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Abstract In this paper we employ the Karmarkar condition
(Proc Indian Acad Sci A 27:56, 1948) to model a spherically
symmetric radiating star undergoing dissipative gravitational
collapse in the form of a radial heat flux. A particular solu-
tion of the boundary condition renders the Karmarkar con-
dition independent of time which allows us to fully specify
the spatial behaviour of the gravitational potentials. The inte-
rior solution is smoothly matched to Vaidya’s outgoing solu-
tion across a time-like hypersurface which yields the tempo-
ral behaviour of the model. Physical analysis of the matter
and thermodynamical variables show that the model is well-
behaved.

1 Introduction

The discovery of the Vaidya solution [2] which describes
uniquely the exterior atmosphere of a spherically symmetric
radiating star has spawned various research areas within the
realm of relativistic astrophysics. There were many notable
attempts at seeking solutions of the Einstein field equations
describing a radiating body which was simultaneously under-
going gravitational collapse. The boundary of a collapsing
star divides the spacetime into two distinct regions, the inte-
rior spacetime, M− and the exterior spacetime, M+. The
interior spacetime has to match smoothly to the exterior
spacetime in order to generate a complete model of a radi-
ating star. Early attempts by Glass et al. utilised the Dar-
mois and Lincherowitz matching conditions to establish these
matching conditions [3]. It was Santos who correctly artic-
ulated the matching conditions for a spherically symmetric,
shear-free time-dependent metric being joined smoothly to
the exterior Vaidya metric [4]. The Santos matching condi-
tion showed that, for a star dissipating energy in the form

a e-mail: nolene.naidu@physics.org
b e-mail: megandhreng@dut.ac.za
c e-mail: maharaj@ukzn.ac.za

of a radial heat flux, the pressure at the boundary is nonvan-
ishing. This is a necessary condition that ensures continuity
of the momentum flux across the boundary of the radiating
star. The Santos junction conditions have been generalised
to include shear [5,6], the cosmological constant as well as
the electromagnetic field [7,8]. Since 1985 there has been
a concerted effort in generating exact models of dissipative
collapse with Herrera and co-workers establishing many of
the fundamental results in terms of stability, energy condi-
tions and thermodynamics of these models [9–14]. Maartens
et al. investigated the temperature and luminosity profiles of
these models by employing casual thermodynamics [15–17].
In order to find exact solutions of the field equations describ-
ing dissipative collapse, various assumptions on the gravita-
tional potentials and matter content of the gravitating body
were made. These included acceleration-free collapse, Weyl-
free collapse, expansion-free collapse, anisotropic pressure
profiles, inclusion of bulk viscosity and an equation of state
[18–21]. The Santos junction conditions leads to a differen-
tial equation governing the temporal behaviour of the model.
Solutions of this junction condition included ad hoc assump-
tions of the gravitational potentials, applying the method of
Lie symmetries and ’spotting’ of particular solutions [22–24].

In the present paper we will employ a novel way of gen-
erating a model of a radiating star. Recently there has been
widespread interest in finding static exact solutions of the
Einstein field equations describing spherically symmetric
compact objects. These models are generated via embedding
of a spherically symmetric metric in four dimensions into
a five-dimensional flat metric. In general, an n-dimensional
Riemannian spacetime is said to be of class p if it can be
embedded into a flat space of dimension n + p. The Kar-
markar condition relates to class 1 spacetimes. Pandey and
Sharma [25] later showed that the Karmarkar condition is
only a necessary condition for a spacetime to be of class 1.
A further requirement has to be imposed for sufficiency of
the Karmarkar condition. The derivation of the Karmarkar
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condition is purely geometric in nature which gives a rela-
tionship between the two gravitational potentials. This is
useful: to obtain a complete description of the gravitational
behaviour of the model one needs just specify one of the
metric functions and the other is obtained via the Karmarkar
condition. It is also interesting to note that the Karmarkar con-
dition together with the assumption of pressure isotropy picks
out the interior Schwarzschild solution as the only bounded
matter configuration. Recent attempts at modeling compact
objects such as 4U 1538-52,PSR J1614-2230, Vela X-1 and
Cen X-3 using the Karmarkar condition have been highly
successful in producing stellar characteristics such as radius,
mass, compactness and redshift which are consistent with
observations [26–32]. In our present work we employ the
Karmarkar condition to generate a nonstatic model of a radi-
ating star. We believe that this is a first attempt at producing
a model of a radiating star with exterior spacetime being the
Vaidya metric satisfying the embedding condition.

