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Abstract In this work we start from the Higgs prototype
model to introduce a new model, which makes a smooth
transition between systems with well-located minima and
systems that support no minima at all. We implement this
possibility using the deformation procedure, which allows
the obtaining a sine-Gordon-like model, controlled by a real
parameter that gives rise to a family of models, reproduc-
ing the sine-Gordon and the so-called vacuumless models.
We also study the thick brane scenarios associated with
these models and investigate their stability and renormal-
ization group flow. In particular, it is shown how gravity can
change from the 5-dimensional warped geometry with a sin-
gle extra dimension of infinite extent to the conventional 5-
dimensional Minkowski geometry.

1 Introduction

Topological solutions in field theory are related to many phe-
nomena in physics [1–3]. In particular, when we have mod-
els in 1+1 dimensions involving a potential written in terms
of a scalar field and with a set of degenerate minima, such
solutions represent transitions between consecutive minima
and are called kinks. The minima define the possible vacuum
states at the quantum level, and they are distributed over the
many values for the field. Such distribution can appear in
the most diverse ways, for instance, in the φ4-model one has
only one topological sector, defined between two consecu-
tive minima, while in the sine-Gordon model [4] one has an
infinite copy of the same sector, always between two con-
secutive and well-localized minima. A system that is quite
different in this perspective is the vacuumless model [5,6].
In this model we still have a topological sector, which can
be interpreted as connecting two minima of the scalar poten-
tial, but now they are located at infinity. In this case, the field
solution is asymptotically divergent and has infinite ampli-
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tude, but keeps its topological character well behaved [7].
It is worth mentioning that vacuumless systems appear in a
diversity of contexts in high energy physics [5–11].

The aim of this paper is to construct a model that, with
the proper variation of a given parameter, makes the tran-
sition between systems with well-located minima and sys-
tems that support no minima at all. The model presented
here has as limit cases the sine-Gordon and the vacuum-
less models. Using the deformation procedure developed in
Ref. [12], we find a field transformation that takes us to a new
system with a double sine-Gordon-like behavior, which has
two infinitely degenerate sets of solutions. One of these sets
transits between the sine-Gordon kink and the vacuumless
solution. The second set coincides with the previous one in
one of its limits and, except from a phase, in the other limit
case it is destroyed, remaining only the zero-energy solu-
tions. Thus, in one of the limits of the model the two phases
coincide, generating infinite copies of the same topological
sector, and in the other limit only one topological sector sur-
vives.

Models in field theory motivate generalizations of the
Randall–Sundrum model [13,14] in the presence of scalar
fields [15–24], which are known as thick branes. For this
reason, in this work we also study the thick brane scenario
generated by the scalar field model which we first introduce
and study in the flat spacetime. In particular, we find a brane
that transits between the sine-Gordon brane [18] and a flat 5-
dimensional spacetime with two zero-energy solutions for the
scalar field. The idea here is similar to the case investigated
in [25], in which the authors propose a braneworld scenario
where the brane changes from a thick to a thin behavior. In the
current study, however, we describe a mechanism in which
a single parameter can be used to control the brane profile,
contributing to change the 5-dimensional warped geometry
into a flat geometry.

Although the braneworld model that we explore below is
more involved, it also supports analytical solutions. Thus,
in the 5-dimensional spacetime with a single extra dimen-
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sion of infinite extent, we also analyze the stability of the
braneworld scenario against tensorial perturbations. In the
sense of gauge/gravity duality [26–30], where the extra
dimension can be identified with the energy scale of the holo-
graphic dual field theory, we also study its implications for
the renormalization group flow (the RG flow) in the dual field
theory, since stability of the gravitational sector has relevant
information as regards the dual model [31].

The subject to be explored in the current work is organized
as follows. In Sect. 2 we review several aspects of the first-
order formalism for a single real scalar field and its relation-
ship with the Bogomol’nyi–Prasad–Somerfield (BPS) solu-
tions [32,33]. Then we discuss the deformation procedure
and show how it acts to generate the new model in the 2-
dimensional spacetime. We go on and study in Sect. 3 the
new model and its topological solutions, including how the
energy and energy density behave. In addition, we also show
that the solutions obtained are stable. Moreover, in Sect. 4
we analyze the properties of the thick branes that can be con-
structed from the model. We also investigate stability of the
brane against metric fluctuations and study implications of
the RG flow for the dual field theory. We end the work in
Sect. 5, adding some comments and conclusions.

