numerical val-
ues for selected values of λ are listed in Table 1. Notice that
similarly to the Q → 0 case the limit λ = 0 in the plots of
Fig. 2 is singular. As explained in Sect. 3.3, for λ = 0 there is
a discontinuity. This implies that also that η̃/s as a function
of the temperature is discontinuous at λ = 0. There is a more
pronounced hysteretical behavior for smaller and smaller val-
ues of λ but hysteresis disappears completely at λ = 0.

The physical interpretation of the appearance of hysteresis
in η̃/s for the QFT dual to the neutral GB BH is completely
analog to that discussed for the AdS-RN BH. When λ reaches
the critical value the system undergoes a second-order Van
der Waals-like phase transition and exhibits the hysteretic
behavior in η̃/s.

4.3 Charged Gauss–Bonnet black holes

The presence of both a non-vanishing charge and a GB cou-
pling constant makes the case of charged GB BHs more
involved. However, as discussed in Sect. 3.4, the phase por-
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Fig. 3 Global behavior of η̃/s as a function of the temperature for
charged GB BHs. Left panel: GB BHs with fixed charge Q =
1/100, and selected values of GB constant λ = 1/1000, 5/1000, ∼
0.25, 5/100. The value of η̃/s is rescaled by a factor 1 − 4λ; in
this way the large T behavior of 4πη̃/s which for GB gravity is

λ-dependent has been normalized to 1. Right panel: GB BHs with
fixed value of GB constant λ = 1/100 and selected values of charge
Q = 1/100, 2/100, ∼ 3/100, 4/100. Inset: zoom of the hysteresis
region. Dots (squares) mark the local maximum Tmax (local minimum
Tmin) of the temperature

Table 1 Critical temperatures
for selected values of λ and Q
below and at the critical values

Q 1/100 Qc 0 1/100 1/100 2/100 Qc

λ 0 1/1000 1/100 λc 1/1000 5/1000 λc 1/100

Tmin 0.449 0.441 0.448 0.431 0.390 0.448 0.440 0.397 0.431 0.429 0.425

Tmax 0.664 0.441 1.787 0.587 0.390 0.638 0.559 0.397 0.494 0.445 0.425

For the AdS-RN BH the critical charge is Qc = 1/6
√

5π . For the neutral GB BH the critical value of the
coupling is λc = 1/36. For GB BHs with fixed charge Q = 1/100 the critical value of the coupling is
λc ≈ 1/4, while for fixed λ = 1/100 the critical charge is Qc ≈ 3/100

trait becomes much simpler and has a Van der Waals-like
form if we restrict our considerations to the region where
BHs are globally stable and either holds Q or λ fixed. In this
situation we expect the qualitative behavior of η̃/s as a func-
tion of T to be quite similar to that found for the AdS-RN and
the neutral GB BHs. The numerical results for η̃/s as a func-
tion of T confirm our expectation. They are shown in Fig. 3
for Q fixed and selected values of the GB parameter λ (left
panel) and for λ fixed and selected values of the charge Q
(right panel). In both cases the numerical results corroborate
the analytical ones. For large temperatures the KSS bound is
always violated as 4πη̃/s → 1 − 4λ. At intermediate tem-
peratures the behavior of η̃/s depends crucially on the values
of the parameters Q and λ. For large values of Q (or for val-
ues of λ near to the unitarity bound λ � 9/100), large BHs
are always stable, η̃/s decreases monotonically with T and
there is no hysteresis.

Notice that the limits λ → 0, respectively Q → 0, are
singular in the plot on the left, respectively on the right, of
Fig. 3. Here we have a discontinuous behavior of η̃/s similar
to that found in the Q → 0 limit for charged BHs in GR and
to the λ → 0 for the uncharged BHs of GB gravity.

The situation changes drastically for Q (or λ) of order
3/100 and smaller: the system may undergo a Van der Waals-
like phase transition. The function T (r+) develops two local
extrema Tmin and Tmax, signalizing the presence of two dif-
ferent stable thermodynamical phase (small and large BHs),
connected by a meta-stable one, correspondingly, the η̃/s

curve as a function of T develops hysteresis. Two typical
examples of this hysteretic behavior are shown in Fig. 3. On
the left panel, for fixed Q = 1/100 the onset of hysteresis
can be seen, corresponding to the thermodynamical phase
transition when λ � 0.025. On the right panel, for fixed
λ = 1/100, the onset of hysteresis can be seen and the ther-
modynamical phase transition when Q � 3/100. The corre-
sponding values of the critical temperatures are marked by the
dots (Tmax) and squares (Tmin) in Fig. 3. Their numerical val-
ues are listed in Table 1 for selected values of the parameters
Q and λ. Analog results can be found by choosing different
Q and λ. Notice that for stable BH solutions with values of
λ and Q above the critical values our numerical computation
cannot reach T ∼ 0 because it uses a power-series near-
horizon expansion which does not hold in the extremal case.
However, from Eqs. (36) and (41), which describe analyti-
cally the near-extremal behavior, we conclude that η̃/s → 0
smoothly as T → 0.

