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Abstract The greybody factor of massless, uncharged
scalar fields is studied in the background of cylindrically
symmetric spacetimes, in the low-energy approximation. We
discuss two cases. In the first case we derive analytical
expression for the absorption probability when the spacetime
is kinetically coupled with the Einstein tensor. In the second
case we do the analysis in the absence of the coupling con-
stant. For this purpose we analyze the wave equation which is
obtained from Klein–Gordon equation. The radial part of the
wave equation is solved in the form of the hypergeometric
function in the near horizon region, whereas in the far region
the solution is of the form of Bessel’s function. Finally, con-
sidering continuity of the wave function we smoothly match
the two solutions in the low-energy approximation to get the
formula for the absorption probability.
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1 Introduction

Black holes are the most interesting objects worth investi-
gating in any gravitational theory. Considering black holes
as thermal systems their entropy and thermodynamics were
investigated by taking into account quantum mechanical
effects [1,2]. Thus black holes have an associated temper-
ature and entropy and therefore they radiate, and the radia-
tions are called Hawking radiations. Hawking temperature of
radiations emitted from different black holes has been stud-
ied [3–5]. The emission rate at the event horizon of a black
hole, in a mode with frequency ω, is given by [6]

�(ω) =
(

1d3k

eβω ± 1(2π)3

)
, (1.1)

where β is the inverse of Hawking temperature and the minus
(plus) sign is for bosons (fermions). This formula for the
emission rate can be generalized for any dimension and it
is valid for massive and massless particles. Therefore at the
event horizon the spectrum of the radiations from black holes
is perfectly the same as that of the black-body spectrum. Due
to this it gives rise to the information loss paradox. The impor-
tant fact is that geometry of the spacetime around a black is
non-trivial. This non-trivial geometry modifies the spectrum
of Hawking radiations. In fact the non-trivial geometry acts
as a potential barrier which allows some of the radiations to
transmit and to reflect the rest to the hole.

The greybody factor, defined as the probability for a given
wave coming from infinity to be absorbed by the black hole
(rate of absorption probability), is directly connected to the
absorption cross section [7–15]. The mathematical expres-
sion that summarizes the above discussion is

�(ω) =
(

γ (ω)d3k

eβω ± 1(2π)3

)
, (1.2)
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where γ (ω) is the so-called greybody factor, which is fre-
quency dependent.

Physically the greybody factor originates from an effec-
tive potential barrier by a black hole spacetime. For example
the potential barrier for massless scalars from Schwarzschild
spacetime is

Veff (x) =
(

1 − rH
r

)(
rH
r3 + l(l + 1)

r2

)
, (1.3)

with the tortoise coordinate

x = r + rH ln

(
r

rH
− 1

)
, (1.4)

where rH is the horizon radius and l is the angular momentum
of the scalar. It is this potential which transmits or reflects
radiations from black holes. Therefore it gives rise to the
frequency dependent greybody factor. This factor not only
accounts for the deviation of Hawking radiations from the
black-body spectrum, but it also could be important in the
energy emission rate and relevant to compute the partial
absorption cross section of black holes. The main idea to
obtain the expression for the greybody factor is to derive
the solution of the relevant wave equation in near horizon
and asymptotic regions separately and then match them to
an appropriate intermediate point [7,8,11–14,16–18].

Scalar fields, non-minimally coupled with gravity, have
shown significant features, both for inflation and dark energy.
Also, the non-minimal couplings between derivatives of the
scalar fields and the curvature reveal interesting cosmological
behaviours. In general, scalar–tensor theories give both the
Einstein equation and the equation of motion for the scalar
in the form of fourth-order differential equations. But if the
kinetic term is only coupled to the Einstein tensor, the equa-
tion of motion for scalars is reduced to a second-order differ-
ential equation. Therefore, from the point of view of physics,
considering such a coupling can be interpreted as a good the-
ory because it is very simple. In the light of the earlier results
[19–21] there is a need for more efforts to be made in the
study of scalar fields coupled with tensors for more general
cases. In order to fill the gap in the literature, for the case
of cylindrically symmetric black holes, we have studied the
properties of the scalar field when it is kinetically coupled to
the Einstein tensor and the one without any coupling, sepa-
rately.

The rest of this letter is organized as follows. In Sect. 2
the Klein–Gordon equation in a charged black string back-
ground with coupling to the Einstein tensor is given. In Sect. 3
solutions of the radial equation resulting from the Klein–
Gordon equation in the near horizon region and the far hori-
zon regime are presented. These are also matched to an inter-
mediate region to get a value of the absorption probability.

In Sect. 4 we do the above analysis in the absence of the cou-
pling parameter. Section 5 gives some concluding remarks.