2 Generalities

2.1 First-order formalism

The behavior of a scalar field is usually encoded in a
Lagrangian density having the general form

L(φ, ∂μφ) = 1

2
∂μφ∂μφ − V (φ). (1)

Here φ is the scalar field and V (φ) is the potential of the
model, which determines how the field behaves. In the flat
spacetime with (1, 1) spacetime dimensions, the metric ten-
sor becomes ημν = diag(1,−1), so the scalar field only
depends on the two coordinates x and t , i.e., φ = φ(x, t). For
simplicity, we also work with dimensionless fields and coor-
dinates. The equation of motion for the scalar field derived
from the Lagrangian (1) is given by

∂μ∂μφ + dV

dφ
= 0. (2)

As the Lagrangian (1) is Lorentz invariant, we can focus on
static solutions, since traveling waves can be obtained from
a Lorentz boost. For static configurations Eq. (2) becomes a
second-order differential equation given by

d2φ

dx2 = dV

dφ
. (3)

Another important quantity we are interested in is the energy-
momentum tensor

Tμν = ∂μφ∂νφ − ημνL. (4)

In particular, its T 00 component provides the energy density
of the solution we are looking for. We represent it by ρ(x),
which is explicitly given by

ρ(x) = 1

2
φ′2 + V (φ) (5a)

= 1

2

(
φ′ ∓ √

2V (φ)
)2 ± φ′√2V (φ). (5b)

Note that, for positive-definite energy, the potential must be
non-negative, i.e.,V (φ) ≥ 0. A powerful tool in the treatment
of these models is the use of an auxiliary function, denoted
by W (φ), which is introduced as follows:

V (φ) = 1

2
W 2

φ , (6)

where Wφ = dW/dφ. In this case the expression for the
energy density (5a) becomes

ρ(x) = 1

2

(
φ′ ∓ Wφ

)2 ± dW

dx
(7)

and Eq. (3) can now be given as the first-order differential
equations

dφ

dx
= ±Wφ. (8)

It implies that the quadratic term in (7) disappears and, as
a consequence, the energy density is only related to the x-
derivative of W . Thus, the energy of the model is determined
only by the asymptotic behavior of the function W in the
coordinate space; that is, one can write

EBPS =
∫ ∞

−∞
ρ(x) dx

= |W (φ(∞))−W (φ (−∞))) |. (9)

In this case the energy (9) is called BPS energy [32,33].
Relevant phenomena occur when the system under anal-

ysis presents a set of degenerate minima. In these situations
each pair of consecutive minima form distinct topological
sectors that, in turn, have different solutions. These solutions
are called kinks. The simplest case of models having such
properties is the well-known Higgs prototype or φ4-model,
defined by the potential

V (φ) = 1

2
(1 − φ2)2, (10)

which has two degenerate minima at φ = ±1 and a topo-
logical sector having a kink solution given explicitly by
φ(x) = tanh(x).
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An interesting way to characterize a kink is the existence
of a topological current. Here, we define it by [7]

jμ = εμν∂νW (φ(x)), (11)

where εμν is the antisymmetric symbol in two dimensions
with ε01 = 1. Associated with this current (11) we have a
topological charge given by

Q =
∫ ∞

−∞
j0dx = W (φ(∞)) − W (φ(−∞)). (12)

Despite the similarities in the values of the charge (12) and the
BPS energy (9), they have fundamental differences. While
the BPS energy is associated with a continuous symmetry and
can be identified from the Noether theorem, the charge (12)
is associated with the topology of each solution, and results
from the transition of the topological solution in between two
minima of the potential.

2.2 The deformation procedure

Once we know the behavior of a given model, with its charac-
teristics and general behavior, it is interesting to look for new
well-behaved models. In this sense, the deformation method
[12] is a powerful tool to find new models in field theory. The
method consists of choosing a theory with the Lagrangian
L(φ, ∂μφ) having the form (1) and then perform a transfor-
mation of the type

φ → f (χ). (13)

We then get

L(φ, ∂μφ) = f 2
χ L(χ, ∂μχ) (14)

where

L(χ, ∂μχ) = 1

2
∂μχ∂μχ −U (χ), (15)

with the potential U (χ) given by

U (χ) = V (φ → f (χ))

f 2
χ

. (16)

This is a field redefinition, but if we consider the model (15)
described by the potential (16) as a new model, and call it
the deformed model, in this case there is a W̄ function such
that the first-order differential equations

dχ

dx
= W̄χ , (17)

with W̄χ = Wφ(φ → f (χ))/ fχ , provide solutions for the
field χ(x). In particular, among the characteristics of the new

model, we can highlight that the total energy of the solution
is

E = |W̄ (χ(∞)) − W̄ (χ(−∞)) |, (18)

since the deformed model also has a first-order structure.
However, the deformed model engenders another important
property: the transformation (13) allows us to find the solu-
tion for the field χ(x) without the need to deal directly with
Eq. (17). What we have is that the solution to the new field
is obtained by inverting the transformation (13). Thus, one
finds

χ(x) = f −1(φ(x)), (19)

where φ(x) represents a solution for the previous model. In
this sense, Eq. (19) represents the main link between the φ-
model and the deformed χ -model. For more details, see [12].

