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Abstract The complete nonperturbative expressions for
the high-temperature expansion of the one-loop effective
action induced by the charged scalar and the charged Dirac
particles both at zero and finite temperatures are derived
with account of possible nontrivial boundary conditions. The
background electromagnetic field is assumed to be station-
ary and such that the corresponding Klein–Gordon opera-
tor or the Dirac Hamiltonian is self-adjoint. The contribu-
tions of particles and antiparticles are obtained separately.
The explicit expressions for the C-symmetric and the non-
C-symmetric vacuum energies of the Dirac fermions are
derived. The leading corrections to the high-temperature
expansion due to the nontrivial boundary conditions are
explicitly found. The corrections to the logarithmic diver-
gence of the effective action that come from the bound-
ary conditions are derived. The high-temperature expansion
of the naive one-loop effective action induced by charged
fermions turns out to be divergent in the limit of a zero
fermion mass.

1 Introduction

The evaluation of the high-temperature expansions of the
one-loop effective actions is a well-elaborated procedure
at the present moment. As for quantum electrodynamics
(QED), the first results in this field date back to Refs. [1,2].
Surprisingly, as far as we know, a uniquely defined (in the
nonperturbative sense) expression for the complete high-
temperature expansion of the one-loop effective action in
QED in the Minkowski spacetime is not derived for a general
stationary electromagnetic background. There are two issues
in obtaining such a high-temperature expansion: (1) to treat
properly and nonperturbatively the external electric field; (2)
to organize the high-temperature expansion in a manageable
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way that allows one to deduce its complete form. As for the
latter problem, we may refer to the works in Refs. [3–7]. In
[5–7], the high-temperature expansion was obtained but for
the case A0 = 0 and using the Euclidean approach. As for the
former problem, we mention Refs. [8–13], where the leading
terms of the high-temperature expansion for charged parti-
cles in the electric field were found. In the present paper, we
shall derive the complete nonperturbative high-temperature
expansion of the one-loop effective action induced by the
charged scalars and the Dirac fermions in a stationary elec-
tromagnetic field of a general form in the Minkowski space-
time. We shall also find the contribution to this expansion
coming from the nontrivial (MIT bag) boundary condition
[14,15] imposed on the massive Dirac fermions.

When the external stationary electromagnetic field is
purely magnetic, the Dirac equation can be squared to the
equation of Klein–Gordon (KG) type with a self-adjoint
operator. This facilitates the problem of finding the one-
loop thermodynamic potential since the powerful methods
based on the use of the spectral zeta-function of the Laplace
type operators can be employed [3–7,16–19]. However, in
the presence of the electric field, these methods cannot be
immediately applied in the case of Dirac fermions because
the naive squaring of the Dirac equation leads to the KG
type equation with a non-Hermitian operator (see, e.g., [20–
22]). Furthermore, this KG type operator possesses a kernel
larger than the initial stationary Dirac equation. Therefore,
we have to modify the approaches of [5–7,13,16–19] to cope
this problem. Our main idea consists in using the square of
the Dirac Hamiltonian instead of the “square” of the Dirac
equation operator (see (96)). This idea is not new and was
employed, for example, in [23–25]. However, as for deriving
the one-loop effective action, such a method did not find an
application in QED for general background electromagnetic
fields. The detailed comparison of this method with other
approaches will be given in Sect. 6, so we do not dwell on it
here.

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-017-5450-0&domain=pdf
mailto:probustom@gmail.com
mailto:kpo@phys.tsu.ru


880 Page 2 of 18 Eur. Phys. J. C (2017) 77 :880

As is well known [9,10,26–28], the high-temperature
expansion of the one-loop Ω-potential without the vacuum
contribution can be used to obtain the energy of vacuum
fluctuations at zero temperature. Therefore, we shall derive
a nonperturbative representation of the vacuum energy for
the Dirac fermions in a stationary electromagnetic field of
a general configuration without resorting to the Wick rota-
tion prescription (as for bosons; see [17–19]). This vacuum
energy is real-valued for not too wild fields and corresponds
to the standard definition of the vacuum of quantum fields
on stationary backgrounds (see, e.g., [29]). In fact, there are
two definitions of the vacuum energy for Dirac fermions: the
C-symmetric (see, e.g., [13,29]) and the non-C-symmetric
one (see, e.g., [30,31]). We shall find an explicit formula for
the difference between the finite parts of these vacuum ener-
gies. It turns out that this difference is given by a surface
term and disappears when the spectral problem is posed in
the whole space, i.e., when the MIT bag boundary condition
is not imposed. We shall also find the leading corrections to
the high-temperature expansion coming from the MIT bag
boundary condition. In the particular case of neutral massless
Dirac fermions confined to a sphere, these corrections coin-
cide with the known ones [32]. We shall obtain the generaliza-
tion of the coefficient a2 controlling the conformal anomaly
to the case of charged massive fermions obeying the MIT bag
boundary condition. In the particular case of neutral massive
Dirac fermions confined to a sphere, this expression is in
agreement with the known one [23]. Besides, we shall derive
the high-temperature expansion of the separate contributions
of particles and antiparticles to the Ω-potential. This expres-
sion can be used to obtain the number of particle-antiparticle
pairs in the system [19,33] in the high-temperature regime.
The leading order terms coincide with the literature find-
ings [33].

In [17,18], we developed a general procedure of how to
obtain the complete high-temperature expansion when the
spectral problem is reduced to the solution of the KG type
equation with a self-adjoint operator. The background fields
are supposed to be of a general form, in particular, A0 �= 0
and the metric is stationary. This method is close to, but not
the same as, that proposed in [13,24,25]. We start in Sect. 2
with a simpler and more rigorous derivation of the general
formula of the asymptotic high-temperature expansion of the
one-loop Ω-potential than given in [18]. The main tool we
shall employ is Theorem 1 borrowed from [34] and formu-
lated in Appendix A. This theorem describes some analytic
properties of the Mellin transform. Using this theorem and
the Mellin transforms of the Bose–Einstein and the Fermi–
Dirac distribution functions, we shall deduce the desired
high-temperature expansion. Notice that the Mellin trans-
form technique for deriving the high-temperature expansion
had been already used in [3,4]. In Sect. 3, we shall present
the derivation of Eq. (9) of [19] for the Fermi–Dirac Ω-

potential at zero temperature and nonzero chemical poten-
tial. The explicit expression for the nonrenormalized vacuum
energy will also be given. Then, in Sect. 4, the complete high-
temperature expansion of the one-loop Ω-potential induced
by the charged fermions obeying the nontrivial boundary con-
ditions will be obtained. This expansion is written in terms
of the spectral zeta- and eta-functions of the squared Dirac
Hamiltonian. The explicit expressions for the C-symmetric
and the non-C-symmetric vacuum energies at zero tempera-
ture will be given. After that, we shall derive the large mass
expansion of the vacuum energy without the surface terms.
In Sect. 5, we shall present the explicit formulas for the lead-
ing terms of the high-temperature expansion with account
for the MIT bag boundary condition. As for the volume con-
tributions, these leading terms coincide with the known ones
[9,10]. In this section, we shall also obtain the renormalized
vacuum energy and the high-temperature expansion of the
total one-loop effective action induced by Dirac fermions
with the vacuum energy included. We shall prove that, at
zero chemical potential, this high-temperature expansion is
expressed solely in terms of the heat kernel expansion coeffi-
cients no matter how small the mass of the field is. Because of
the term proportional to the logarithm of a mass, the one-loop
effective action at finite temperature diverges in the limit of
a zero fermion mass for the charged Dirac fermions in the
high-temperature regime.

2 Derivation of the formula for the high-temperature
expansion

At the beginning, we present several general formulas from
[18]. LetK(ω) be a Fourier transform of the Hermitian opera-
tor of KG type. We confine the system at issue into a large box
and suppose that K(ω) is a self-adjoint operator of Laplace
type possessing a spectrum bounded from above at fixed
value of ω in the Hilbert space of square integrable functions
meeting appropriate boundary conditions on the surface of
the box. Then the spectrum εk(ω) of such an operator is dis-
crete with an accumulation point at infinity [35–37]. Let us
introduce the operator

K−ν+ (ω) := e−iπνΓ (1 − ν)

∫
C

dττ ν−1

2π i
e−τK(ω), (1)

where the contour C runs from below upwards slightly to the
left and parallel to the imaginary axis, and τ ν := |τ |νeiν arg τ ,
arg τ ∈ [0, 2π). The operator (1) is trace-class when Re ν <

0. Let ωα
k , α = 1, n(k), n(k) < ∞, be the real solutions to

the equation

εk(ω
α
k ) = 0, (2)

and
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ε′
k(ω

α
k ) �= 0. (3)

Then the function

ζ+(ν, ω) = Tr K−ν+ (ω), (4)

understood as a generalized function of ω, is analytic for
Re ν < 1 and admits an analytic continuation to the whole
complex ν plane. Let ϕ(ω) be the trial function, then∫

dωϕ(ω)ζ+(ν, ω) =
∫ ∞

0
dεε−ν fϕ(ε),

fϕ(ε) = −
∫

dωϕ(ω)∂ε Tr θ(K(ω) − ε),

(5)

where Tr θ(K(ω)) is a generalized function counting the
number of positive eigenvalues of K(ω). Suppose that εk(ω)

is infinitely differentiable at the points ωα
k , and the condition

(3) holds true. Then there is an asymptotic expansion

fϕ(ε) �
∞∑
k=0

fk[ϕ]εk, (6)

when ε → +0. Consequently, according to Theorem 1, the
generalized function ζ+(ν, ω) possesses singularities in a
form of simple poles at the points ν ∈ N, and the function
ζ+(ν, ω)/Γ (1 − ν) is an entire function of ν.