2 Klein–Gordon equation in the background of charged
black string

The Klein–Gordon equation when the Einstein tensor is cou-
pled to a massless, uncharged scalar field is

1√−g
∂μ

[√−g(gμν + ηεμν)∂ν�
]

= 0, (2.1)

where η is a coupling constant and εμν is Einstein’s tensor.
The charged black string having non-zero components of
Einstein’s tensor is [22]

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2dθ2 + α2r2dz2, (2.2)

where

f (r) = α2r2 − 4M

αr
+ 4Q2

α2r2 . (2.3)

Here M is the mass, Q is the charge and α = −�/3, with � is
the cosmological constant. For the above metric the Einstein
tensor εμν in matrix form can be written as

εμν = 4Q2

α4r4

⎛
⎜⎜⎜⎝

− 1
f 0 0 0

0 f 0 0
0 0 − 1

r2 0
0 0 0 − 1

α2r2

⎞
⎟⎟⎟⎠ . (2.4)

Also

√−g = αr2. (2.5)

Substituting the components of the Einstein tensor and space-
time metric in Eq. (2.1), it takes the form

1

αr2 ∂t

[
αr2

(
− 1

f
− 4ηQ2

α4r4 f

)
∂t�

]

+ 1

αr2 ∂r

[
αr2

(
f + 4ηQ2 f

α4r4

)
∂r�

]

+ 1

αr2 ∂θ

[
αr2

(
1

r2 − 4ηQ2

α4r6

)
∂θ�

]

+ 1

αr2 ∂z

[
αr2

(
1

αr2 − 4ηQ2

α6r6

)
∂θ�

]
= 0. (2.6)

Using the form of cylindrical harmonics

�(t, r, θ, z) = e−ιωt R(r)Y (θ, z), (2.7)
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we get from the radial part of Eq. (2.6)

1

r2

d

dr

[
r2

(
1 + 4ηQ2

α4r4

)
f

]
dR(r)

dr
+

[(
1 + 4ηQ2

α4r4

)
ω2

f

−
(

1 − 4ηQ2

α4r4

)
Flm
α2r2

]
R(r) = 0, (2.8)

where Flm = l(l + 1) are the eigenvalues coming from the
(θ, z) part.

3 Greybody factor computation

3.1 Near horizon solution

Equation (2.8) is the master equation of our interest. We will
solve this equation in two regions separately, namely, the near
horizon region and the far region by using a semi-classical
approach known as the simple matching technique. We will
match both solutions to an intermediate region to get the
analytical expression for the absorption probability.

For the near horizon region r ∼ r+, we will perform
the following transformation to simplify the radial equation
[23,24]:

r → f, (3.1)

which implies

d f

dr
= (1 − f )

B(r+)

r+
, (3.2)

where r+ is the horizon and

B(r+) = 1 − 4Q2 − 2α4r4+
4Mαr+ − 4Q2 . (3.3)

Using the above, Eq. (2.8) takes the form

f (1 − f )
d2R( f )

d f 2 + (1 − C∗ f )
dR( f )

d f

+
[

F2∗
B2(r+) (1 − f ) f

−
(

α4r4+ − 4ηQ2

α4r4+ + 4ηQ2

)

× Flm
B2(r+)α2 (1 − f )

]
R( f ) = 0. (3.4)

Here

F∗ = ωr∗ (3.5)

and

C∗ = 2 − 2

B(r+)

(
α4r4+ − 4ηQ2

α4r4+ + 4ηQ2

)
. (3.6)

In order to further simplify the above equation, we use the
field redefinition

R( f ) = f μ (1 − f )ν F( f ). (3.7)

Using this in Eq. (3.4), we obtain

f (1 − f )
d2F( f )

d f 2 + [1 + 2μ − (2μ + 2ν + C∗) f ]
dF

d f

+
[
μ2

f
− μ2 + μ − 2μν + ν2

1 − f
− ν2 − 2ν

1 − f
+ ν

−μC∗ + νC∗
1 − f

− νC∗

+ F2∗
B2(r+) f

+ F2∗
B2(r+) (1 − f )

−
(

α4r4+ − 4ηQ2

α4r4+ + 4ηQ2

)

× Flm
B2(r+)α2 (1 − f )

]
F( f ) = 0. (3.8)

We define

a = μ + ν + C∗ − 1, b = μ + ν, c = 1 + 2μ. (3.9)

Also the constraints coming from the coefficients of F( f )
give

μ2 + F2∗
B2(r+)

= 0 (3.10)

and

ν2+ν(C∗−2)+ F2∗
B2(r+)

−
(

α4r4+ − 4ηQ2

α4r4+ + 4ηQ2

)
Flm

B2(r+)α2 = 0.