3 Model

In this work we follow the deformation procedure and intro-
duce a new model generated by the deformation function

fλ(χ) = tanh

(
1

θ
√

2 − θ2
tanh−1

(
θ

sc (χ, λ)√
2 − θ2

))
(20)

which is applied to the φ4 model (10). Here θ is a real parame-
ter ( �= ±√

2) and the function sc−1(χ, λ) is one of the Jacobi
elliptic functions, defined by the ratio

sc(χ, λ) = sn(χ, λ)

cn(χ, λ)
, (21)

where sn(χ, λ) and cn(χ, λ) are the Jacobi elliptic sine and
cosine, respectively. Here we have

cn2(χ, λ) + sn2(χ, λ) = 1, (22a)

dn2(χ, λ) + λsn2(χ, λ) = 1, (22b)

where λ is a parameter in the interval [0, 1]. In particular
for λ = 0 we have sn(χ, 0) = sin(χ), cn(χ, 0) = cos(χ)

and dn(χ, 0) = 1, where we retrieve the basic trigonometric
relations, and for λ = 1 we have sn(χ, 1) = tanh(χ) and
cn(χ, 1) = dn(χ, 1) = sech(χ), which lead us to the hyper-
bolic functions. The new model found from the deformation
function (20) and the potential (10) is

U(χ, λ) = 1

2

(
2cn2(χ, λ) − θ2

)2

dn2(χ, λ)
. (23)

Its behavior is depicted in Fig. 1. The potential (23) has
Z2-symmetry and is invariant under transformation φ →
φ + 2Kλ, where Kλ = cn−1(0, λ). In this case we find
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Fig. 1 The potential (23) for some values of λ and θ2 = 1 − λ. As λ

increases in the interval [0, 1], the model evolves from the sine-Gordon
model at λ = 0 to a double sine-Gordon model and finally to the
vacuumless model, at λ = 1

Wχ = ±(2cn2(χ, λ) − θ2)/dn(χ, λ), which implies that
the W function of the model is

W(χ, λ) = 2

λ

(
am(χ, λ) − √

1 − λtan−1(
√

1 − λsc (χ, λ))
)

− θ2 cos−1(cd(χ, λ)
√

1 − cd2(χ, λ)dn(χ, λ)

(1 − λ)sn(χ, λ)
, (24)

where am(χ, λ) = d (dn(χ, λ)) /dχ is the Jacobi amplitude.
Although we initially present the model with two parameters,
we are interested in situations where only one parameter is
necessary to describe the changes in the model. So we assume
that θ = θ(λ). We also impose on θ(λ) the conditions θ(0) =
1 and θ(1) = 0 in order to find the vacuumless model [7]
for λ = 1 and the sine-Gordon model [4] for λ = 0. As
a consequence we obtain the particular cases W (χ, 1) =
4 tan−1(eχ ) − π and W (χ, 0) = sin(2χ)/2, so the sine-
Gordon and vacuumless models appear in the system as

U (χ, 0) = 1

2
cos2(2χ), (25a)

U (χ, 1) = 2 sech2(χ). (25b)

The parameter λ has an interesting behavior: when it
increases from 0 to unity, the model changes from the sine-
Gordon to the vacuumless model. Physically, it transforms
the periodic sine-Gordon potential (25) to a non-periodic one,
the hyperbolic potential (25b) which defines the vacuumless
model. The distinct solutions appear in Fig. 2 and in Fig. 3
one illustrates how the energy density becomes more and
more diffuse, as λ increases from zero to unity.

Once the model has been presented, we must solve the
first-order equation

χ ′ = 2cn(χ, λ)2 − θ2

dn(χ, λ)
. (26)

Fig. 2 The solution χL ,λ for some values of λ and θ2 = 1−λ. Here we
observe how the large kink of the model evolves from the sine Gordon
kink to the vacuumless solution

Fig. 3 The solution χS,λ − Kλ for some values of λ and θ2 = 1 − λ.
Here we observe how the small kink tends to disappear in the limit
λ → 1

Equation (26) has two infinite set of solutions. The first one
we call large kinks and they are given by

χL ,λ(x) = sc−1

(√
2 − θ2

θ
tanh

(
θ
√

2 − θ2x
)

, λ

)
+2nKλ.

(27)

The behavior of the solution (27) is depicted in Fig. 2
for n = 0. It asymptotically approaches χL ,λ(±∞) =
±sc−1(

√
2 − θ2/θ, λ) and in the vicinity of the origin

behaves like χL ,λ(x 	 0) 	 (2 − θ2)x + O(x2). We note
that, as θ → 0, χL ,λ(±∞) tends to diverge and χL ,λ(x 	 0)

remains well behaved. For θ → 1 we do not have pathologies
in the solution. Thus, the large kink describes, as a function
of the λ parameter, systems that transit between the sine-
Gordon kink and the vacuumless solution. Particularly, we
have

χL ,1(x) = sinh−1(2x) (vacuumless solution); (28a)

χL ,0(x) = tan−1(tanh(x)) (sine-Gordon kink). (28b)
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The second set of solutions we find from Eq. (26) is

χS,λ(x) = sc−1

⎛
⎝θ tanh

(
θ
√

2−θ2x
)

√(
2−θ2

)
(1 − λ)

, k

⎞
⎠+(2n + 1)Kλ,

(29)

and we call it a small kink. Its shape is depicted in Fig. 3 for
n = 0, except for the phase Kλ. The solution (29) asymptoti-
cally approachesχS,λ(±∞) = ±sc−1(θ/