Let the additional stability conditions be met [13,38,39]:

a) sgn(ωα
k )ε′

k(ω
α
k ) > 0, b) ζ+(ν, ω) = 0, ω ∈ (−ε, ε),

(7)

for some ε > 0. Then the one-loop Ω-potential takes the
form [18]

Ω = −
∫ ∞

0
dω

[
ζ+(0, ω)

eβ(ω−μ) ± 1
+ ζ+(0,−ω)

eβ(ω+μ) ± 1

]
. (8)

The first term in this expression is a contribution from parti-
cles, and the second one corresponds to antiparticles.

Theorem 1 allows us to give a simple proof of the gen-
eral formula for the high-temperature expansion of the Ω-
potential [17,18]. Recall the main assumptions made about
the zeta-function:

1. ζ+(ν, ω) = 0 for ω ∈ [0, ωc];
2. ζ+(ν, ω) is absolutely locally integrable on the ray

[ωc,+∞) (when Re ν < 1);
3. there is an asymptotic expansion when ω → +∞:

ζ+(ν, ω) =
N∑

k=0

ζ+
k (ν)ωd−2ν−k + O(ωd−2ν−N−1). (9)

As was shown in [17,18] by a direct calculation, the third
property holds for the operator K(ω) being a Fourier trans-
form of a KG type operator. The coefficients ζ+

k (ν) are
expressed through the expansion coefficients of the heat ker-
nel appearing in (1) (see, e.g., [13,17,18,24,25]). The second
property follows from the definition (4).

Let us start with the case of the Bose–Einstein distribution
and introduce the notation

Iν(μ) =
∫ ∞

0

dωζ+(ν, ω)

eβ(ω−μ) − 1
, Re ν < 1, (10)

where μ ∈ (0, ωc). Using the Mellin transform, we replace
a nontrivial functional dependence on ω in the integrand by
a simple power law

1

eβ(ω−μ) − 1
=

∫
C1

ds

2π i
Γ (−s)ζ(−s)[β(ω − μ)]s,

Re(ω − μ) > 0, (11)

where the contourC1 runs parallel to the imaginary axis from
below upwards slightly to the left of the point s = −1. Then

Iν(μ) =
∫
C1

ds

2π i
Γ (−s)ζ(−s)βsσ s

ν (μ), (12)

where

σ s
ν (μ) :=

∫ ∞

0
dω(ω − μ)sζ+(ν, ω)

=
∫ ∞

ωc

dω(ω − μ)sζ+(ν, ω). (13)

Equation (12) is valid only when the contour C1 is shifted to
the domain of convergence of the integral representation for
σ s

ν (μ), i.e., when Re s < 2 Re ν − d − 1.
In order to derive the high-temperature expansion of (12),

we have to shift the contourC1 to the domain of positive Re s
and take into account the pole structure of the integrand. The
location of the poles of the function Γ (−s)ζ(−s) is evident,
and the structure of singularities of the function σ s

ν (μ) can be
determined by means of Theorem 1. The change of the vari-
able, x = (ω − μ)−1, transforms the integral to the desired
form

σ s
ν (μ) =

∫ (ωc−μ)−1

0
dxx−s−2ζ+(ν, μ + x−1). (14)

It is not difficult to find the asymptotic expansion of the inte-
grand,

x2ν−d−s−2

[
N∑

m=0

am(μ)xm + O(xN+1)

]
,

am(μ) =
m∑

n=0

ζ+
m−n(ν)

Γ (D − 2ν − m + n)

Γ (D − 2ν − m)

μn

n! , (15)
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where D := d + 1. All the conditions of Theorem 1 are
satisfied. Therefore, the function σ s

ν (μ) can be continued
analytically to the domain Re s < 2 Re ν − d + N , where

σ s
ν (μ) =

∫ (ωc−μ)−1

0
dxx−s−2

[
ζ(ν, μ + x−1)

−
N∑

m=0

am(μ)x2ν−d+m

]
−

N∑
m=0

am(μ)(ωc − μ)s+D−2ν−m

s + D − 2ν − m
.

(16)

It possesses simple poles at the points s = 2ν − d − 2 + k,
k = 1, N + 1, with the residues −ak−1(μ). The implication
of Theorem 1,

lim| Im s|→∞ σ s
ν (μ) = 0, Re s < 2 Re ν − d + N , (17)

guarantees the convergence of (12) and allows us to shift the
contour C1 to the right.

Hence, we obtain

Iν(μ) =
N∑

m=0

βm+2ν−Dζ(D − 2ν − m)

×
m∑

n=0

Γ (D − 2ν − m + n)ζ+
m−n(ν)

μn

n!

+
l0∑

l=−1

(−1)lζ(−l)

Γ (l + 1)
σ l

ν(μ)βl

+
∫
C1

ds

2π i
Γ (−s)ζ(−s)σ s

ν (μ)βs, (18)

where l0 = �2 Re ν − d + N	. Notice that the term with
l = −1 is understood as a limit, and the contour C1 now runs
slightly to the left of the line Re s = N + 2 Re ν − d.

If N → ∞, then setting aside a term that is exponentially
suppressed as β → +0, we deduce from (18) the asymptotic
expansion

−Ωb(μ)

�
∞∑

k,n=0

Γ (D − 2ν − k)ζ(D − 2ν − k − n)
ζ+
k (ν)(βμ)n

n!βD−2ν−k

+
∞∑

l=−1

(−1)lζ(−l)

Γ (l + 1)
σ l
ν(μ)βl , ν → 0. (19)

As for fermions, the considerations are quite analogous,
but with the difference that the Riemann zeta-function ζ(z)
should be replaced by the Dirichlet eta-function η(z) :=
(1 − 21−z)ζ(z) in all the appearances. Therefore,

−Ω f (μ)

�
∞∑

k,n=0

Γ (D − 2ν − k)η(D − 2ν − k − n)
ζ+
k (ν)(βμ)n

n!βD−2ν−k

+
∞∑
l=0

(−1)lη(−l)

Γ (l + 1)
σ l

ν(μ)βl , ν → 0. (20)

The term with l = −1 is absent in the expansion since the
eta-function does not possess a singularity at z = 1 unlike
the zeta-function. The contributions at the even positive l in
the second term in (18), (19), and (20) vanish. With the aid
of Eqs. (15) and (16) for the singularities of σ s

ν (μ), one can
also check directly that Eqs. (19) and (20) are finite when
ν → 0.

The contribution from antiparticles to the high-tempera-
ture expansion of the Ω-potential is derived similarly. Let

ζ+(ν,−ω) =
N∑

k=0

ζ−
k (ν)ωd−2ν−k + O(ωd−2ν−N−1),

ω → +∞. (21)

If the operator K(ω) is invariant under the simultaneous sub-
stitution ω → −ω, A0 → −A0, then

ζ+(ν,−ω; A0) = ζ+(ν, ω;−A0) (22)

and

ζ−
k (ν; A0) = ζ+

k (ν;−A0). (23)

Introduce the following functions:

τ sν (μ) : =
∫ ∞

0
dω(ω + μ)sζ+(ν,−ω),

Re s < 2 Re ν − d − 1, (24)

understood in the sense of analytical continuation when
Re s ≥ 2 Re ν − d − 1. Then

∫ ∞
0

dωζ+(ν,−ω)

eβ(ω+μ) − 1
=

N∑
m=0

βm+2ν−d−1ζ(d + 1 − 2ν − m)

×
m∑

n=0

Γ (d + 1 − 2ν − m + n)ζ−
m−n(ν)

(−μ)n

n! n

+
l0∑

l=−1

(−1)lζ(−l)

Γ (l + 1)
τ lν(μ)βl +

∫
C1

ds

2π i
Γ (−s)ζ(−s)τ sν (μ)βs .

(25)

The proof of this formula is absolutely analogous to the one
given above for particles.
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3 Omega-potential of fermions at T = 0

In this section, we derive Eq. (9) of [19] for the nonrenor-
malized one-loop Ω-potential of fermions at zero tempera-
ture and nonzero chemical potential with the contribution of
the energy of zero-point fluctuations. The formula may be of
use when the solution of the Dirac equation reduces to the
solution of KG equation with a self-adjoint operator.

There are two definitions of the energy of vacuum fluctua-
tions for the Dirac fermions in the literature: theC-symmetric
and the non-C-symmetric one (see [29] for details). Let us
start with the nonsymmetric one. According to the nonsym-
metric definition (see, e.g., [30,31]), the energy of vacuum
fluctuations of fermions is the energy of the “Dirac sea”.
Then for fermions at zero temperature but nonzero chemical
potential,

Evac = −
∫ Λ

0
dωωρ(−ω), Epart =

∫ −μ

0
dωωρ(−ω),

(26)

where Λ is a cut-off parameter, Evac is a nonrenormalized
vacuum energy, Epart is an average energy of particles, and

ρ(−ω) = sgn(ω)∂ω Tr θ(K(−ω)) (27)

is the spectral density of energies of antiparticles. Therefore,

Etot = Evac + Epart

= −
∫ Λ

−μ

dωωρ(−ω) ←−
β0→0

−2
∫ ∞

−μ

dωωρ(−ω)

eβ0ω + 1
, (28)

where β0 is some regularization parameter. The last equality
is accurate within the renormalization ambiguity. Thus,

Etot = 2
∂

∂β0

[
β0

∫ ∞

−μ

dω sgn(ω)
Tr θ(K(−ω))

eβ0ω + 1

+ sgn(μ) Tr θ(K(μ)) ln(1 + e−β0μ)