This paper is structured as follows: In Sect. 2 we present
a shearing radiating metric and give Karmarkar’s condition.
In Sect. 3 we introduce the interior spacetime and present
the matter variables. Sect. 4 explores the exterior spacetime
and junction conditions, as well as the resulting Karmarkar
condition and a particular solution. The energy conditions are
studied in Sect. 5. Sect. 6 focuses on the thermodynamics and
Sect. 7 is a full discussion of the results obtained.

2 Time-dependent Karmarkar condition

We begin with the most general spherically symmetric line
element

ds2 = −A(r, t)2dt2 + B(r, t)2dr2 + Y (r, t)2[d�2], (1)

where d�2 = dθ2 + sin2 θdφ2 and the functions (A, B,Y )

describe a shearing, radiating solution of the Einstein field
equations.

Karmarkar’s condition [1] can be written as

R1010R2323 = R1212R3030 − R2102R3103, (2)

where we have used the notation (0, 1, 2, 3) to represent
coordinates (t, r, θ, φ).

We then consider the metric (1) and calculate Karmarkar’s
condition for a shearing nonstatic spherically symmetric met-
ric. The nonzero Riemann tensor components are

R1010 = 1

AB

(
− AB2 B̈ + A2BA′′ − A2A′B ′ + B2 Ȧ Ḃ

)
,

R2323 = Y 2 sin2 θ

A2B2

(
A2B2 − A2Y ′2 + B2Ẏ 2

)
,

R1212 = Y

A2B

(
− A2BY ′′ + A2B ′Y ′ + B2 ḂẎ

)
,

R3030 = Y sin2 θ

AB2

(
− AB2Ÿ + A2A′Y ′ + B2 ȦẎ

)
,

R2102 = − Y

AB

(
− ABẎ ′ + AḂY ′ + BA′Ẏ

)
,

R3103 = sin2 θR2102,

R1313 = Y sin2 θ

A2B

(
A2B ′Y ′ − A2BY ′′ + B2 ḂẎ

)
,

R2020 = Y

AB2

(
− AB2Ÿ + A2A′Y ′ + B2 ȦẎ

)
. (3)

In the above, dots and primes refer to differentiation with
respect to t and r , respectively. Then the resulting Karmarkar
condition is

0 = Y 2 sin2 θ

A3B3

[
AB

(
AḂY ′ + B

(
Y ′ Ȧ − AẎ ′

))2

+
(
B2Ẏ 2 + A2

(
B2 − Y ′2

))(
B2

(
Ȧ Ḃ − A2 B̈

)

−A2A′B ′ + A2BA′′
)

−
(
B2

(
ȦẎ − AŸ

)
+ A2A′Y ′

)

+
(
B2 ḂẎ + A2B ′Y ′ − A2BY ′′

)]
. (4)

The full Karmarkar condition (4) is nonlinear, with three
unknown functions (A, B,Y ). In the next section we will
use the Karmarkar condition to obtain a model of a radiating
star undergoing gravitational collapse.