√
(2 − θ2)(1 − λ),

λ) + Kλ and in the neighborhoods of x = 0 behaves as
χS,λ(x 	 0) 	 Kλ + θ2x/

√
1 − λ + O(x2). The small

kink has a phase Kλ, which causes its topological sector to
move away from the center of the potential (23) to infinity as
λ → 1. With a suitable choice for θ(λ) we can destroy the
topological sectors associated with small kinks when λ = 1.
Thus, only the topological sector of the vacuumless solu-
tion remains at that point. If we drop the phase in the small
kink (29), it is possible to note that the zero-energy solutions
also remain, but at infinity. A simple choice in this direc-
tion that also obeys the conditions (θ(0), θ(1)) = (1, 0) is
θ(λ) = √

1 − λ. With this choice for θ(λ) we can explicitly
rewrite the solutions of large and small kinks as

χL ,λ(x) = sc−1

(√
1 + λ

1 − λ
tanh(

√
1 −λ2x), λ

)
, (30a)

χS,λ(x) = sc−1

⎛
⎝ tanh

(√
1 −λ2x

)
√

1 + λ
, λ

⎞
⎠ + Kλ. (30b)

So now we have a double sine-Gordon-like model with two
field solutions coming from the two manifest topological
sectors. Both kinks retrieve the sine-Gordon solution when
λ = 0, but as λ grows, such solutions have distinct properties.
Large kink becomes more diffuse until reaching the solution
of the vacuumless model, which has divergent amplitude. It
implies that at this point all topological sectors of the model
are sent to infinity, except for the sector that is at the cen-
ter of the potential (23). A small kink also becomes more
diffuse as λ → 1, but it is destroyed when λ = 1. As we
shall see later, it happens because as the associated topolog-
ical sector moves away from the center of the potential its
energy approaches zero. Moreover, one can show that the
mass of the meson in the minima of the potential is given by
m2

λ = U ′′(χ = χmin) = 4(1−λ2), where χmin is a minimum
of (23). Here, we choose to write the model in terms of that
quantity, whenever possible.

We can now perform the analysis of the energy densities
of the model. The energy density of the large kink (27) is
given by

Fig. 4 The energy density (31) for some values of λ. Here one notes
how ρL ,λ behaves as λ → 1, becoming more diffuse but keeping its
localized profile

ρL ,λ(x) = (1 − λ)(1 + λ)2sech2
(mλ

2 x
)

(cosh (mλx) − λ)
(
(1 + λ) tanh2

(mλ

2 x
) + 1

)
(31)

and its shape is depicted in Fig. 4. It makes the transition
between the curves ρL ,1(x) = 4/(1 + 4x2) and ρL ,0(x) =
sech2(2x). Asymptotically Eq. (31) decays as ρL ,λ(x →
∞) 	 8(1−λ)(1+λ)2e−2mλx/(2+λ)+O(e−4mλx ), where
we found the particular case ρL ,0(x → ∞) 	 4e−4x . We
do not have information for the case λ = 1 in the general
asymptotic expansion for the energy density, but a direct
approach in ρL ,1(x) leads to the expression ρL ,1(x → ∞) 	
1/x2 + O(x−4), which decays much slower than the expo-
nential. This change in the asymptotic behavior is due to the
mass scale of the quantum meson which, for λ = 1, is zero.
On the other hand the behavior of (31) in the vicinity of x = 0
is given by ρL ,λ(x 	 0) 	 (1+λ)2−(1+λ)3(4−λ2−λ)x2+
O(x3), which shows that the central portions of the energy
density increases and becomes a bit more concentrated as
λ → 1.

For the small kink we have the energy density given by

ρS,λ(x) = (1 − λ)(1 + λ)2sech2
(mλ

2 x
)

(cosh (mλx)+λ)
(
tanh2

(mλ

2 x
) + 1 + λ

) (32)

and its behavior is depicted in Fig. 5. Equation (32) transits
between the curves ρS,1(x) = 0 and ρL ,0(x) = sech2(2x).
Asymptotically it decay as ρS,λ(x → ∞) 	 8(1 − λ)(1 +
λ)2e−2mλx/(2 + λ) + O(e−4mλx ), revealing that we can-
not distinguish the energy densities of the fields (27) and
(29) when x → ∞. For x 	 0 we have ρS,λ(x 	 0) 	
(1 − λ) − (1 − λ)2(λ + 4)x2 +O(x3). It shows that, despite
the similar asymptotic behavior (for λ �= 1), the evolution
of (31) and (32) in terms of the parameter λ is very differ-
ent. The height and width of the energy density (31) grow
with λ, becoming more diffuse but still with a localized pro-
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Fig. 5 The energy density (32) for some values of λ. Here one notes
how ρS,λ behaves as λ → 1, becoming more delocalized, disappearing
at λ = 1

file. Meanwhile, as λ grows, the width of the energy density
(32) increases, but its central portion decreases and becomes
less concentrated, which implies that as the solution evolves
it becomes more diffuse, but also delocalized. As a con-
sequence, the area under the energy density (32) become
smaller until it disappears, at λ = 1.