]
β0→0

= 2
∂

∂β0

[
β0

∫ ∞

−μ

dω sgn(ω)
Tr θ(K(−ω))

eβ0ω + 1

]
β0→0

+|μ| Tr θ(K(μ)), (29)

where it is assumed that Tr θ(K(0)) = 0. In this case,
Tr θ(K(μ)) for μ > 0 gives the number of states with a
frequency 0 < ω < μ and, for μ < 0, it gives the number
of states with a frequency μ < ω < 0. Assigning +1 to the
charge of particles and −1 to the charge of antiparticles, we
obtain

Ωtot = Etot − μQ

= 2
∂

∂β0

[
β0

∫ ∞

−μ

dω sgn(ω)
Tr θ(K(−ω))

eβ0ω + 1

]
β0→0

,

(30)

i.e., we arrive at Eq. (9) of [19].
Applying the formulas of Sect. 2 to Eq. (30), we deduce

∫ ∞

−μ

dω sgn(ω)
Tr θ(K(−ω))

eβ0ω + 1

=
N∑

m=0

βm+2ν−D
0 Γ (D − 2ν − m)η(D − 2ν − m)ζ−

m (ν)

+
l0∑
l=0

(−1)lη(−l)

Γ (l + 1)
σ̃ l

ν(μ)βl
0

+
∫
C1

ds

2π i
Γ (−s)η(−s)σ̃ s

ν (μ)βs
0,

ν → 0, (31)

where

σ̃ s
ν (μ) :=

∫ ∞

−μ

dω sgn(ω)ωsζ+(ν,−ω). (32)

To justify the applicability of the formulas of Sect. 2, we have
to assume that ζ+(ν, ω) = 0 in some neighborhood of ω = 0
and partition the integral in (32) into two:

σ̃ s
ν (μ) =

∫ 0

−μ

dω sgn(ω)ωsζ+(ν,−ω)

+
∫ ∞

0
dω sgn(ω)ωsζ+(ν,−ω). (33)

The consideration of Sect. 2 is to be applied to the second
integral, while the first integral is an entire function of s
tending to zero at | Im s| → ∞.

If we are interested only in the logarithmic divergence and
the finite part of (30) as β0 → 0, then

Ωtot = (4ν + 2)Γ (−2ν)η(−2ν)ζ−
D (ν)β2ν

0 + σ̃ 0
ν (μ) + · · · ,

ν → 0, (34)

where β0 tends to zero after the limit ν → 0. Evaluating this
limit, we arrive at

− Ωtot = 1

2

[
ζ−
D (0) ln

4β2
0e

2γ+2

π2 + ∂νζ
−
D (0)

]

−f.p.
∫ ∞

0
dωζ+(ν,−ω)

∣∣
ν→0

+
∫ μ

0
dω sgn(ω)ζ+(0, ω), (35)

where f.p. denotes the finite part of the expression as ν → 0.
Equation (35) needs to be renormalized as, e.g., in (92).

When the C-symmetric definition for the vacuum energy
is used (see, for example, [13,29]),

Ec
vac = −1

2

∑
k

E (−)
k − 1

2

∑
k

E (+)
k . (36)
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Such an expression for the vacuum energy originates from the
transformation of the initially Weyl-ordered Hamiltonian of
fermionic fields to the normal form. Then the vacuum energy
of the Dirac fermions reads

Ec
vac = ∂

∂β0

{ ∞∑
k=0

Γ (D − 2ν − k)η(D − 2ν − k)

× ζ+
k (ν) + ζ−

k (ν)

βd−2ν−k
0

+
∞∑
l=0

(−1)lη(−l)

Γ (l + 1)
βl+1

0

[
σ l

ν(0) + τ lν(0)
]}

β0→0

,

(37)

where ν → 0. Taking the limit ν → 0 and keeping only the
finite and divergent terms when β0 → 0, we arrive at the
nonrenormalized C-symmetric vacuum energy

Ec
vac =

d−1∑
k=0

Γ (D − k)η(D − k)
ζ+
k (0) + ζ−

k (0)

βD−k
0

(k − d)

−1

2

{
ζ+
D (0) + ζ−

D (0)

2
ln

4β2
0e

2γ+2

π2 + ∂νζ
+
D (0) + ∂νζ

−
D (0)

2

−f.p.
[
σ 0

ν (0) + τ 0
ν (0)

]
ν→0

}
. (38)

Notice that

σ 0
ν (0) + τ 0

ν (0) =
∫ ∞

−∞
dωζ+(ν, ω) = e−iπνΓ (1 − ν)

×
∫ ∞

−∞
dω

∫
C

dττ ν−1

2π i
Tr e−τK(ω). (39)

However,

T
∫ ∞

−∞
dω

2π
Tr e−τK(ω) �= Tr4 e

−τK(i∂t ), (40)

where T is an observation period, for the operator under the
trace sign on the right-hand side is not trace-class. The left-
hand side of (40) can be regarded as the definition for the
right-hand side of (40) in the case of stationary background
fields. The one-loop correction to the total nonrenormalized
Ω-potential is written as

Ωc
tot = Ec

vac −
∫ μ

0
dω sgn(ω)ζ+(0, ω). (41)

The one-loop correction to the effective Lagrangian, L(1)
eff =

−Ωc
tot, is real and corresponds to the standard choice of the

vacuum state for stationary background fields.

4 High-temperature expansion for the Dirac fermions

In the previous sections, we have derived the formulas for
the high-temperature expansion of the one-loop Ω-potential
induced by fermions in the case when the spectral problem
for the Dirac equation can be reduced to solving the KG
type equation with a self-adjoint operator. This situation is
realized in the absence of the external electric field (see, e.g.,
[19,33,40–42] and the references therein) and for certain spe-
cial configurations of the electromagnetic fields (see [22]).

In this section, we shall derive the formula for the
high-temperature expansion of the Ω-potential induced by
fermions in the external stationary electromagnetic fields of
a general configuration subject to the two restrictions:

1. the external electromagnetic field is such that the Dirac
Hamiltonian is self-adjoint;

2. the Dirac Hamiltonian does not possess zero modes.

The first requirement says that the electromagnetic field does
not have too strong singularities, and the electromagnetic
potentials do not grow too fast at spatial infinity (if the prob-
lem is posed in the entire space). The second requirement can
be violated in superstrong electromagnetic fields (see, e.g.,
[29] for details). This condition is rather technical and can
be relaxed because the zero modes do not contribute to the
one-loop thermodynamic potential of fermions (see (52)).

The eigenvalue eigenvector problem takes the form

HDψk = ωkψk, (42)

where ψk is a Dirac bispinor and

HD := A0 + mγ 0 − αi Pi , αi := γ 0γ i , (43)

and Pi = pi − Ai , pi = i∂i . We assume that the chemical
potential μ conjugate to the electric charge is included into
the definition of the potential A0 (see, e.g., [43]). With this
definition, the sign of the chemical potential is opposite to
that used in Sects. 2 and 3 and in [19]. The bispinor ψk obeys
the boundary condition [14,15,44]

Πψk

∣∣∣
Γ

= 0, (44)

where Γ is a smooth boundary of the domain where the
problem (42) is posed. The matrix Π is a projector, and we
choose it in the form corresponding to the so-called MIT bag
boundary condition [14,15]

Π := 1 − inμγ μ

2
, (45)

where nμ is the inward unit normal to the surface Γ .
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Let us introduce the spectral functions (see, e.g., [35–37])

ζs(ν) ≡ ζ(ν, HD) :=
∑
k

|ωk |−2ν,

ηs(ν) ≡ η(ν, HD) :=
∑
k

ωk |ωk |−2ν, (46)

where we suppose that ker HD = 0. Notice that we use
a nonstandard notation for the spectral functions (46). The
series defining ζs(ν), ζ ′

s(ν) converge absolutely when Re ν >

(d − 1)/2, while for ηs(ν), η′
s(ν) they converge absolutely

when Re ν > d/2. Consequently, these functions are analytic
in these domains. For other ν, these functions are understood
in the sense of analytic continuation. They possess singular-
ities in the ν plane in the form of simple poles lying on the
real axis (see, e.g., [35–37] and below).

The spectral functions introduced allow one to evaluate
the integrals of the form

∫ ∞

0
dωρ(ω) f (ω), (47)

where ρ(ω) is the spectral density of the Hamiltonian HD ,
provided that f (ω) can be expressed in the form of the inverse
Mellin transform

f (ω) =
∫
C

ds

2π i
ωs−1 f̃ (s), (48)

with the contour C running downwards parallel to the imag-
inary axis at Re s < 2 − d. The integral (47) can be written
in the form∫

C

ds

2π i
f̃ (s)

∫ ∞

0
dωωs−1ρ(ω)

=
∫
C

ds

4π i
f̃ (s)

[
ζs

(
1 − s

2

)
+ ηs

(
1 − s

2

)]
, (49)

where we have substituted the Mellin transform of the spec-
tral density,
∫ ∞

0
dωωs−1ρ(ω) = 1

2

[
ζs

(1 − s

2

)
+ ηs

(
1 − s

2

)]
,

Re s < 2 − d. (50)

It is assumed that the integral over s on the right-hand side
of formula (49) converges. The representation (49) makes it
possible to find the high-temperature expansion of the Ω-
potential in terms of the spectral functions ζs(ν) and ηs(ν).

Indeed, in virtue of the formula

ln(1 + e−βω) = −
∫
C

ds

2π i

Γ (2 − s)η(2 − s)

s − 1
(βω)s−1,

Re s < 1, (51)

it follows from (49) that the contribution of particles to the
one-loop Ω-potential can be written as

− βΩ =
∫ ∞

0
dωρ(ω) ln(1 + e−βω)

= −
∫
C

ds

4π i

Γ (2 − s)η(2 − s)

s − 1

×
[
ζs

(1 − s

2

)
+ ηs

(
1 − s

2

)]
βs−1, (52)

where Re s < 2 − d.
In order to find the expansion in the rising powers of β,

we need to move the contour C to the right up to the required
power of β and take into account the singularities of the
integrand in the complex s plane. In general, the integral
along C moved to +∞ does not tend to zero. Therefore,
when the contour C is moved to +∞, the resulting series in
the rising powers of β is only asymptotic. The integral along
C gives the remainder of this expansion and is exponentially
suppressed when β → +0.