(3.11)

From this we get the values of μ and ν:

μ± = ±ι
F∗

B(r+)
, (3.12)

ν± = 1

2

⎡
⎣(2 − C∗) ±

√√√√(2 − C∗)2 − 4

(
F2∗

B2(r+)
−

(
α4r4+ − 4ηQ2

α4r4+ + 4ηQ2

)
Flm

B2(r+)α2

)⎤
⎦ . (3.13)
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Equation (3.8) by virtue of (3.9) and the constraints (3.10)–
(3.11) becomes

f (1 − f )
d2F( f )

d f 2 + [c − (1 + a + b) f ]dF( f )

d f
− abF( f ) = 0.

(3.14)

For the near horizon case there exists no outgoing mode,
which means μ+ = μ− and ν+ = ν−. So in the near horizon
region the solution can be written in the form of the general
hypergeometric function, which has the form

R( f )NH = C− f μ(1 − f )νF (a, b, c; f ) , (3.15)

where C− is an arbitrary constant.

3.2 Far horizon solution

Now we find the solution of the radial equation for the far
region. In this case the radial part will have the form

d2R(r)FR

dr2 + 4

r

dR(r)FR

dr
+

(
ω2 − Flm

α2r2

)
R(r)FR = 0.

(3.16)

This is the well-known Bessel equation, and in a far field its
solution can be written as

RFR (r) = 1√
rαω

[
B1 Jγ (ωαr) + B2Yγ (ωαr)

]
. (3.17)

In the above solution Jγ and Yγ are Bessel’s functions. For
γ = l + 1/2, and in the limit r → 0, the above solution can
be written as

RFR (r) � B1
(

ωαr
4

)γ

√
ωαr� (ν + 1)

− B2� (γ )

π
√

ωαr
(

ωαr
4

)ν . (3.18)

3.3 Matching the two solutions

We now stretch the near horizon solution to an intermediate
region [25,26] which gives

R( f )NH = C− f μ (1 − f )ν
[
�(c)�(c − a − b)

�(c − a)�(c − b)
×F (a, b, a + b − c + 1; 1 − f )

+ (1 − f )c−a−b �(c)�(a + b − c)

�(a)�(b)

×F (c − a, c − b, c − a − b + 1; 1 − f )

]
. (3.19)

We can approximate 1 − f for the case r � r+ as

1 − f � 4M

αr
. (3.20)

So, the form of the final solution for the near horizon case
becomes

R(r)NH � A1r
ν + A2r

−(ν+C∗−2). (3.21)

Here we have chosen

A1 = C−
(

4M

α

)ν
�(c)�(c − a − b)

�(c − a)�(c − b)
(3.22)

and

A2 = C−
(

4M

α

)−(ν+C∗−2)
�(c)�(a + b − c)

�(a)�(b)
. (3.23)

In the low-energy limit we can use the approximation

−ν � l + O(ω2), (3.24)

ν + C∗ − 2 � − (l + 1) + O(ω2). (3.25)

From Eqs. (3.21) and (3.18) matching the coefficients and
eliminating C− give

B = B1

B2
= − 1

π

1

(αωM)2l+1

× �(c − a − b)�(a)�(b)

�(c − a)�(c − b)�(a)�(b)
�2(l + 1/2). (3.26)

The greybody factor can now be given by [27]

γl (ω) = |Pl |2 = 2ι (B∗ − B)

|B|2 . (3.27)

By using the value of B we can find the expression of absorp-
tion probability of the radiations emitted from the charged
black string. This relation gives a measure of how much the
radiations are different (or modified) from the spectrum of
the black-body radiation.

4 Absorption probability for scalar field without
coupling to the Einstein tensor

In this section we find an analytical expression of the absorp-
tion probability for scalar field from the charged black string
without coupling to the Einstein tensor. The Klein–Gordon
equation for a massless, uncharged scalar field is

1√−g
∂μ

[√−g
(
gμν

)
∂ν�

] = 0. (4.1)

Using the values of each component of the spacetime consid-
ered in the previous section, we get the following equation:
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1

αr2 ∂t

[
αr2

(
− 1

f

)
∂t�

]
+ 1

αr2 ∂r

[
αr2 ( f ) ∂r�

]

+ 1

αr2 ∂θ

[
αr2

(
1

r2

)
∂θ�

]

+ 1

αr2 ∂z

[
αr2

(
1

αr2

)
∂θ�

]
= 0. (4.2)

Considering cylindrical harmonics, we can separate the radial
part of Eq. (4.2), which has the form

1

αr2

d

dr

(
αr2 f

) dR(r)

dr
+

[
ω2

f
− Flm

α2r2

]
R(r) = 0. (4.3)

As in the previous case we will find two solutions of the
radial equation (4.3), one for the near horizon and the other
for the far horizon regime. In the case of the near horizon
region, we use the transformation r → f , which implies

d f

dr
= (1 − f )

B(r+)

r+
, (4.4)

where

B(r+) = 1 − 4Q2 − 2α4r4+
4Mαr+ − 4Q2 . (4.5)