Integrating (31) and (32) we find the energy of large and
small kinks, given by

EL(λ) = 2

λ

(
2 tan−1

(√
1 + λ

1 − λ

)

−√
1 − λ (2 + λ) tan−1

(√
1 + λ

))
(33)

and

ES(λ) = −2

λ

(
2 cot−1

(√
1 + λ

1 − λ

)

−√
1 − λ (2 + λ) cot−1

(√
1 + λ

))
, (34)

respectively. The corresponding behaviors are depicted in
Fig. 6. Here one observes that the energy of the solutions
(27) and (29) are bounded. Equation (33) is a monotonically
increasing function of the λ parameter confined in the interval
[1, 2π ], where EL(0) = 1 and EL(1) = 2π , and Eq. (34)
is a monotonically decreasing function of the λ parameter
confined in the interval [0, 1], with ES(0) = 1 and ES(1) =
0. Moreover, it is easy to show that (33) and (34) are related
by EL(λ) = ES(λ) + π

λ

(
2 − (2 + λ)

√
1 − λ

)
.

3.1 Linear stability

In this section we analyze the stability of the solutions of the
models presented so far. The usual procedure is to take a time-
dependent perturbation around the static solution written in
the form χ(x, t) = χ(x) + ∑

n ηn(x) cos(ωnt), for small
ηn(x), and then insert χ(x, t) into (2). The procedure gives

Fig. 6 The energy behavior as a function of λ. Here we observe that
EL (λ) evolves from EL (0) = 1 to EL (1) = 2π and ES(λ) decreases
from ES(0) = 1 to ES(1) = 0

(
− d2

dx2 + v(x)

)
ηn(x) = ω2

nηn(x), (35)

which is a Schrödinger-like equation with a stability potential
given by

v(x) = d2U

dχ2

∣∣∣∣
χ=χ(x)

(36a)

= W̄ 2
χχ

∣∣
χ=χ(x) + W̄χχχ W̄χ

∣∣
χ=χ(x). (36b)

Inserting the large kink solution (27) into (36) we find

vL ,λ(x) = 1 − λ2

(cosh (mλx) − λ)2((1 + λ) tanh2
(mλ

2 x
) + 1)2

×
[

2(2 + λ)2
(

cosh (2mλx) − λ(λ + 7) + 8

2 + λ
cosh (mλx)

)

− (1 + λ)2
(
(1 + λ)(λ + 4)sech2

(mλ

2
x
)

− 6λ
)

× sech2
(mλ

2
x
)

+ λ(λ(λ(λ + 2) + 19) + 48) + 24

]
,

(37)

which is depicted in Fig. 7. For λ = 1 we have vL ,1(x) =
4

(
8x2 − 1

)
/
(
4x2 + 1

)2
, which is a volcano potential, and

for λ = 0 we have vL ,0(x) = 4 − 8sech2(2x), which is a
reflectionless potential. Equation (37) has a global minimum
at vL ,λ(0) = (1 + λ)

(
λ2 + λ − 4

) ; this minimum increases
or decreases, depending on λ being above or below the point

at λ̃ = 1
3

(√
13 − 2

)
. It shows that the potential (37), as λ

grows, becomes deeper and after λ = λ̃ it comes back to its
initial depth.

The change in the shape of the stability potential, in this
case, is due to the behavior of the meson mass in the minima
of (23). As λ → 1 we have m2

λ → 0. Note that vL ,λ(0) < 0
for all λ and translational invariance requires the existence of
at least one bound state, so the transition between the reflec-
tionless and the volcano shapes in this case describes the tran-
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Fig. 7 The stability potential vL ,λ(x) given by (37) for some values of
λ. When λ = 0, we have a reflectionless potential and as λ increases
the shape of the potential changes to become of the volcano type

sition from systems with massive meson to systems having a
massless meson. This is another relevant physical behavior
induced by the parameter λ, which will lead to distinct pos-
sibilities when used to describe braneworld scenarios, as we
discuss in Sect. 4.

Now, inserting the small kink solution (29) in the general
expression for the stability potential (36), we find

vS,λ(x) = 1 − λ2

(cosh (mλx) + λ)2(tanh2(
√

1 − λ2x) + 1 + λ)2

×
[

2(2 + λ)2
(

cosh (2mλx) − (1 − λ)λ + 8

2 + λ
cosh (mλx)

)

−2λ
(
λ

(
λ2 + λ − 1

)
+ 3

)
sech2

(mλ

2
x
)

−
(
λ3−5λ+4

)
sech4

(mλ

2
x
)
−λ2(21 − (λ − 6)λ)+24

]
,

(38)

which is depicted in Fig. 8. For λ = 1 we have vS,1 = 0
and for λ = 0 we have vS,0 = 4 − 8sech2(2x), as expected.
At the center we have vS,λ(0) = (λ − 1)(λ + 4), showing

Fig. 8 The stability potential vS,λ(x) (38) for some values of λ. Here
we observe that, as λ increases, its depth diminishes and disappears at
λ = 1

that the potential (38) becomes shallower as λ grows, finally
disappearing when λ = 1. Now, as λ grows, the stability
potential keeps its reflectionless shape. As a consequence,
the bound states of (38) become less pronounced as λ → 1
and they disappear when λ = 1.

Asymptotically, both (37) and (38) approachvL ,λ(±∞) =
vS,λ(±∞) = m2

λ. Moreover, one notes that the Hamiltonian
H = −d2/dx2 + v(x) can be rewritten as H = S†S with
S† = −d/dx−Wφφ by using Eq. (12). Thus we have ω2

n ≥ 0
for all values of n, since H is non-negative. As Eq. (35) does
not admit negative energy modes, the stability of the solution
is then ensured.