3 Interior spacetime

In order to generate a complete model of dissipative col-
lapse we assume that the gravitational potentials are sepa-
rable in spatial and temporal coordinates. This scenario has
been studied by several authors yielding rich insights into the
collapse process [12–14,19–21]. The interior spacetime of
our radiating stellar model is described by a spherically sym-
metric shear-free line element in simultaneously comoving
and isotropic coordinates. The metric assumes the following
form:

ds2 = −A0(r)
2dt2 + B2

0 (r) f 2(t)
[
dr2 + r2d�2

]
, (5)

where f (t) encodes the dynamical nature of the model
and the functions (A0, B0) describe a static fluid solution
of the Einstein field equations in isotropic coordinates. We
utilise the following stress-energy-momentum tensor for our
dynamical model:

123



Eur. Phys. J. C (2018) 78 :48 Page 3 of 7 48

Tab = (ρ + pT)uaub+pTgab+(pR−pT)χaχb+qaub+qbua,

(6)

where ρ, pR, pT and q = (qaqa)1/2 are the proper energy
density, radial pressure, tangential pressure and magnitude of
the heat flux, respectively. In comoving coordinates we have

ua = A−1δa0 , χa = B−1δa1 , qa = qχa, (7)

where we identifyua as the unit time-like four-velocity vector
and χa is a unit space-like vector along the radial direction.

Then the Einstein field equations for the metric (5) are

ρ = 1

f 2

[
3

A0
2 ḟ 2 − 1

B0
2

(
2B0

′′

B0
− B0

′2

B0
2 + 4B0

′

r B0

) ]
, (8)

pR = 1

f 2

[
− 1

A0
2

(
2 f f̈ + ḟ 2

)

+ 1

B0
2

(
B0

′2

B0
2 + 2A0

′B0
′

A0B0
+ 2

r

(
A0

′

A0
+ B0

′

B0

))]
,(9)

pT = 1

f 2

(
1

B0
2

[
1

r

A0
′

A0
+ 1

r

B0
′

B0
3 + A0

′′

A0

−
(
B0

′

B0

)2

+ B0
′′

B0

]
− 1

A0
2

(
2 f f̈ + ḟ 2

) )
, (10)

q = − 2A0
′ ḟ

f 3A0
2B0

2 . (11)

4 Exterior spacetime and junction conditions

In order to obtain a complete model of a collapsing star we
need to invoke the junction conditions which allow for the
smooth matching of the interior spacetime to the exterior
spacetime. Since the star is radiating energy in the form of
a radial heat flux, the exterior spacetime is no longer empty
and is described by Vaidya’s outgoing solution [2]

ds2+ = −
(

1 − 2m(v)

r

)
dv2 − 2dvdr + r2d�2, (12)

where the mass function m(v) is a function of the retarded
time v. The junction conditions for the matching of the line
element (5) and the exterior Vaidya spacetime (12) across a
time-like hypersurface are

(r B0 f )Σ = rΣ, (13)

(pR)Σ = (qB0 f )Σ, (14)

m(v) =
(
r3B0

3 f ḟ 2

2A0
2 − r2B ′

0 f − r3

2

B0
′2 f
B0

)
Σ

. (15)

As pointed out by Santos, condition (14) represents the
conservation of momentum across the boundary of the col-
lapsing sphere.

Using the junction condition (14) together with (9) and
(11), we obtain

2 f f̈ + ḟ 2 + a ḟ = n, (16)

valued on Σ . Equation (16) governs the behaviour of f . The
constants a and n are

a = −2r0

b
√
r0

2 + C1

, (17)

n = 2(C2 + √
r0

2 + C1)

b2
√
r0

2 + C1

, (18)

and they are evaluated at the boundary, r = r0. Equation (16)
can easily be integrated to yield

t = 1

a

[
1

2
f + b

√
f + b2 ln

(
1 −

√
f

b

)]
, (19)

where the time coordinate was rescaled to account for the
constant of integration. The temporal evolution of the model
is now completely known. Previous models of dissipative
gravitational collapse in which the metric functions were
separable utilised various assumptions for the static body
ranging from: (1) a known static solution of the Einstein
field equations, (2) ad hoc assumptions of the gravitational
potentials, (3) departure from pressure isotropy and (4) impo-
sition of an equation of state. The novelty of our approach is
to use the Karmarkar condition together with the boundary
condition (16) to generate a complete model of a radiating
star.