Using Eq. (4.4), Eq. (4.3) takes the form

f (1 − f )
d2R( f )

d f 2 + (1 − C∗ f )
dR( f )

d f

+
[

F2∗
B2(r+) (1 − f ) f

− Flm
B2(r+)α2 (1 − f )

]
R( f )

= 0. (4.6)

Here

F∗ = ωr∗, C∗ = 2 − 2

B(r+)
. (4.7)

In order to further simplify the above equation, we use the
field redefinition

R( f ) = f μ (1 − f )ν F( f ). (4.8)

In Eq. (4.6) we use this definition of R( f ) to obtain

f (1 − f )
d2F( f )

d f 2 + [1 + 2μ − (2μ + 2ν + C∗) f ]dF

d f

+
[
μ2

f
− μ2 + μ − 2μν + ν2

1 − f
− ν2

− 2ν

1 − f
+ ν − μC∗ + νC∗

1 − f
− νC∗

+ F2∗
B2(r+) f

+ F2∗
B2(r+) (1 − f )

−
(

α4r4+ − 4ηQ2

α4r4+ + 4ηQ2

)
Flm

B2(r+)α2 (1 − f )

]
F( f ) = 0.

(4.9)

We again use the definitions given in (3.9). The constraints
coming from the coefficients of F( f ) yield

μ2 + F2∗
B2(r+)

= 0 (4.10)

and

ν2 + ν(C∗ − 2) + F2∗
B2(r+)

− Flm
B2(r+)α2 = 0. (4.11)

These give the values of μ and ν:

μ± = ±ι
F∗

B(r+)
, (4.12)

ν± = 1

2

⎡
⎣(2 − C∗) ±

√
(2 − C∗)2 − 4

(
F2∗

B2(r+)
− Flm

B2(r+)α2

)⎤
⎦ .

(4.13)

Equation (4.9) by virtue of the above constraints becomes

f (1 − f )
d2F( f )

d f 2 +
[
c− (1 + a + b) f ]dF( f )

d f
− abF( f ) = 0.

(4.14)

For the near horizon case there exists no outgoing mode,
which means μ+ = μ− and ν+ = ν−. So, in the near horizon
region the solution can be written in the form of the general
hypergeometric function, being of the form

R( f )NH = C1− f μ(1 − f )νF (a, b, c; f ) , (4.15)

where C1− is an arbitrary constant. We now stretch the near
horizon solution to an intermediate region [25,26] so that

R( f )NH = C− f μ (1 − f )ν
[
�(c)�(c − a − b)

�(c − a)�(c − b)
× F (a, b, a + b − c + 1; 1 − f )

+ (1 − f )c−a−b �(c)�(a + b − c)

�(a)�(b)

× F (c − a, c − b, c − a − b + 1; 1 − f )

]
.

(4.16)

We again approximate 1 − f for the case r � r+, as before,
and obtain the final form of the solution given in (3.21).
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Fig. 1 Greybody factor as a function of the frequency, for ξ =
0, 0.001, 0.1, 0.5, 1 and l = 1
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Fig. 2 Greybody factor as a function of the frequency, for ξ =
0, 0.001, 0.1, 0.5, 1 and l = 2

Now, as in the previous section, the radial equation for the
far region reduces to the form of Bessel’s equation, and the
form of the final solution in this region is

RFR (r) � B1
(

ωαr
4

)γ

√
ωαr� (ν + 1)

− B2� (γ )

π
√

ωαr
(

ωαr
4

)ν . (4.17)

Using the same procedure as in the previous case, we find

B = B1

B2
= − 1

π

1

(αωM)2l+1

× �(c − a − b)�(a)�(b)

�(c − a)�(c − b)�(a)�(b)
�2(l + 1/2). (4.18)

The absorption probability and hence the greybody factor
can be found by using the value of B in Eq. (3.27).

The effect of the coupling constant on the greybody factor
is also analyzed graphically for different partial modes. In
Fig. 1, we draw the graph of the greybody factor as a function
of the frequency for different values of the coupling constant
and for l = 1. In Fig. 2 it is depicted for l = 2. It is observed
that, for different modes, a stronger coupling enhances the
absorption probability in the low frequency approximation.

5 Conclusion

In this letter we have studied the greybody factor for a scalar
field coupling to the Einstein tensor in the background of a
charged black string in the low-energy approximation. We
found that the absorption probability and hence the grey-
body factor depend on the coupling between the scalar field
and the Einstein tensor. It is observed that the presence of
a coupling enhances the absorption probability of the scalar
field in the black string spacetime. Also, for weaker coupling,
the absorption probability decreases with the increase in the
charge of black string. In the second case we did this analysis
without considering a coupling of the scalar field and the
Einstein tensor. Needless to say that the latter case reduces
to the result of the former in the absence of the coupling
constant.
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