The translational invariance of the solutions we presented
so far implies the existence of at least one bound state for
each topological sector, which is given by the zero mode of
Eq. (35). In the formula, if we represent the zero mode by
η0(x), it is the derivative of the field solution,

η0(x) = dχ

dx
. (39)

For large and small kinks the shapes are depicted in Fig. 9,
where one can observe how (37) holds the nice behavior of
its zero mode, and how the zero mode of (38) gets smaller
until it disappears when λ = 1.

4 Braneworld

Models described by scalar fields have direct applications in
gravitation, providing braneworld scenarios for thick branes.
In this context, the scalar field acts as a source of gravity
around the brane, and thus describes how gravity behaves
throughout the bulk. The system we are interested consists
of a 3-brane embedded in a (4+1) spacetime with an extra
dimension of infinite extent. The background geometry can

Fig. 9 The zero modes for the large kink (27) (right) and the small kink
(29) (left), depicted for some values of λ. Both modes behave adequately
for λ �= 1. However, for λ = 1, we have ηS,λ=1 = 0, meaning that the
small topological sector disappears, while ηL ,λ=1(x 	 ∞) 	 1/x2,
which is a consequence of the presence of the massless meson
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be written in terms of a static warped metric given by

ds2
5 = gabdxadxb = e2A(y)ds2

4 − dy2. (40)

Here a, b = 0, ..., 4, μ, ν = 0, ..., 3, ds2
4 = ημνdxμdxν , and

the y-coordinate describes the extra spatial dimension. The
functions A(y) and eA(y) are called warp function and warp
factor, respectively, and they are assumed to depend only on
the extra dimension.

In this braneworld scenario, we are interested in models
that can be described by the action

S =
∫

d5x
√|g|

(
−1

4
R + L

)
, (41)

where L(φ, ∂aφ) = 1
2gab∂

aφ∂bφ −U (φ) is the Lagrangian
for the scalar field and, for simplicity, we assume 4πG5 = 1.
We also assume that φ = φ(y), i.e., the scalar field only
depends of the extra dimension.

The Einstein equations that follow from the action (41)
are

Gab = 2Tab, (42)

where Gab is the Einstein tensor and Tab is the energy-
momentum tensor, similar to Eq. (4). The 00 and the 44
components of (42) are given by

6A′2 = φ′2 − 2U, (43a)

3A′′ + 6A′2 = −φ′2 − 2U, (43b)

respectively, with the prime denoting derivation with respect
to the coordinate y. With Eq. (43) at hand we can subtract
the first equation from the second to obtain

A′′ = −2

3
φ′2. (44)

Equation (44) provides a way to rewrite the system in terms of
first-order equations. For this purpose, we introduce a func-
tion W (φ(y)) in the equations through the relation

A′ = −2

3
W (φ(y)). (45)

As a consequence, the equation providing the solution for the
scalar field is now

φ′ = Wφ. (46)

In order to solve the equations of motion, these two first-order
equations require that the potential obeys

U (φ) = 1

2
W 2

φ − 4

3
W 2. (47)

Equations (45) and (46) constitute the first-order frame-
work and can be used to analyze possible scenarios of thick
brane that can be generated by the models presented in the
previous section.

The analysis of the thick branes scenario generated by the
large kink (27) is similar to the case of small kinks (29), so
we concentrate on the brane generated by the small kink. To
simplify the investigation, let us perform a shift in the field,
φ → φ − Kλ. In this case, one gets

W (φ) =
√

1 − λ

λ

(
2 tan−1(

√
1 − λ sc(φ, λ))√
1 − λ

−(2 + λ)am(φ, λ)

)
. (48)

Due to the shift performed over φ, the field solution of (46)
becomes

φλ(y) = sc−1

⎛
⎝ tanh

(√
1 − λ2y

)
√

1 + λ
, λ

⎞
⎠ . (49)

Its shape can be observed in Fig. 3, when we make the
changes x → y and φλ(y) = χS,λ(y) − Kλ. Note that,
for λ = 1 the field approaches a constant, φλ=1(±∞) =
±csch−1

(√
2
)

.

With these ingredients we analytically solve Eq. (45),
together with the boundary conditions A(0) = A′(0) = 0, to
find

A(y) = − 2

3λ

[√
1 − λ(2 + λ)F

(√
1 + λ,

√
1 − λ2, y

)

−2F
(√

1 + λ

1 − λ
,
√

1 − λ2, y

)]
, (50)

where

F(b, a, x) = −x cot−1(b) + i

4a

[
Li2

(
b + i

i − b
e2ax

)

−Li2

(
i − b

b + i
e2ax

)
− Li2

(
b + i

i − b

)

+ Li2

(
i − b

b + i

)]
. (51)