The nonzero Riemann tensor components for the metric
(5) are given by

R1010 = 1

A0B0 f

(
− A0B0

3 f 2 f̈ + A0
2B0 f A0

′′

− A0
2A0

′B0
′ f

)
,

R2323 = r2 sin2 θ

A0
2

(
A0

2B0
2 f 2 − A0

2B0 f + r B0
′ f 2

+ r2B0
4 f 2 ḟ 2

)
,

R1212 = r

A0
2

(
− A0

2B0 f
2(2B0

′ + r B0
′′) + A0

2B0
′ f 2 ×

(
B0 + r B0

′ + r B0
4 f 2 ḟ 2

))
,

R3030 = r sin2 θ

A0B0 f

(
− r A0B0

3 f 2 f̈ + A0
2A0

′ f
(
B0 + r B0

′)) ,

R2102 = − r

A0

(
r A0

′B0
2 f ḟ

)
,
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R3103 = sin2 θR2102,

R1313 = r sin2 θ

A0
2

(
A0

2 f 2 (
B0

′(B0 + r B0
′) − B0(2B0

′

+ r B0
′′)

) + r B0
4 f 2 ḟ 2

)
,

R2020 = r

A0B0 f

(
− r A0B0

3 f 2 f̈ + A0
2A0

′ f (B0 + r B0
′)
)

,

(20)

from (3). The condition (2) becomes

0 = − r A0
2B0

2 f f̈ (−r B0
′2 + B0(B0

′ + r B0
′′))

+ r2B0
4 ḟ 2(A0

′2 + B0
2 f f̈ ) − r A0B0

3 ḟ 2 (
2r A0

′B0
′

+ B0(A0
′ − r A0

′′) + r B0
3 f f̈

)

+ A0
3(B0(B0

′(A0
′ − 2r A0

′′) + r A0
′B0

′′)
+ r B0

′(B0
′(2A0

′ − r A0
′′) + r A0

′B0
′′)

+ 2r B0
3 f B0

′ f̈ + r2B0
2B0

′2 f̈ ). (21)

The above equation is highly nonlinear with the radial and
temporal behaviour of the model coupled in a nontrivial man-
ner. In order to generate a complete model of radiative col-
lapse we must ensure that Eqs. (16) and (21) are simultane-
ously satisfied. We observe that a particular solution of (16)
is simply the linear solution

f (t) = −Ct, (22)

where C > 0 is a constant of integration [34].
With (22), Karmarkar’s condition (21) becomes

0 = C2r2B0
4A0

′2 + C2r A0B0
3 (−A0

′(B0 + 2r B0
′)

+ r B0A0
′′)

+ A0
3
[
B0

′(A0
′(B0 + 2r B0

′) − r A0
′′ (2B0 + r B0

′)

+ r A0
′B0

′′(B0 + r B0
′)
]
, (23)

which is independent of time. We are left with an equation
in A0 and B0. At this point we should highlight the fact
that the embedding class condition (2) together with pres-
sure isotropy (pR = pT) yields only two exact solutions for
uncharged static fluids: (1) the interior Schwarzschild solu-
tion and (2) the Kohler–Chao solution [33]. The Kohler–Chao
solution cannot be used to model a bounded configuration
such as a star since there is no surface at which the radial
pressure vanishes. Such a surface would define the bound-
ary of the star. The Schwarzschild interior solution describes
the interior gravitational field of a uniform density sphere
and suffers various pathologies such as the prediction of
superluminal propagation velocities within the fluid as well
it being unstable against radial perturbations. Recently, the

