
Eur. Phys. J. C (2017) 77:870
https://doi.org/10.1140/epjc/s10052-017-5441-1

Regular Article - Theoretical Physics

Cabibbo–Kobayashi–Maskawa-favored B decays to a scalar
meson and a D meson

Zhi-Tian Zou1,a, Ying Li1,b, Xin Liu2,c

1 Department of Physics, Yantai University, Yantai 264005, China
2 School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China

Received: 20 June 2017 / Accepted: 2 December 2017 / Published online: 14 December 2017
© The Author(s) 2017. This article is an open access publication

Abstract In this work, we attempt to study the Cabibbo–
Kobayashi–Maskawa-favored B → DS (“S” denoting the
scalar meson) decays within the perturbative QCD approach
at the leading order and the leading power. Although the
light scalar mesons are widely perceived as primarily the
four-quark bound states, in practice it is hard for us to make
quantitative predictions based on the four-quark picture for
light scalars. Hence, we calculate the decays with light scalars
in the two-quark model. For the decays with scalar mesons
above 1 GeV, we have explored two possible scenarios,
depending on whether the light scalars are treated as the
lowest lying qq̄ states or four-quark particles. In total, we
calculated the branching fractions of 72 decay modes, and
most of them are in the range 10−4–10−7, which are measur-
able in the on-going LHCb experiment and the forthcoming
Belle-II experiment. Moreover, since in the standard model
these decays occur only through tree operators and have
no CP asymmetries, any deviation will be a signal of new
physics beyond the standard model. Despite large uncertain-
ties induced by nonperturbative parameters and corrections
of high order and high power, our results and discussions
will be useful for the on-going LHCb and the forthcoming
Belle-II experiments.

1 Introduction

Even though the quark–antiquark model works well for the
pseudoscalar mesons and vector mesons, the study of the
inner substructure of the scalar mesons is quite non-trivial,
because the conventional quark–antiquark model cannot
explain the properties, such as the decay rates and the mass
spectrum, especially for ones below 1 GeV. Therefore, the
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understanding of the internal structure of the scalar mesons
is one of the most interesting topics in hadron physics.

The scalar mesons reported by experiments include the
isosinglet f0(600)(σ ), f0(980), f0(1370), f0(1500) and
f0(1710), the isodoublet K ∗

0 (800)(κ) and K ∗
0 (1430), and

the isovector a0(980) and a0(1450) [1]. Studies of the mass
spectrum of scalar mesons and their strong as well as elec-
tromagnetic decays suggest that the scalar mesons with the
mass below 1 GeV constitute one nonet, while those near
1.5 GeV form another one [2–6]. Irrespective of the exis-
tence of the σ and the κ mesons, in the literature, the scalar
mesons have been identified as ordinary q̄q states, four-
quark states or meson–meson bound states or even those
supplemented with a scalar glueball. Unfortunately, we have
not reached a definite conclusion yet till now, due to the
unknown nonperturbative properties of QCD, though many
efforts have been made to interpret the quark contents of the
scalar mesons [7–11]. Now, a consistent picture [2] provided
by the data suggests that the scalar meson states above 1 GeV
can be identified as a conventional qq̄ nonet with some pos-
sible glue content, which has widely been accepted. How-
ever, the quark structure of the light scalar mesons below
or near 1 GeV has been quite controversial, though they
are widely perceived as primarily four-quark bound states.
For example, f0(980) has been treated as a traditional qq
state [12–14], as a four-quark qqqq state [15,16], and even
as a bound state of hadrons [17,18]. In fact, even in the
two-quark picture, the quark component is still unclear; for
example, the observation of Ds → f0(980)π+ decay intro-
duced the probability of the ss component of f0(980), while
�(J/ψ → f0(980)ω) ∼ �(J/ψ → f0(980)φ) indicated
the existence of the non-strange components [19,20]. There-
fore, if the light scalar mesons are dominated by two-quark
states, the isoscalars f0(980) and f0(600) perhaps should
be mixing states like the η–η′ system [21,22]. In the litera-
ture, according to the category that the light mesons belong
to, there are two typical scenarios for describing the scalar
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mesons [5]. The scenario 1 (S1) is the naive two-quark model:
the nonet mesons below 1 GeV, such as κ , a0(980), f0(980),
and σ , are treated as the lowest lying states, and those near
1.5 GeV, such as a0(1450), K0(1430), f0(1370/1500), are
the first orbitally excited states. In scenario 2 (S2), the nonet
mesons near 1.5 GeV are viewed as the lowest lying states,
while the mesons below 1 GeV may be the exotic states
beyond the quark model such as four-quark bound states.