Let us investigate the singularities of ζs(ν) and ηs(ν) in
the ν plane and their behavior when | Im ν| → ∞ (see, e.g.,
[35,45]). These spectral functions can be expressed in terms
of the heat kernel trace,

ζs(ν) =
∫ ∞

0

dττ ν−1

Γ (ν)
Tr e−τH2

D ,

ηs(ν) =
∫ ∞

0

dττ ν−1

Γ (ν)
Tr(HDe

−τH2
D ). (53)

It is useful to introduce [45]

ζs(ν, ε) =
∫ ∞

0

dττ ν−1

Γ (ν)
Tr e−τ(HD−ε)2

. (54)

Then

ηs(ν + 1) = Γ (ν)

2Γ (ν + 1)

∂

∂ε
ζs(ν, ε)

∣∣∣
ε=0

= 1

2ν

∂

∂ε
ζs(ν, ε)

∣∣∣
ε=0

.

(55)

Hence, it is sufficient to study the analytic properties of
ζs(ν, ε) at ε → 0.

Since (HD − ε)2 is a Laplace type operator (see (81)), the
following asymptotic expansion holds for τ → +0 (see [44]
for a review):

Tr e−τ(HD−ε)2 �
∞∑
k=0

τ (k−d)/2

(4π)d/2 ak/2(ε), (56)

where ak/2(ε) are the heat kernel expansion coefficients. The
integrand of (54) is absolutely integrable. On the upper limit,
the integral over τ in (54) is convergent for any ν because
ker H2

D = 0. Therefore, introducing some cut-off Λ on the
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upper integration limit in (54), we can apply Theorem 1. As
a result, we obtain the structure of singularities of ζs(ν):

ζs

(1 − s

2

)
=

∞∑
k=0

−2ak/2

(4π)d/2Γ
(
(d − k)/2

) 1

s + d − k − 1

+ regular

Γ
(
(1 − s)/2

) , (57)

where ak/2 := ak/2(0). From (55) we have

ηs

(
1 − s

2

)
=

∞∑
k=0

−a′
k/2

(4π)d/2Γ
(
1 + (d − k)/2

) 1

s + d − k

+ regular

Γ (1 − s/2)
, (58)

where a′
k/2 := ∂εak/2(ε) at ε = 0. It follows from these

formulas that

ζs(−n) = (−1)nn! an+d/2

(4π)d/2 ,

ηs(−n) = (−1)nn!a
′
n+1+d/2

2(4π)d/2 , n = 0,∞. (59)

Theorem 1 also implies

Γ (ν)ζs(ν, ε) −→| Im ν|→∞ 0. (60)

Consequently, when | Im ν| → ∞, the functions |ζs(ν)| and
|ηs(ν)| tend to infinity not faster than e| Im ν|(π/2+0). Notice
that in the case we consider, a stronger estimate even holds
(see the remark after theorem 5.5.2 in [35]). This means that
the integral over s on the right-hand side of (52) converges,
and the contour C can be moved to the right.

Now we see that the integrand of (52) has the pole singu-
larities at the points s = −d,∞. The poles at Re s ≤ 0 and
s = 2l + 2, l = 1,∞, are simple. The other ones are of the
second order. Let us introduce the notation

ζ̄s(ν) = ∂

∂σ
[σζs(ν + σ)]σ=0,

η̄s(ν) = ∂

∂σ
[σηs(ν + σ)]σ=0. (61)

The functions ζ̄s(ν), η̄s(ν) are the finite part of the Laurent
series (i.e., the coefficient c0) of the functions ζs(ν), ηs(ν)

in the vicinity of the point ν. Then the high-temperature
expansion of the contribution of particles to the one-loop
Ω-potential is

− βΩ �
d−1∑
k=0

Γ (D − k)η(D − k)

2(4π)d/2(d − k)
βk−d

×
[

a′
(k+1)/2

Γ
(
(D − k)/2

) + 2ak/2

Γ
(
(d − k)/2

)
]

+ ln(
√

2)

[
ζs(0) + η̄s(1/2) − ln(2β2)

a′
D/2

(4π)D/2

]

−β

4

[
ζ̄s(−1/2) + ηs(0) + aD/2

(4π)D/2 ln
4β2e2γ−2

π2

]

+
∞∑
l=1

η(1 − 2l)

4lΓ (2l)
β2l

[
ζs(−l) + η̄s(1/2 − l)

− a′
l+D/2

Γ (1/2 − l)

ln(βαl/π)

(4π)d/2

]

−
∞∑
l=1

Γ (−2l)η(−2l)

(4π)d/2(2l + 1)
β2l+1 al+D/2

Γ (−1/2 − l)
, (62)

where D := d + 1,

ln αl := ζ ′(2l)
ζ(2l)

+ ln 2

4l − 1
− 1

2l
, (63)

and we have taken into account that a′
0 = 0. As long as

∫ ∞

0
dωωs−1ρ(−ω) = 1

2

[
ζs

(
1 − s

2

)
− ηs

(
1 − s

2

)]
,

Re s < 2 − d, (64)

the contribution of antiparticles has the same form as (62) but
with the replacement ηs(ν) → −ηs(ν), η̄s(ν) → −η̄s(ν),
and a′

k → −a′
k . Therefore, the total Ω-potential does

not contain the functions ηs(ν), η̄s(ν), and the heat ker-
nel expansion coefficients a′

k . Bearing in mind (59), we see
that the asymptotic expansion in β of the total Ω-potential
for fermions without the vacuum energy contribution is
expressed through the heat kernel expansion coefficients save
the term proportional to ζ̄s(−1/2).

Let us step back for a while and consider (52) once again.
If we substitute the representation (53) into (52) and change
the order of integration over s and τ , the following integral
arises:

I (β, τ ) := −τ−1
∫
C

ds

4π i

Γ (2 − s)η(2 − s)

(s − 1)Γ
(
(1 − s)/2

)
(

β2

τ

) s−1
2

.

(65)

This integral is reduced to the Jacobi theta-function. Using
the representation [46]

1

Γ
(
(1 − s)/2

) = i

2π

∫
H

dωe−ω(−ω)(s−1)/2, (66)

123



Eur. Phys. J. C (2017) 77 :880 Page 9 of 18 880

where H is the Hankel contour and the principal branch of
the power function is taken, it is not difficult to obtain

I (β, τ ) = i

4πτ

∫
H

dωe−ω ln
[
1 + e−β(−ω/τ)1/2

]
. (67)

Developing the logarithm as a series and integrating it term
by term, we arrive at

I (β, τ ) = β

8π1/2τ 3/2

[
1 − ϑ4(0, e−β2/(4τ))

]

= β

8π1/2τ 3/2 + 1

4τ

∞∑
n=−∞

e−τω2
n , (68)

where ωn := π(2n+1)/β are the Matsubara frequencies for
fermions. Hence, the contribution of ζs

(
(1 − s)/2

)
to (52) is

∫ ∞

0
dτ I (β, τ ) Tr e−τH2

D . (69)

This result is rather expected as the evaluation of the path-
integral for fermions over ψ† and ψ instead of ψ̄ and ψ gives
at finite temperature (see, e.g., [47,48])

Γ
(1)
f = 1

2

∞∑
n=−∞

ln det(ω2
n + H2

D), (70)

rather than the logarithm of the determinant of the square
of the Dirac equation operator. We shall not use the repre-
sentation (69) below, but it can be useful for the numerical
evaluation of (52).

As we have already noted in Sect. 3, one can intro-
duce the two definitions for the energy of vacuum fluctu-
ations of the Dirac fermions: the C-symmetric (36) and the
non-C-symmetric (26) one. In accordance with the non-C-
symmetric definition,

Evac = −
∑
k

E (−)
k

←−
β0→0

2
∂

∂β0

∫ ∞

0
dωρ(−ω) ln(1 + e−β0ω)|μ=0, (71)

where β0 is the regularization parameter and E (−)
k are the

antiparticle energies. Using (59) and (62), we obtain the non-
renormalized expression for the vacuum energy,

Evac =
d−1∑
k=0

Γ (D − k)η(D − k)

(4π)d/2
βk−D

0

×
[

a′
(k+1)/2

Γ
(
(D − k)/2

) − 2ak/2

Γ
(
(d − k)/2

)
]

+ ln 4

β0

a′
D/2

(4π)D/2

−1

2

[
ζ̄s(−1/2) −

a′
1+d/2

2(4π)d/2
+ aD/2

(4π)D/2
ln

4β2
0e

2γ

π2

]
,

(72)

where one should set μ = 0. The first line contains the power
divergencies only. The logarithmic divergence responsible
for the conformal anomaly and the finite part are presented
in the last line.

The C-symmetric vacuum energy Ec
vac is defined in (36).