Karmarkar condition has been used extensively in model-
ing compact stars within the framework of classical general
relativity. The departure from pressure isotropy and neutral
fluids has generated physically viable models of static com-
pact stars which stand up to observations of radius, mass and
compactness of these bodies. In order to close the system of
equations we choose B0 to be

B0 = b, (24)

where b is a constant. This form of B0 was used by Banerjee
et al. [34] to study horizon-free collapse models. Substituting
(24) into (23) we obtain

A0 =
√
r2 + C1 + C2, (25)

where C1 and C2 are integration constants. Hence we have
found an exact solution for a radiating star, matching to the
Vaidya exterior, which satisfies the nonlinear Karmarkar con-
dition.

With (24), (25) and (22), the matter variables in terms of
r and t are

ρ = 3

t2(r2 + C1)C2
2 , (26)

pR = −b2C2 + 2C2
2

b2C2t2(r2 + C1)C2
2 , (27)

pT =
r2+2C1
b2C2 − r2+C1

C2
2

t2(r2 + C1)2 , (28)

q = − 2r

b2C2t3(r2 + C1)3/2C2
. (29)

The mass function becomes

m = − b3C3r3t

2(r2 + C1)C2
2 . (30)

5 Energy conditions

We will now examine the physical viability of our stellar
model. First, we require that the thermodynamical quantities
be positive within the star

ρ ≥ 0, pR ≥ 0, pT ≥ 0. (31)

These conditions are confirmed in Figs. 1, 2 and 3 which
display the evolution of the central and surface densities as
functions of time. Next, the energy density and radial pres-
sure must decrease outward from the center of the star to its
surface

ρ′ < 0, p′
R < 0. (32)
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Fig. 1 Density as a function of time at the center (dashed line) and
surface (solid line) of the star
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pR

Fig. 2 Radial pressure as a function of time at the center (dashed line)
and surface (solid line) of the star

In order to fulfill the energy conditions we further require

(ρ + pR)2 − 4q2 > 0, (E1) (33)

ρ − pR − 2pT +
[
(ρ + pR)2 − 4q2

]1/2
> 0, (E2) (34)

to hold within the stellar interior. With the particular solution
f (t) = −Ct for (16), and (17) and (18) we have

C = 1

2

( −2r0

b
√
r0

2 + C1

+
[

4r0
2

b2(r0
2 + C1)

(35)

+8(C2 + √
r0

2 + C1)

b2
√
r0

2 + C1

]1/2)
. (36)

Here C is chosen to be positive to coincide with collapse as
−∞ < t < 0. In order to avoid the formation of the horizon
we must have

1 −
(

2m

r B

)
Σ

> 0, (37)

where r B is the proper radius of the collapsing star. This
condition places the following restriction on C :

C2 <
(r0

2 + C1)C2
2

b2r0
2 . (38)

The energy conditions (33) and (34) together with ρ − pR >

0 lead to

C2 >
(2C2)

2

b2 . (39)

Finally we may write

2C2
2

b2 < C2 <
(r0

2 + C1)C2
2

b2r0
2 . (40)

6 Thermodynamics

Causal heat flow in relativistic systems has generated fruit-
ful results and new insights into the connection between pre-
relaxation processes and temperature evolution, entropy gen-
eration and stability of astrophysical bodies. The evolution of
the temperature profile of the stellar fluid gives a good mea-
sure of the departure from hydrostatic equilibrium. Apart
from relaxational processes contributing to higher core tem-
peratures it has been shown that the presence of anisotropy,
shear and charge can lead to very different temperature pro-
files. In a recent study, Naidu et al. [35] have shown that the
inhomogeneity of the atmosphere affects the temperature dis-
tribution of the stellar fluid, with the effect becoming more
pronounced at later stages in the collapse of the radiating star.
Heat flow in relativistic astrophysics has been widely studied
within the context of extended irreversible thermodynamics.
Various studies have demonstrated that relaxational effects
lead to higher core temperatures during dissipative collapse.
The causal transport equation for the line element (5) is given
by