In hadron physics, most studies of the light scalar mesons
are concentrated on the decay properties of the scalar mesons
and the production of the scalar mesons in pp (or np) colli-
sions or the φ radiative decays [23]. After the first B decay
into a scalar meson, B → f0(980)K , was observed by Belle
[24] and confirmed by BaBar [25], the studies of the scalar
mesons in hadronic B decays have attracted more attention
because of the large phase space of the B decays. Theoret-
ically, from the studies of QCD sum rules, one finds that
the nonperturbative parameters, such as decay constants and
the distribution amplitudes, are related to the certain sce-
narios seriously, which affect the experimental observables
noticeably, such as branching fractions and CP asymmetries.
So, by comparing the experimental data and the theoretical
predictions, one could deduce which scenario is favorable.
Motivated by this viewpoint, many charmless B decays with
scalars have been studied extensively [5,6,26–47].

Recently, the LHCb collaboration reported their first mea-
surements of the decays B(s) → D f0(980) and Dσ [48,49],

Br(B0 → D
0
σ)

= (11.2 ± 0.8 ± 0.5 ± 2.1 ± 0.5) × 10−5,

Br(B0 → D
0
f0(980))

= (1.34 ± 0.25 ± 0.10 ± 0.46 ± 0.06) × 10−5,

Br(B0
s → D

0
f0(980))

= (1.7 ± 1.0 ± 0.5 ± 0.1) × 10−6. (1)

Note that in these three decay modes, not only the scalars but
also the charmed mesons are involved, and these decays are
induced by the b̄ → c̄ transition. Very recently, in Ref. [50],
we have attempted to study the B → D(∗)S decays induced
by theb → u transition within the perturbative QCD (PQCD)
approach, which are suppressed by the Cabibbo–Kobayashi–
Maskawa (CKM) matrix element |Vub|, but which evade
the suppression by the vector decay constants of the scalar
mesons. Now, since some experimental data are available, it
is worthwhile for us to extend our study to the CKM favored

B → D
(∗)

S decays induced by the b → c transition.

To handle the hadronic effects for B → D
(∗)

S decays,
we use the factorization formalism, called perturbative QCD
approach [51–54], which is based on the kT factorization and
the transition matrix element is described by the convolution
of hadron wave functions and the hard kernel. In the limit of
heavy quarks, in order to guarantee that color transparency

mechanism is satisfied, i.e., no soft gluon exchange occurring
between the final states, we argue that the following hierarchy
must be postulated [55,56]:

mB � mD(∗) � 
 (2)

with 
 = mB − mb ∼ mD(∗) − mc ∼ 
QCD. The rela-
tion mB � mD(∗) justifies the perturbative analysis of the

B → D
(∗)

form factors at large recoil and the defini-

tion of light-cone D
(∗)

meson wave functions. The relation
mD(∗) � 
 justifies the power expansion in the parame-
ter 
/mD(∗) . The small ratio 
/mB is regarded as being
of higher power. Because of the inclusion of parton trans-
verse degrees of freedom, large double logarithmic correc-
tions αs ln2 kT appear and should be summed to all orders.
It turns out that the resultant Sudakov factor for an energetic
D(∗) meson is similar to that for a B meson. Including the
Sudakov effects from kT resummation and from threshold
resummation for hard amplitudes, the end-point singularities
do not exist, and soft contributions can be suppressed effec-
tively. Although the applicability PQCD is still in controversy
[57–60], it has been employed for studying the two-body
charmed B decays, such as B → DP, DV, DA, DT decays
[56,61–66,97], where P, V, A, T denote the pseudoscalar,
vector, axial-vector, and tensor mesons, respectively. Most
of the predictions were in good agreement with the present
experimental data. Compared with B → D(∗)S decays, for

some B → D
(∗)