Here Li2(y) is the polylogarithmic function. The shape of
e2A(y) is depicted in Fig. 10. We can observe that in the
vicinity of the center the warp factor behaves like A(|y| 	
0) 	 (1 − λ)y2 + O(y4), which implies that, as λ → 1,
the brane becomes less and less localized, becoming effec-
tively delocalized for λ = 1. Meanwhile, in the asymptotic
regime |y| → ∞ the thick brane approaches AdS vacua with
cosmological constant 
5 ∼ −W (φ(±∞))2, and we have
A(|y| → ∞) 	 − 1

3 ES(λ)|y|, where we used Eqs. (18) and
(34). As ES(λ) decreases as λ grows (starting at λ = 0, where
we have the sine-Gordon brane) the thick branes generated by
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Fig. 10 The warp factor that follows from (50) for some values of λ.
Here we see how it evolves from the sine-Gordon case when λ = 0 to
a 5-dimensional flat spacetime when λ = 1

this model approaches AdS vacua with smaller cosmological
constant as λ → 1. In particular, for λ = 1 the brane seems
to fill the entire space, so we have no graviton localization
anymore at this point, with all the modes dispersed through
the extra dimension. The braneworld scenario is destroyed in
the limit λ → 1.

From Eq. (43) we find that the potential has to obey (47)
and one notes that it keeps the correct form for vacuum stabil-
ity in gravitational theories [34,35]. In particular, for λ = 1
the potentialU (φ) vanish, and the spacetime solution reaches
a flat 5-dimensional geometry. At this point, only the dynam-
ical term ∼ ∂aφ∂aφ survives in the action (41), having as
solution the constants φλ=1(±∞). The presence of two val-
ues possible for the scalar field in the flat background is due
the original Z2-symmetry, which act as a memory related to
the kind of thick brane system from which it is derived.

The energy density of the model is given by

ρ(y) = e2A
(
W 2

φ − 4

3
W 2

)
, (52)

and its shape is depicted in Fig. 11. It is well known that
models derived from the first-order equations (45) and (46)
have zero energy. It happens because we can rewrite the
energy density as a total derivative, ρ(y) = d

dy

(
W e2A

)
. As

W (φ(±∞)) is finite and asymptotically the warp function
falls off as e−constant2|y|, the integral of ρ(y) over all space
must vanish. Here we see that when λ = 0, the energy density
is well concentrated around the origin and, as λ increases,
it becomes more and more diffuse, finally disappearing at
λ = 1.

The above results describe an interesting scenario, in
which the parameter λ may be used to control the physi-
cal properties of the 5-dimensional spacetime. If λ increases
from 0 to unity, it may change the spacetime from a
braneworld model with a single extra spatial dimension of

Fig. 11 The energy density for some values of λ. Here we see how it
becomes delocalized as λ → 1. For λ = 1, there is no more energy
concentration around the origin and the brane disappears from the back-
ground geometry

infinite extent to a 5-dimensional Minkowski spacetime with
no graviton localization.

4.1 Metric fluctuations

In this section we analyze the stability of the gravitational
sector. For this purpose, we perform a redefinition of variable
dy2 → e2A(z)dz2 in (40), which allows us to rewrite the
metric in a conformally flat scenario g̃ab = e2A(z)ηab. With
a linear perturbation the metric becomes

ds2 = e2A(z) (ηab + hab) dxadxb. (53)

In the transverse-traceless gauge (∂μhμν = 0 and hμ
μ = 0)

the conformal Einstein tensor is Ḡab = − 1
2∂c∂

chab and the
linearized Einstein tensor is given by

G(1)
ab = −1

2
∂c∂

chab + 3
[
∂a A∂b A − ∂a∂b A

+1

2
A′h′

ab + ḡab
(
∂c∂

c A + ∂c A∂c A
)]

. (54)

In this way the μν-components of G(1)
ab are

G(1)
μν = −1

2
∂c∂

chμν + 3

2
A′h′

μν − 3ḡμν

(
A′′ + A′2) , (55)

and the linearized energy-momentum tensor becomes

T (1)
μν = −3

2
ḡμν

(
A′′ + A′2) , (56)

where the prime denotes the derivative with respect to the
variable z. When using linearized Einstein equations, G(1)

μν =
2T (1)

μν , we obtain the equation for hμν , which is −∂c∂
chμν +

3A′h′
μν = 0. At last, the redefinition Hμν = e−i px e3A/2hμν

allows us to rewrite the equation for hμν as
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Fig. 12 The stability potential (58) for some values of λ. Here we
observe that the stability potential of the gravitational sector consider-
ably decreases when λ → 1, although it always maintains its volcano
shape, implying stability for gravity localization. For λ = 1, Eq. (58)
vanishes

(
∂z + 3

2
A′

) (
−∂z + 3

2
A′

)
Hμν = p2Hμν. (57)

Note that Eq. (57) has the form of a supersymmetric
Schrödinger equation, where the stability potential is

U (z) = 3

2
A′′ + 9

4
A′2. (58)

It is depicted in Fig. 12. We can observe that (58) keep its
volcano shape, as usual, but as λ grows it becomes less pro-
nounced, and we have no stability potential for λ = 1. Equa-
tion (57) has the factorized form S+S−ψ = p2ψ , where
S± = (±∂z + 3A′/2

)
. In particular, the zero-energy solu-

tion of (57) is given by ψ0(y) = e3A(y)/2, where the asymp-
totic behavior of A(y) ensures gravity localization around the
brane for 0 ≤ λ < 1. Since the Hermitian operator S+S−
is non-negative, we have no normalizable negative gravitons
modes, and it ensures system stability. At λ = 1, we find a
flat space, so the stability analysis as presented here fails. In
this case, the stability of this space is guaranteed by the posi-
tive mass theorems on asymptotically flat spacetimes, which
are valid for dimensions ≤ 7 [36,37].