The explicit expression for Ec
vac is obtained from (72) by

throwing out all the terms containing a′
k/2. The symmet-

ric definition of the vacuum energy seems to be the more
preferable one. It is symmetric with respect to the exchange
of notions of particle and antiparticle. Besides, this defini-
tion implies that the finite part of the vacuum contribution
is exactly canceled by the corresponding contribution from
the thermal part of the Ω-potential in the high-temperature
limit and at zero chemical potential. We see from (72) that, in
the four-dimensional spacetime, the finite parts of the sym-
metric and nonsymmetric vacuum energies differ only by the
surface term proportional to a′

5/2.
As it should be, the energy of vacuum fluctuations (26),

(36) and the corresponding effective action are real-valued
for the fields satisfying the conditions mentioned at the begin-
ning of this section. The vacuum state is standardly defined
(see, e.g., [29] for details) as the ground state of the Hamil-
tonian of quantum Dirac fields. The particles are defined as
the modes with ωk > 0 (see (42)), whereas the antiparticles
are the modes with ωk < 0. The total Ω-potential with the
contribution of the vacuum fluctuations becomes

L(1)
eff = −Ω

(1)
tot = −Ωth − E ren

vac. (73)

The high-temperature expansion of Ωth is presented in (62),
where the contribution from antiparticles should be taken into
account, and E ren

vac is the renormalized vacuum energy (see
(92)). The term ζ̄s(−1/2) in Ωth at zero chemical potential is
exactly canceled by the analogous term in E ren

vac [9,10,26–28].
Hence, the total asymptotic expansion in β of the one-loop
effective Lagrangian L(1)

eff induced by the Dirac fermions is
expressed only in terms of the heat kernel expansion coeffi-
cients, when μ = 0. This property is an analog of the fact that
the terms with σ l

ν , for l even, vanish in the high-temperature
expansion (18). Notice that, for a nonzero chemical poten-
tial, the cancelation of ζ̄s(−1/2) in L(1)

eff is not complete (see
[27] and (93)).

The contributions of ζ̄s(−1/2), η̄s(1/2 − l), l = 0,∞,
in (62) are not expressed through the heat kernel expansion
coefficients. Nevertheless, as is well known, the heat kernel
expansion allows one to find the asymptotic expansion of
these contributions in the inverse powers of a large mass
m. Here we shall find such an expansion only for ζ̄s(−1/2)

and η̄s(1/2) appearing in the part of the high-temperature
expansion finite at β → 0. Let

H̄2 := (HD − ε)2 − m2 (74)
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and

Tr e−τ H̄2 �
∞∑
k=0

τ (k−d)/2

(4π)d/2 āk/2(ε). (75)

Then, substituting (74) into this expression and developing
it as a series in τ with the aid of (56), we deduce

ak/2(ε) =
[k/2]∑
s=0

(−m2)s

s! āk/2−s(ε),

āk/2(ε) =
[k/2]∑
s=0

m2s

s! ak/2−s(ε).

(76)

Substituting (74) into (54) and using the expansion (75), we
arrive at

ζ̄s(−1/2)

� f.p.
∞∑
k=0

Γ
(
ε + (k − D)/2

)
Γ (ε − 1/2)

(m2)(D−k)/2−ε āk/2(ε)

(4π)d/2

= f.p.
[D/2]∑
s=0

Γ (ε − s)

Γ (ε − 1/2)
(m2)s−ε āD/2−s(ε)

(4π)d/2

−
∞∑′

k=0

Γ

(
k − D

2

)
(m2)(D−k)/2 āk/2(ε)

(4π)D/2

=
[D/2]∑
s=0

[
ln

m2

4eγ−2 − ψ(1 + s)

]
(−m2)s

s!
āD/2−s(ε)

(4π)D/2

−
∞∑′

k=0

Γ

(
k − D

2

)
(m2)(D−k)/2 āk/2(ε)

(4π)D/2

= aD/2(ε)

(4π)D/2
ln

m2

4eγ−2 −
[D/2]∑
s=0

(−m2)s

s! ψ(1 + s)
āD/2−s(ε)

(4π)D/2

−
∞∑′

k=0

Γ

(
k − D

2

)
(m2)(D−k)/2 āk/2(ε)

(4π)D/2
, (77)

where f.p. means the finite part with respect to ε → 0, Eq.
(76) has been used in the last line, and the prime at the sum
sign reminds us that all the terms that are singular due to the
gamma function must be omitted. Employing the relation
[46]

ψ(1 + n) = −γ + Hn, Hn :=
n∑

k=1

k−1, H0 := 0,

(78)

we have eventually

ζ̄s(−1/2) � aD/2(ε)

(4π)D/2
ln

m2e2

4
−

[D/2]∑
s=1

(−m2)s

s! Hs
āD/2−s(ε)

(4π)D/2

× −
∞∑′

k=0

Γ
( k − D

2

)
(m2)(D−k)/2 āk/2(ε)

(4π)D/2
. (79)

As far as η̄s(1/2) is concerned: it is obtained from ζ̄s(−1/2)

by means of (55).
Substituting (79) into (72), we derive the asymptotic

expansion

Evac �
d−1∑
k=0

Γ (D − k)η(D − k)

(4π)d/2 βk−D
0

×
[ a′

(k+1)/2

Γ
(
(D − k)/2

) − 2ak/2

Γ
(
(d − k)/2

)
]

+ ln 4

β0

a′
D/2

(4π)D/2

−1

2

⎡
⎣ aD/2

(4π)D/2 ln
m2β2

0 e
2γ+2

π2 − a′
1+d/2

2(4π)d/2 −
[D/2]∑
s=1

(−m2)s

s! Hs

× āD/2−s

(4π)D/2 −
∞∑′

k=0

Γ

(
k − D

2

)
(m2)(D−k)/2 āk/2

(4π)D/2

⎤
⎦ ,

(80)

where μ = 0. The last term in this expression looks as
the standard expansion of the one-loop effective action with
respect to a large mass (see, e.g., [21,49]). However, one
should bear in mind that āk/2 depend on m. The maximal
power of m appearing in āk/2 will be found later in Sect. 5.

The self-adjoint positive-definite Laplace type operator
defining the heat kernel (54) takes the form

(HD − ε)2 = D2
i + m2 + 1

2
σ i j Fi j − 2P2

0 − 2mP0γ
0,

σμν := i

2
[γ μ, γ ν], (81)

where P0 := ε−A0 and Di = Pi−αi P0. The operator iγ 0γ 5

is self-adjoint in the Hilbert space specified by the condition
(44). Inserting (iγ 0γ 5)2 under the trace sign in (54), we infer
that

ζs(ν; A0) = ζs(ν;−A0), ηs(ν; A0) = −ηs(ν;−A0),

(82)

for ε = 0. Remark that the derivative with respect to ε in (55)
and in a′

k/2 at ε = 0 can be replaced by the minus derivative
with respect to the chemical potential μ entering into the
definition of A0. Therefore, we put henceforth P0 = −A0 in
(81).

The operator γ 5 is not compatible with the boundary con-
dition (44) and does not map the Hilbert space into itself.
Nevertheless, if we consider the spectral problem (42) in the
entire space, i.e., if we do not impose the boundary con-
dition (44), then γ 5 becomes a self-adjoint operator in the
respective Hilbert space. In this case, inserting (γ 5)2 under
the trace sign in (54), we see that the spectral density ρ(ω)

is symmetric with respect to the replacement m → −m. In
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the next section, we shall explicitly show that the boundary
condition (44) violates the symmetry of the spectral density
under m → −m.

5 Leading terms of the high-temperature expansion

Making use of the general formulas of the previous section,
let us obtain the leading terms of the high-temperature expan-
sion of the Ω-potential of Dirac fermions in a bag. The first
few coefficients of the heat kernel expansion associated with
the Laplace type operator with nontrivial boundary condi-
tions are given in [44,50]. The higher coefficients without
the surface terms are presented in [51]. The requirement of
self-adjointness of the Dirac Hamiltonian with the boundary
condition (44) leads to

Πγ 0(P̂ − m)ψ

∣∣∣∣
Γ

= γ 0(∇n + m − 1

2
Laa)Π̄ψ

∣∣∣∣
Γ

= 0,

Π̄ = 1 − Π = 1 + i n̂

2
, (83)

where P̂ = γ μPμ and

∇i = ∂i + i Ai − iαi A0, ∇n = ni∇i , αi = −αi . (84)

We have introduced here the extrinsic curvature of the hyper-
surface Γ where the boundary condition is defined (see, for
details, [13]):

Lab := −eμ
a e

ν
b∂μnν + nλΓ

λ
μνe

μ
a e

ν
b = −eiae

j
b∂i n j ,

a, b = 1, 2, (85)

where eμ
a are orthonormal vectors tangent to the surface,

nμ = (0,n) is the inward unit normal, and Γ λ
μν is the Levi-

Civita connection (in our case it is equal to zero). Hence,
employing the notation from [44,50], we have from (81) and
(83)

χ = i n̂, S =
(
m − 1

2
Laa

)
Π̄,

E = 2A2
0 − 2mA0γ

0 − 1

2
σ i j Fi j − m2,

Ωi j = i(Fi j + α[i∂ j]A0 − 2σi j A
2
0). (86)

The expressions for the traces arising in evaluating the heat
kernel expansion coefficients are given in Appendix B. Sub-
stituting the traces found in (B.5)–(B.8) to the general for-
mulas of [44,50], we obtain

a0 = 4
∫

dx, a1/2 = 0,

a1 =
∫

dx(8A2
0 − 4m2) +

∫
Γ

d2τ
√
h

[
4m − 2

3 Laa
]
,

a3/2 =
√

π

16

∫
Γ

d2τ
√
h[32m2 − 16mLaa − 2LabLab + L2

aa],

a2 =
∫

dx
[

2m4 + 2
3 FμνF

μν + 4
3∂k∂k(A

2
0)

]