5 Summary and outlook

In this paper we have used the AdS/CFT correspondence
to obtain information about the behavior of bulk BHs by
studying the hydrodynamic properties of the dual QFTs. In
particular, we have defined and computed the shear viscosity
to entropy ratio in the transverse channel for QFTs holo-
graphically dual to five-dimensional AdS BH solutions of
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GR and GB gravity. In this way, we have extended the usual
derivation of η̃/s for QFTs dual to gravitational bulk back-
grounds with planar horizons to backgrounds with spheri-
cal horizons. We have shown that in holographic models the
shear viscosity to entropy ratio of the QFT is closely related
and keeps detailed information about the thermodynamical
phase structure of the dual BH background. This is not com-
pletely unexpected because experience with another holo-
graphic condensed matter system, like holographic super-
conductors, has shown us that transport features of the dual
QFT may be strongly related to phase transitions of the dual
black brane.

In general, the definition of a transport coefficient such as
the shear viscosity is associated with the translational invari-
ance of the system, i.e. the conservation of the momentum.
As a consequence the Fick law of diffusion can be derived
from the associated conserved current. For systems that break
translational invariance the hydrodynamic interpretation in
terms of conserved quantities fails but hydrodynamics can be
still defined as an expansion in the derivatives of the hydro-
dynamic fields. In this way it is possible to define the shear
viscosity through a Kubo formula, also for QFTs on a spheri-
cal background, see Eq. (8), where the stress-energy tensor is
only covariantly conserved. In addition, one can understand
η̃ as the rate of entropy production due to a strain which
is the typical interpretation when the homogeneity is bro-
ken by external matter fields. From this point of view QFTs
dual to spherical BHs are very similar to QFTs dual to black
branes where the translational symmetry is broken by non-
homogeneous external fields, e.g. scalars [34–36].

The definition of the hydrodynamic limit of a QFT on the
sphere is plagued by an issue related to the compactness of
the space. In fact, in a compact space the usual hydrodynamic
limit as an effective theory describing the long-wavelength
modes of the QFT has not a straightforward interpretation.
Our proposal is that for QFTs dual to bulk spherical BHs the
hydrodynamical, long wavelength modes can be described
by the � → �0 modes that probe large angles on the sphere.
This is in analogy with the k → 0 modes for QFTs dual to
bulk black branes which probe large scales on the plane.

There is still a crucial difference between the two cases.
When the breaking of translational symmetry is generated by
external fields, the symmetry may be restored or not when the
system flows to the IR [34]. Instead, in the BH case because
the breaking has a geometric and topological origin, transla-
tional symmetry cannot be restored in the IR.

As expected, the large T behavior of η̃/s, corresponding
to the flow to the UV fixed point reproduces the universal
value 1/4π or (1 − 4λ)/4π in the GB case. When the bulk
BH solution has a regular and stable extremal limit (like e.g.
charged BHs) and remains stable at small T , η̃/s → 0 as
T → 0 with a T 2ν scaling law. In the latter case the system
flows in the IR to the AdS2 × S3 geometry.

Our most important result is the behavior of η̃/s at inter-
mediate temperatures. A second-order Van der Waals-like
phase transition occurs when the control parameters go below
their critical values [14,15]. In this situation BHs may also
undergo a first-order phase transition controlled by the tem-
perature. This corresponds to the transition from small to
large BHs connected through a meta-stable intermediate
region. As a consequence η̃/s as a function of T always
develops hysteresis and it becomes multi-valued as expected
of a first-order phase transition [29]. Notice that in this case
the first- and second-order phase transitions are both neces-
sary in order to have the hysteretic behavior in η/s. Even
though similarly to the case discussed in Ref. [29] the multi-
valuedness of η/s is directly related only to the first-order
one. The role of the second-order phase transition is to allow
for the existence of the first-order one.

The mechanism that generates hysteresis in η̃/s is the
same that is responsible for the phase transition and can
be traced back to non-equilibrium thermodynamics. When a
control parameter, i.e. the charge Q or the GB coupling con-
stantλ, is below its critical value, the functionT (r+)develops
both a local maximum and minimum. The regions below the
maximum and above the minimum correspond to two stable
solutions, i.e. small and large BHs, respectively. The region
between these two is represented by an unstable (meta-stable)
region of intermediate BHs. When the system evolves from
large (small) BHs to small (large) BHs a potential barrier pre-
vents the evolution of the system from occurring as an equi-
librium path between the two stable states [78]. Equilibrium
will be reached passing through a meta-stable region [77]
and a path-dependence of η̃/s is generated. The presence of
these local extrema determines the patterns of signs of the BH
specific heat and free energy, hence the local thermodynami-
cal stability [14,63]. This interesting result represents the first
attempt to infer about BH thermodynamics through a detailed
analysis of a transport coefficient as the shear viscosity.

Our definition of η̃ for spherical backgrounds is channel
dependent. In general we have three different determinations
of η̃ for shear, sound and transverse (scalar) perturbations.
In this paper we have focused on transverse perturbations.
It would be of interest to check whether the behavior of the
viscosity found in this paper for the transverse channel also
extends to the sound and shear channels. The computation of
our analog η̃ in these other two channels is rather involved
and we have left it for future investigations.
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