4.2 RG flow

As pointed out in [30,31], by rewriting the metric (40) in the
form

ds2 = u2ημνdxμdxν − 1

A′(y)2

du2

u2 , (59)

where u = eA(y), we are allowed to interpret the function
u(y) as the renormalization scale of some quantum field the-
ory in the sense of the gauge/gravity duality [26–29]. Note
that, due to the boundary conditions on the deformation fac-
tor, u is limited to the range [0, 1] = [eA(±∞), eA(0)]. Thus,

domain wall solutions such as those presented here natu-
rally lead to confining regimes with a UV-cutoff located at
u = 1 in the dual field theory. In this context, the solution
φ(y(u)) is identified with the running coupling of the sys-
tem (see [10,38,39] and the references therein), so that the
β-function defined by

β(φ) = u
dφ

du
= −3

2

Wφ

W
(60)

describes the RG flow in the dual theory.
Denoting the critical points of (47) by φλ,∞, we can

identify them with the zeros of Wφ , which leads to the
AdS (or flat) vacua. Expanding the β-function around its
critical point we have β(φ) 	 β(φλ,∞) + β ′(φλ,∞)(φ −
φλ,∞) + O (

(φ − φλ,∞)2
)
. Since in the critical points we

have β(φ = φλ,∞) = 0, we can find the following expres-
sion for the running coupling:

φ = φλ,∞ + cuβ ′(φλ,∞). (61)

Note that if β ′(φλ,∞) < 0, φλ,∞ is a UV fixed point when
u → ∞, and if β ′(φλ,∞) > 0, φλ,∞ is a IR fixed point for
u → 0. For β ′(φλ,∞) = 0 we have a conformal theory.

For the model presented here, we have

β ′(φλ,∞) = 3λcn
(
φλ,∞, λ

)
sn

(
φλ,∞, λ

)

am
(
φλ,∞, λ

) − 2√
1−λ(2+λ)

tan−1
(√

1−λ
1+λ

)

(62)

where φλ,∞ = sc−1
(

1√
1+λ

, λ
)

. Note that (62) is a monoton-

ically increasing function of λ and we have no divergences
in the running coupling since u ∈ [0, 1], but for any λ the IR
regime (u → 0) at φ = φλ,∞ is well defined in the dual field
theory, even for the 5d Minkowski setup. As a consequence,
none of the solutions has a conformal dual field theory.

5 Comments

In this work we studied a sine-Gordon-like model, which is
controlled by a real parameter that continuously connects the
sine-Gordon and the vacuumless models. The model appears
as a deformation of the φ4 model, and the real parameter is λ:
for λ = 0 one gets the standard sine-Gordon model and for
λ = 1 it reproduces the so-called vacuumless model. How-
ever, for λ in the interval (0, 1) one gets a double sine-Gordon
model, which contains two distinct topological sectors, the
large and the small sectors, which give rise to large and small
kinks, respectively.

As shown, in the 2-dimensional spacetime, the energy of
the large kink in the large sector varies from EL(λ = 0) = 1
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to EL(λ = 1) = 2π , and in the case of the small sector one
gets ES(λ = 0) = 1 and ES(λ = 1) = 0. We then see that
the small sector, which is degenerate with the large sector at
λ = 0, disappears as λ = 1, with the large sector becoming
the topological sector of the vacuumless model.

In the 5-dimensional case, we considered a warped geome-
try with a single extra dimension of infinite extent and studied
the new braneworld scenario described in the small sector.
In this scenario, the brane energy density is such that the
brane energy vanishes, independently of the value of λ. If we
see the model with λ increasing from zero to unity, it then
nicely describes a way to change a 5-dimensional warped
geometry which is asymptotically AdS into a 5-dimensional
Minkowski geometry. However, if λ is supposed to run in
the reverse sense, decreasing from unity to zero, the model
could do the reverse, changing the 5-dimensional Minkowski
geometry into a braneworld scenario with a warped geometry
which is asymptotically AdS5.

As we have shown, the model is stable under tensorial
fluctuations in the metric and of current interest, so one
should now investigate how it modifies Newton’s law, and
how fermion and gauge fields can be entrapped into the brane
as λ varies in the interval [0, 1]. Another issue of current
interest concerns the variation of λ: the present investiga-
tion cannot tell the value of λ, so one should search for this
considering other arguments. An interesting possibility is to
investigate the conformational entropy associated with the
current braneworld model, and see how it behaves as λ varies
in the interval [0, 1]. This has been recently investigated in
other contexts in [40–43] and in the references therein, and
it may provide an important guide towards the physical real-
ization of gravity localization in the present model, since the
entropy could perhaps suggest a better way λ should vary,
increasing or decreasing in the interval [0, 1].
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