+
∫
Γ

d2τ
√
h

[
4
3∂n A

2
0 + 16mA2

0 − 4
3m

3 − 2
3m

2Laa

+ 2
15mL2

aa − 2
5mLabLab + 17

945 L
3
aa

+ 13
315 LabLabLcc − 116

945 LabLbcLac − 1
15 Laa:bb

]
,

a5/2 = √
π

∫
Γ
d2τ

√
h

[
6m2A2

0 − 3mA2
0Laa + 5m∂n A

2
0

+ 1
8∂n A

2
0Laa + 1

8 A
2
0LabLab − 1

16 A
2
0L

2
aa

]
, (87)

where the τ are the coordinates on the boundary surface, and
h is the determinant of the metric induced on Γ .1 Notice
that, in a2, the last term in the first line is canceled by the first
term in the second line. The last term in a2 can be omitted.
As for a5/2, the terms that do not vanish under differentiation
with respect to μ are only presented. The volume terms in the
coefficients ak , k = 0, 2, coincide with the “pseudo-trace”
expansion coefficients ([13], problem 7.21; see also (100)).
The derivatives with respect to −μ are written as

a′
0 = a′

1/2 = a′
3/2 = 0, a′

1 = −16
∫

dxA0,

a′
2 = −32

∫
Γ

d2τ
√
hmA0,

a′
5/2 = √

π

∫
Γ

d2τ
√
h

[
6mA0Laa − 12m2A0 − 10m∂n A0

− 1
4∂n A0Laa − 1

4 A0LabLab + 1
8 A0L

2
aa

]
. (88)

As we have discussed above, the last expression gives the dif-
ference between the finite parts of the C-symmetric and the
non-C-symmetric vacuum energies of Dirac fermions. Upon
renormalization, this contribution has to be completely can-
celed out by the counterterms since the integrand in a′

5/2 has
the dimension not exceeding 3 and is not Lorentz invariant,
even if one restores the dependence on the normal vector
nμ. Thus, after renormalization, the C-symmetric and the
non-C-symmetric vacuum energies coincide.

The leading correction to the high-temperature expansion
due to the nontrivial boundary condition (44) comes from
the coefficient a1. When the boundary Γ is a sphere of the
radius R, the extrinsic curvature Lab = δab/R. In this case,
substituting (87) into (62) doubled and setting m = 0, we
reproduce the leading correction in (48) of [32] to the free
energy due to the boundary condition (44). As we see, the
coefficient a1 and the corresponding contribution to (62) are

1 Notice that we did not check formulas of [44,50].
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not symmetric with respect to m → −m. Consequently, the
spectral density ρ(ω) is not symmetric under this replace-
ment either. The volume contributions to ak/2 are invariant
with respect to m → −m.

The coefficient a2 is prefixed to ln β0 in the vacuum energy
(72) and, as is well known, related to the conformal anomaly.
Formula (87) provides the generalization of the standard
expression for a2 to the case of the electrically charged Dirac
fields obeying the boundary condition (44). In the case of the
neutral massive Dirac field confined to a sphere, the surface
term coming from a2 coincides with (3.1) of [23]. The sur-
face term in a2 is not symmetric under m → −m. The term
mA2

0 in the surface contribution to a2 should be completely
canceled out by the counterterm inasmuch as it is not Lorentz
invariant.

In order to renormalize the other contributions to the vac-
uum energy, we need to find the terms in āk with the mass
dimension less than or equal to 4, the dimension of the coef-
ficients depending on m being not taken into account. So
we have to determine the maximal power of m entering into
āk/2. As for the volume terms in āk/2, such contributions
come from the second term in E . The maximal power of m
in the surface terms stems from the first term in S. In this case,

āk/2|v.t. ∼ (mA0)
k/2, āk/2|s.t. ∼ mk−1. (89)

Therefore, if one takes into account the surface terms, the
expansion in m−2 in the last contribution in (79) and (80) is,
in fact, not an expansion in the rising powers ofm−1. In order
to obtain the large mass expansion with the surface contri-
butions, one has to resum the expansion in (79) and (80).
We leave this issue for future research and, in considering
the large mass expansion, shall cast out the surface terms.
The expansion obtained thereby is valid for the problem (42)
posed in the whole space without the boundary condition
(44).

The terms necessary for the renormalization procedure are

ā3|v.t. = 1
360

∫
dx tr (−30E;i E;i + 60E3)

= − 4
3

∫
dxm2E2,

ā4|v.t. = 1
4!

∫
dx tr E4 = 8

3

∫
dxm4A4

0.

(90)

The other volume terms in āk/2, k ≥ 3, are suppressed in (79)
and (80) by a power of a mass. The asymptotic large mass
expansion of the vacuum energy (80) without the surface
terms takes the form

Evac = −
∫

dx
[

7π2

60β4
0

+ 6ζ(3)

β3
0

Ã0 + 1

6β2
0

( Ã2
0 − 1

2m
2)

−
(

m4

16π2 + FμνFμν

48π2

)
ln

m2β2
0e

2γ+2

π2 − m2 Ã2
0

4π2

+ Ã4
0

12π2 + 3m4

32π2 − E2

24π2 + O(m−2)

]
, (91)

where Ã0 := A0|μ=0. In accordance with the standard renor-
malization rules (see, e.g., [52]), all the written terms in (91)
should be completely canceled out by the counterterms pro-
vided one normalizes the effective action at a zero photon
momentum and a zero chemical potential. As a result, we
have from (72):

E ren
vac = Evac + c.t. = a2

32π2 ln(m2e2) − 1

2
ζ̄s(−1/2)|μ=0

+
∫

dx
[
m2 Ã2

0

4π2 − Ã4
0

12π2 − 3m4

32π2 + E2

24π2

]
. (92)

Substituting this expression into (73), we find that the com-
plete asymptotic high-temperature expansion of the total one-
loop Ω-potential of the Dirac fermions with account for
the contribution of antiparticles and the vacuum energy (but
without the surface terms) reads

−Ω
(1)
tot �

∫
dx

[
7π2

180β4 + 2A2
0 − m2

12β2 − m2 Ã2
0

4π2 + Ã4
0

12π2

− E2

24π2 + 3m4

32π2

]
− 1

2

[
ζ̄s(−1/2) − ζ̄s(−1/2)|μ=0

]

− a2

32π2 ln
4m2β2e2γ

π2 +
∞∑
l=1

Γ (−2l)η(−2l)

(4π)d/2

al+2β
2l

Γ (1/2 − l)
.

(93)

Let us note once again that, at μ = 0, this expansion is
expressed solely in terms of the heat kernel expansion coef-
ficients ak , and this is not a large mass expansion. Because
of the logarithmic contribution, this expression is not defined
when m → 0, i.e., there exists an infrared divergence in
this limit, at least at zero chemical potential. One can try to
solve this problem by introducing an effective mass for the
fermions and sum thereby an infinite number of ring dia-
grams (see, e.g., [48,53]). The contribution of the photons
to (93) with their effective mass should also be taken into
account.

The leading terms of the high-temperature expansion of
the Ω-potential (62) expanded in a large mass m without the
contribution of antiparticles and the surface terms are written
as

− Ω =
∫

dx
[

7π2

360β4 − 3ζ(3)

2π2β3 A0 + 2A2
0 − m2

24β2

+ ln 2

2π2β
(m2A0 − 2

3 A
3
0) −

(
m4

32π2 + FμνFμν

96π2

)
ln

m2β2e2γ

π2

−m2A2
0

8π2 + A4
0

24π2 − E2

48π2 + 3m4

64π2

]
+ · · · (94)

123



Eur. Phys. J. C (2017) 77 :880 Page 13 of 18 880

For E = 0, this expression coincides with the leading terms
of the expansion (105) of [19] provided one changes the sign
of the chemical potential. If we take into account the contri-
bution of antiparticles, i.e., if we take the doubled symmetric
in A0 part of (94), then we obtain formula (4.2) of [10] up to a
renormalization ambiguity. The nonsymmetric in A0 part of
(94) can be used, for example, to find the number of electron–
positron pairs in the system (see, for details [19,33]) at finite
temperature.

6 Comparison with other approaches

Let us compare the method we have developed with the
approaches presented in the literature. Of course, we do not
pretend here to a complete description of the whole literature
devoted to this subject, but mention only the main approaches
that we know and that are close to the method used by us.

Usually, the one-loop correction to the effective action is
expressed in terms of the trace [21,49,54]

Tr4 e
−τK, (95)

where

−K = −P̂2 +m2 = −(i∂t − A0)
2 + P2

i +m2 + 1

2
σμνFμν.

(96)

The quantity (95) cannot be directly used for a nonpertur-
bative evaluation of the effective action since the operator
under the trace sign is not trace-class [55,56]. Moreover, any
operator function f (K) different from zero is not trace-class.
In order to see this, it is sufficient to consider the trace in the
momentum representation in the domain of large |pμ|. Then

Tr4 f (K) ≈
∫

d4xd4 p

(2π)4 f (K(p, x)), (97)

whereK(p, x) is the principal symbol ofK, which is obtained
from K by the replacement of i∂μ by pμ and neglecting the
terms of the lower order in pμ. The integrand of (97) is
invariant under the Lorentz transformations of the vector pμ

preserving the spacetime metric gμν(x) at the fixed point x .
The action of the Lorentz group foliates the momentum space
into the noncompact orbits where the integrand is constant.
Therefore, the integral (97) is not absolutely convergent and
can converge only conditionally, which implies that the oper-
ator f (K) is not trace-class. Perturbatively, this property is
revealed as the conditional convergence of the renormalized
Feynman diagrams [57,58] in the Minkowski spacetime. For
the electromagnetic field of a general configuration, Eq. (95)

seems to be understood only perturbatively, and the trace
should be evaluated in a certain basis (see, for example (40)).