τ(qB0 f )
· + A0qB0 f = −κ(A0T )′

B0 f
, (41)

where

κ = γ T 3τc, τc =
(

ψ

γ

)
T−σ , τ =

(
βγ

ψ

)
τc (42)

are physically reasonable choices for the thermal conductiv-
ity κ , the mean collision time between massive and massless
particles τc, and the relaxation time τ . The quantities ψ ≥ 0,
β ≥ 0 and σ ≥ 0 are constants. With these assumptions the
causal heat transport equation (41) becomes

β(qB0 f )
·
T−σ + A0(qB0 f ) = −ψ

T 3−σ (A0T )′

B0 f
. (43)

The integration of (43) for constant and variable collision
times has been provided by Govinder and Govender [36]
and has been used by several authors. We are in a position
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to integrate (43) and obtain both the causal and the non-
causal temperature profiles for our model. The explicit form
of the temperature is complicated so we opted to display the
behaviour of the temperature profiles in Fig. 7.

7 Discussion of results

We have presented a complete model of a radiating star within
the framework of general relativity. The collapse starts off
from an initial static configuration and proceeds to evolve

100 80 60 40 20 0
0.0000

0.0005

0.0010

0.0015

0.0020

t

pT

Fig. 3 Tangential pressure as a function of time at the center (dashed
line) and surface (solid line) of the star

100 80 60 40 20 0
0

100

200

300

400

500

t

m

Fig. 4 Mass of the star as a function of time

0.0

0.5

1.0

r
100

50

0

t

0.00000
0.00005
0.00010
0.00015

E1

Fig. 5 Energy condition 1

with dissipation of energy in the form of a radial heat flux.
We close the system of field equations by imposing, for the
first time, a time-dependent Karmarkar condition. With a par-
ticular solution of the boundary condition which describes
fully the temporal behaviour of our model, the Karmarkar
condition reduces to a differential equation relating the two
gravitational potentials which describe the initial static con-
figuration. Motivated by the horizon-free collapse model of
Banerjee et al. [34] we specify one of the gravitational poten-
tial and the Karmarkar condition admits the other potential in
closed form. We have interrogated the physical plausibility
of our approach by studying the energy conditions and ther-
modynamics of our model. From (26) and (27) we observe
that our model obeys a linear equation of state of the form
pR = ωρ where ω = 3b2C2

2C2
2 − b2C2 is a constant. The constant

C2 is arbitrary which means that we can choose different
forms for ω which describe different fluids ranging from stiff
fluids, radiation fluid models and even dark energy models
[20]. We have shown that the collapse proceeds without the
formation of the horizon. As pointed out by Banerjee et al.
[34] such a collapse scenario is possible when the rate of
collapse is balanced by the rate at which energy is radiated
to the exterior spacetime. Figures 1, 2 and 3 show that the
energy density, radial pressure and tangential pressure are

0.0

0.5

1.0

r
100

50

0

t

0.00

0.01

0.02

E2

Fig. 6 Energy condition 2

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

r

Temperature

Fig. 7 Causal (dashed line) and noncausal (solid line) temperature pro-
files
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positive throughout the interior of the collapsing body. As
time progresses these quantities increase as the collapse pro-
ceeds leading to a hotter, denser core. The mass function is
shown in Fig. 4. It is clear that the mass varies linearly with
t , which further confirms that the ratio of the mass function
and area radius of the star is independent of time. Figures 5
and 6, together with the behaviour of the density and pres-
sure confirm that all the energy conditions are satisfied at
each interior point of the star. In Fig. 7 we plot the causal and
noncausal temperature profiles. We observe that the causal
temperature is everywhere greater than its noncausal coun-
terpart. This is in keeping with previous investigations of
temperature profiles of radiating stars within the framework
of causal thermodynamics.
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