In the case of the stationary electromagnetic potential Aμ,
one can consider the operator

−K(ω) = −P̂2+m2 = −(ω−A0)
2+P2

i +m2+ 1

2
σμνFμν,

(98)

and pose the so-called nonlinear spectral problem for it (see
the book [13] and the references therein). Then, formally,
the evaluation of the effective action at finite and zero tem-
peratures is reduced to the evaluation of the expression (see
Sects. 2 and 3)

Tr e−τK(ω). (99)

The operatorK(ω) is of Laplace type, the corresponding heat
kernel is a trace-class operator, and (99) is uniquely defined
(see, e.g., [35–37]). However, in the presence of the external
electric field, the operatorK(ω) is not Hermitian owing to the
last term in (98) (see, e.g., [20–22]). Therefore, the method
of Sect. 2 is not immediately applicable.

In [13, Sect. 6], the pseudo-trace,

K (t) = 1

2

∑
k

e−tω2
k , (100)

is introduced. Here ωk are the solutions to the equation

ω2 = λk(ω), (101)

and λk(ω) are the eigenvalues of the operator ω2−K(ω). The
high-temperature expansion of the Ω-potential is expressed
through the expansion of (100) for small t . As long as the
operator (98) is not self-adjoint, equation (101) can have
complex roots. The methods presented in Sect. 6 and prob-
lem 7.21 of [13] (see also [39]) are not applicable, at least
immediately, in this case since they are essentially based on
the self-adjointness of the operator ω2 − K(ω), i.e., on the
real-valuedness of λk(ω) for real ω [see the remark after (6.6)
of [13] and the requirements (ii), (iii) after (2.7) of [39]].
Besides, the physical interpretation of the complex solutions
of the nonlinear spectral problem for the operator (98) is
unclear. The kernel of the operator (98) can be larger than
the set of stationary solutions of the initial Dirac equation.

Unfortunately, this issue is poorly discussed in the liter-
ature. In [54], this problem is not touched upon at all. In
the standard textbook [29], it is wrongly assumed that K
is a self-adjoint operator (see the remark after (10.108b)).
In [59, Sect. 6.2.3], it is supposed that K possesses a real-
valued spectrum and a set of eigenvectors that is complete
and orthonormal with respect to the Lorentz-invariant scalar
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product. In [60], it is assumed, in considering the thermo-
dynamic properties of fermions in external electromagnetic
fields, that the electric field is completely screened, and actu-
ally the case ofE = 0 is investigated. A more detailed discus-
sion of this issue is presented in [21], p. 551, but its solution
is not given there. Besides, it is supposed that the imaginary
parts of the eigenvalues of the operator K are of the same
sign. However, in the case A = 0, it is easy to show using the
Majorana representation of γ -matrices (see, e.g., [22]) that
if εk and ψk are the eigenvalue and the eigenvector of (98),
then ε∗

k and γ 0ψ∗
k are also the eigenvalue and the eigenvec-

tor of (98) (we do not impose the boundary condition (44)).
In this representation, Eq. (98) with the potential A0(x2)

becomes

[(ω − A0)
2 + Δ − m2 − i E2]uk = εkuk,

[(ω − A0)
2 + Δ − m2 + i E2]υk = εkυk, ψk =

[
uk
υk

]
,

(102)

where E2 = −∂2A0. We see that, for the function A0(x2)

of a general form, the operator (98) possesses the complex
eigenvalues εk . Indeed, let εk ∈ R for some A0(x2). Then,
perturbing the potential by some δA0(x2), we obtain with
the help of the standard formula of perturbation theory that
δεk ∈ C.

Nevertheless, the methods based on the use of the expres-
sion (99) are nonperturbatively applicable for some classes
of the electromagnetic fields. For example, such electromag-
netic fields are:

1. The fields satisfying the condition Fμνnν = 0, where nμ

is a constant isotropic vector. The solution of the Dirac
equation with these fields is reduced to the solution of
the KG type equation with a Hermitian operator (see, for
details [22]).

2. The fields with A0 = 0. In this case, the operator (98)
is self-adjoint, and (81) is reduced to ω2 − K(ω) when
ε = 0. Therefore, the approaches expounded in Sects.
2 and 4 are equivalent. The vacuum energy and the Ω-
potential written in terms of the spectral zeta-function
associated with the squared Dirac equation operator are
presented in this case in many papers and books (see,
e.g., [19,33,40–42] and the references therein).

3. The constant electromagnetic field. In this case, the last
term in (98) can be factored out from the exponent in (99),
and the problem is reduced to the respective problem for
the KG equation with a Hermitian operator.

There is also a third approach to the problem based on
the Wick rotation prescription (see, e.g., [5–7,61–63] for
details). According to this method, the one-loop correction

to the effective action induced by Dirac fermions formally
reads

ln det(P̂E − im) = ln det(P̂E + im) = 1

2
ln det(P̂2

E + m2),

(103)

where P̂E = γ
μ
E Pμ and

{γ μ
E , γ ν

E } = 2δμν, (γ
μ
E )† = γ

μ
E . (104)

The gauge connection AE
μ included into Pμ is real. The chem-

ical potential enters (103) as the imaginary additive iμ to
AE

0 . The spectrum of P̂E is real-valued for μ = 0 and, in the
even-dimensional space, is symmetric with respect to zero.
This follows from the fact that there exists a matrix γ 5 in the
even-dimensional space that maps the eigenvectors associ-
ated with the positive eigenvalues to the eigenvectors associ-
ated with the negative eigenvalues. It is assumed in (103) that
the determinant is regularized in such a way that this symme-
try of the spectrum of P̂E is preserved. The determinant on
the right-hand side of (103) can be evaluated, for example,
with the help of the spectral zeta-function. Then, in the even-
dimensional space, the multiplicative anomaly arises (see, for
details [7,64]) which leads to the additional corrections to Eq.
(103). Unfortunately, in the case A0 �= 0, we do not know
a rigorous proof of the equivalence (in the nonperturbative
sense) of this approach to the Minkowski spacetime methods
presented, for example, in Sects. 2, 4 above, or in [13]. For
A0 = 0, it was shown in [7] that these approaches are equiv-
alent for ultrastatic spacetimes. Notice that the Euclidean
approach developed in [13] is distinct from that described
here. In [13], having performed the Wick rotation, the back-
ground fields become complex (see [13, Sect. 7.4]), and the
corresponding wave operator becomes non-self-adjoint even
in the massless case.

All the methods mentioned above must be perturbatively
equivalent to the approach developed in Sect. 4 even in the
case A0 �= 0. In other words, the asymptotic expansions of
the effective action in the coupling constant or, which is the
same in the case at issue, in the inverse powers of a large mass
must coincide up to a renormalization ambiguity. This is ful-
filled, in particular, if ak/2 coincide with the expansion coef-
ficients of the pseudo-trace (100) associated with the oper-
ator (98) (see (80)). In Sect. 5, we showed that this relation
holds for k = 0, 2, 4 without the surface terms. However, we
have not succeeded in proving this relation for an arbitrary
k. The perturbative equivalence to the Euclidean approach
entails that the coefficients of the large mass expansion in
the last line of (80) multiplied by T , where T is the observa-
tion period, are equal to the heat kernel expansion coefficients
constructed for the operator P̂2

E , where the inverse Wick rota-
tion and renormalization are performed. The direct proof of
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this statement deserves a separate study. Let us stress that, at
first, āk/2 in (80) must be expanded in m−1.

Notice that the method of deriving the high-temperature
expansion that employs the squaring of the Dirac Hamilto-
nian was used in [24,25] in the case of a stationary grav-
itational background. The background connection associ-
ated with the internal gauge symmetries was not consid-
ered in [24,25]. Besides, in [13,24,25], the expression for
the complete high-temperature expansion was not derived.
The method we have developed in the previous sections
allows us to obtain the complete high-temperature expansion
of the contributions of particles and, separately, of antipar-
ticles to the Ω-potential, the nontrivial boundary conditions
being also taken into account. This expansion is expressed
in terms of the spectral zeta-function of the positive-definite
self-adjoint operator of Laplace type. In [13,24,25,39], the
contributions from the boundary conditions and the separate
contributions from particles and antiparticles were not con-
sidered. In (1.66) of [7], the high-temperature expansion was
obtained in terms of pseudo-differential operators in the case
A0 = 0.

In [9,10], the approximate expression for the one-loop
thermodynamic potential of the Dirac particles was found
in a stationary external electromagnetic field. In this expres-
sion, the zeroth and the first derivatives of Aμ are only taken
into account. Several leading terms of the high-temperature
expansion were also explicitly found in [9,10]. Unfortu-
nately, the rigorous nonperturbative derivation of formula
(2.1) in [10] is absent. In [9], the reference is made to Ref.
[54], so the approach of [9,10] appears to be equivalent to
the method based on Eq. (99), which we have discussed
above. Equation (4.2) of [10] for the first leading terms of
the high-temperature expansion coincides with (94) up to
renormalization provided that the doubled symmetric in A0

part of (94) is taken. In [11,12,65] (see also [8]), a systematic
method of deriving the gradient corrections to the effective
action both at zero and finite temperatures was elaborated,
Schwinger’s answer for the constant electromagnetic field
generalized to a finite temperature being taken as the zeroth
order approximation. According to this approach, the vacuum
energy contains an imaginary contribution when the electric
field is present. It is not clear whether Eq. (1) of [12] is well
defined nonperturbatively or not.

7 Conclusion

To sum up, we have obtained an explicit well-defined non-
perturbative expression for the complete high-temperature
expansion of the one-loop Ω-potential induced by scalars
and Dirac fermions with nontrivial boundary conditions. The
contributions of particles and antiparticles were treated sepa-
rately that allows one to find the number of pairs of particles

and antiparticles in the system (see, for details [19,33]). The
high-temperature expansion can be used to obtain the one-
loop energy of vacuum fluctuations at zero temperature both
for bosons and fermions. So we have obtained the vacuum
energies for bosons [17–19] and fermions. In particular, we
have found the explicit expression for the difference between
theC-symmetric and the non-C-symmetric vacuum energies
(see, for details [29]) for the Dirac fermions. It turns out
that the finite parts of these energies differ only by a surface
term, which is absent if the Dirac fields obey the standard
asymptotic conditions at spatial infinity, i.e., the condition
(44) is not imposed. Thus, in this case, we may conclude
that the two definitions of the vacuum energy give the same
result upon renormalization of the divergent part. In the gen-
eral case, we have shown that this finite surface term should
be completely canceled out by the respective finite coun-
terterm. We have also found the leading correction to the
high-temperature expansion due to the nontrivial boundary
condition (44). Besides, the correction to the coefficient a2

responsible for the conformal anomaly has been derived in
the case of the massive charged Dirac fields obeying the MIT
bag boundary condition (44). Finally, we have proved that the
complete asymptotic high-temperature expansion of the one-
loop effective action in β induced by the Dirac fermions at
zero chemical potential is expressed solely in terms of the
heat kernel expansion coefficients even in the case when the
mass of the field is not large.

The difference between the C-symmetric and non-C-
symmetric definitions of the vacuum energies can be found
for quarks in a bag. However, at first, one should generalize
the above considerations to the case of non-Abelian back-
ground gauge fields. Another possibility to examine experi-
mentally these two definitions can be realized in a graphene
sheet with boundaries. In this case, the non-C-symmetric def-
inition is even more preferable from the physical viewpoint
as the “Dirac sea” (the electrons in the valence band) is really
present. The Lorentz symmetry is not a fundamental symme-
try in this case either. Therefore, one may impose different
normalization conditions from Sect. 5.

Several questions remain unanswered and are left for
future research. First, we did not prove by an explicit cal-
culation that, up to a renormalization ambiguity, the large
mass expansion of the vacuum energy (80) coincides with
the standard answer given, for example, by the Euclidean
approach. Second, we did not obtain the large mass expan-
sion of the vacuum energy with the surface contributions
taken into account. The naive heat kernel expansion is to be
resummed in this case. The third problem, which seems to
be the most difficult one, is to prove (or disprove) the non-
perturbative equivalence of the different approaches to the
evaluation of the one-loop effective action at zero and finite
temperatures. Of course, the procedure developed admits
immediate generalizations to the curved spacetime, the chi-
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ral gauge connections, and other space dimensions. We leave
these generalizations for a separate study.
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Appendix A: Some analytic properties of the Mellin
transform

Let us consider the analytic properties of the integrals of the
form

Iλ =
∫ Λ

0
dxxλϕ(x), 0 < Λ < +∞, (A.1)

as functions of the complex variable λ. The following theo-
rem holds for such integrals (see, e.g., [34,66]).

Theorem 1 Let ϕ(x) be absolutely integrable on (0,Λ], and
for x → +0 the following asymptotic expansion takes place:

ϕ(x) =
N∑

k=0

akx
k + O(xN+1). (A.2)

Then:

1. the function Iλ is analytic for Re λ > −1 and can be
continued analytically to the domain Re λ > −2 − N,
where it possesses the simple poles at the points λ = −k,
k = 1, N + 1, with the residues ak−1, respectively;

2. Iλ → 0 for | Im λ| → ∞ in the domain Re λ > −2 − N.

Proof The integrals Iλ and ∂λ Iλ are absolutely convergent
for Re λ > −1, and, consequently, Iλ is an analytic function
of λ in this domain. In this domain, we have

Iλ =
∫ Λ

0
dxxλ[ϕ(x) − a0] + a0

∫ Λ

0
dxxλ

=
∫ Λ

0
dxxλ[ϕ(x) − a0] + a0

Λλ+1

λ + 1
. (A.3)

The right-hand side of this equality is defined for Re λ > −2,
λ �= −1, and provides an analytic continuation of Iλ to this
domain. The function Iλ has a simple pole at the pointλ = −1
with the residue a0. Continuing this process by subtracting

the terms of the asymptotic series (A.2) from ϕ(x), we arrive
at the first assertion of the theorem.

For Re λ > −2 − N , we have

Iλ =
∫ Λ

0
dxxλ

[
ϕ(x) −

N∑
k=0

akx
k

]
+

N∑
k=0

ak
Λλ+k+1

λ + k + 1
.

(A.4)

Making the substitution y = ln x , we reduce the integral in
this expression to the Fourier transform. In the domain of
the λ plane under consideration, the integrand is absolutely
integrable, and, consequently, according to the Riemann–
Lebesgue lemma (see, e.g., [67]), the integral in (A.4) tends
to zero for | Im λ| → ∞. The terms out of the integral in
(A.4) also tend to zero when | Im λ| → ∞ and Λ > 0. ��

In many cases, this theorem allows one to investigate the
analytic properties of the function Iλ without an explicit eval-
uation of the integral (A.1). If the upper limit of the integral
(A.1) is Λ = +∞, then one can split the integral into two
ones and reduce them to (A.1) by a change of the integration
variable, x → x−1, in the integral with the infinite integra-
tion limit. If the asymptotic expansion (A.2) is performed in
the fractional powers of x , then one can bring the integral
at hand to the form (A.1) by a suitable change of the inte-
gration variable x and redefinition of λ. Differentiating Iλ
with respect to λ, one can generalize the theorem to the case
when the asymptotic expansion of ϕ(x) contains the terms
xk lnl x . In this case, Iλ possesses multiple poles in the com-
plex λ plane. Theorem 1 applied to the spectral density of
the self-adjoint operator A > 0 gives the structure of singu-
larities of the spectral zeta-function ζ(ν, A) in the complex
ν plane and relates the residues of the spectral zeta-function
to the heat kernel expansion coefficients.

Appendix B: Traces

In this appendix, we present the traces appearing in the cal-
culation of the heat kernel expansion coefficients:

tr S = 2m − Laa, tr S2 = 2

(
m − 1

2
Laa

)2

,

tr S3 = 2

(
m − 1

2
Laa

)3

, tr E = 4(2A2
0 − m2),

tr(χE) = 0, tr(SE) = (2m − Laa)(2A
2
0 − m2),

tr E2 = 4m4 + 16A4
0 + 2Fi j Fi j , tr ∇k∇k E = 8∂k∂k A

2
0,

tr Ωi jΩi j = −4[Fi j Fi j + 4(∂i A0)
2 + 24A4

0],
tr(χ:aχ:a) = 4∂ani∂ani = 4LabLab,

tr S:aa = −Laa:bb, tr(χχ:aΩan) = 8A2
0Laa,

tr(χ:aχ:bLab) = 4LabLacLbc,
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tr(χ:aχ:a S) = (2m − Lcc)LabLab,

tr[(240Π̄ − 120Π)E;n] = 480∂n A
2
0 + 2880mA2

0, (B.5)

where ∂a := eia∂i , ∂n = ni∂i , and the colon denotes the
covariant derivative on the boundary Γ . In calculating the
coefficient a5/2, the following traces appear (see [50]). In
A1

5:

tr(χE;nn) = 24m∂n A
2
0,

tr(E;n S) = (4m − 2Laa)(∂n(A
2
0) + 2mA2

0),

tr(χE2) = 0, tr(χE:aa) = 16mA2
0Laa,

tr(SS:aa) = 0, tr(ES2) = A2
0(2m − Laa)

2. (B.6)

In A2
5:

tr[(90Π̄ + 450Π)Laa E;n] = 720Laa(3∂n(A
2
0) − 4mA2

0),

tr(LaaS:bb) = 0, tr(LabS:ab) = 0,

tr(LaaSE) = 2A2
0Laa(2m − Lbb),

tr[(195Π̄ − 105Π)L2
aa E] = 360A2

0L
2
aa,

tr[(30Π̄ + 150Π)LabLabE] = 720A2
0LabLab. (B.7)

In A3
5:

tr(E2) = 16A4
0, tr(χEχE) = 16A2

0(A
2
0 − 2m2),

tr(ΩabΩab) = −96A4
0, tr(χΩabΩab) = 0,

tr(χΩabχΩab) = −96A4
0, tr(ΩanΩan) = −48A4

0,

tr(χΩanΩan) = 0, tr(χΩanχΩan) = 48A4
0,

tr[Ωan(χ S:a − S:aχ)] = 4A2
0(2m − Lbb)Laa,

tr(χχ:aΩanLcc) = 8A2
0L

2
aa,

tr(χ:aχ:bΩab) = 8A2
0(L

2
aa − LabLab),

tr(χχ:aχ:bΩab) = 0, tr(χχ:aΩan;n) = 12∂n(A
2
0)Laa,

tr(χχ:aΩab:b) = 8A2
0(L

2
aa − LabLab),

tr(χχ:aΩbnLab) = 8A2
0LabLab,

tr(χ:a E:a) = −16mA2
0Laa, tr(χ:aχ:a E) = 8A2

0LabLab,

tr(χχ:aχ:a E) = 0, tr(χ:aa E) = 16mA2
0Laa,

tr(χ:aaχ:bb) = 16A2
0L

2
aa, tr(χ:abχ:ab) = 16A2

0LabLab,

tr(χ:aχ:aχ:bb) = 0, tr(χ:bχ:aab) = −16A2
0L

2
aa .

(B.8)

In Eqs. (B.6)–(B.8), we retain only the terms that give
nonzero contributions to the derivative with respect to the
constant chemical potential μ included into A0.

In deriving Eqs. (B.5)–(B.8), we have used

tr(αiγ i1 · · · γ in ) = 0, [αa, n̂] = 0, ∂
‖
i ni = −Laa,

∂ani∂bni = LacLbc, n̂;n = 0, eia;n = 0, (B.9)

where ∂
‖
i := ∂i − ni∂n .
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