S decays, the factorizable amplitude will
vanish or will be heavily suppressed due to the vanishing
or tiny vector decay constants of the scalar mesons. How-
ever, the hard-scattering emission diagrams and annihilation
type diagrams perhaps provide sizable contributions; such

cases are similar to the B → D
(∗)

P, V, T decays [56,61–
66,97]. We thus expect that the branching fractions of some
decays are large enough to be measured in the current LHC
experiment and/or the forthcoming Belle-II in the future. It
is worth pointing out that the annihilation type diagrams can
be perturbatively calculated in the PQCD approach without
end-point singularity, and the predictions of some pure anni-
hilation decays are well in agreement with data, such as the
Bs → π+π− and B0 → D−

s K+ [67–69].
It should be stressed that although many experimental data

indicate that the light scalar mesons, such as f0(980) and
a0(980), are predominately four-quark states, in practice it
is very difficult for us to make quantitative predictions on
B → DS based on the four-quark picture for S, because both
the decay constants and the distribution amplitudes of S are
beyond the conventional quark model. Hence, in practice we
shall assume the two-quark scenario for light scalar mesons
in the current work.

This paper is organized as follows: we will give a brief
review of the formalism of the PQCD approach and specify
the wave functions of the initial and final states in Sect. 2.
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The perturbative calculations and the analytic formulas are
given in Sect. 3. The numerical results and phenomenological
discussions will be presented in Sect. 4. The final section is
reserved for the summary.

2 Formalism and wave function

As aforementioned, based on the kT factorization, PQCD
approach can effectively avoid the end-point singularity by
keeping the intrinsic transverse momenta of inner quarks.
The kept transverse momenta will introduce the additional
energy scale and lead to the double logarithms appearing in
the QCD radiative corrections, which can be resummed into
the Sudakov factor. As a result, the Sudakov factor will sup-
press the soft region contribution and make the calculation
in the PQCD approach reliable and consistent.

The effective Hamiltonian Heff related to the B → D
(∗)

S
decays is given as [70]

Heff = GF√
2
V ∗
cbVud(s)[C1(μ)O1(μ) + C2(μ)O2(μ)], (3)

with the four-quark tree-diagram operators

O1 = (bαcβ)V−A(uβd(s)α)V−A,

O2 = (bαcα)V−A(uβd(s)β)V−A, (4)

where α and β are the color indices, and (bαcβ)V−A =
bαγ μ(1 − γ 5)cβ . Vcb and Vud(s) are the CKM matrix ele-
ments.C1,2 are the so-called Wilson coefficients at the renor-
malization scale μ.

To deal with the hadronic B decays with multiple scales,
the factorization hypothesis is usually adopted. The physics
regime higher than the scale of the W boson mass (mW )

is electroweak and can be calculated perturbatively. Using
renormalization group techniques, we can evaluate the
dynamical effects and obtain the Wilson coefficients from
the mW scale to the b quark mass (mb) scale. The physics
between mb scale and the factorization scale (t) can be cal-
culated perturbatively, which is the so-called hard kernel
in the PQCD approach. The dynamics below the factoriz-
able scale is soft and nonperturbative but universal, which
can be described by the hadronic wave function. So, in the
PQCD approach, the decay amplitude can be written as the
convolution of the Wilson coefficients C(t), the hard kernel
H(xi , bi , t), and the hadronic wave functions [71,72],

A ∼
∫

dx1dx2dx3b1db1b2db2b3db3

× Tr[C(t)�B(x1, b1)

×�D(x2, b2)�S(x3, b3)H(xi , , bi , t)St (xi )e
−S(t),

(5)

where Tr denotes the trace over Dirac and color indices, the
xi (i = 1, 2, 3) and bi are the longitudinal momentum frac-

tions and conjugate variables of kT i of the valence quarks in
each meson, respectively. The threshold resummation of the
double logarithms ln2 xi lead to the jet function St (xi ) [73].
The aforementioned Sudakov factor e−S(t), coming from the
resummation of the double logarithms, can suppress the soft
dynamics effectively, i.e. the long distance contributions in
the small kT region [74,75].

In PQCD, the most important inputs are the wave func-
tions. For the scalar meson, in the two-quark picture, the wave
function can be defined as

�S(x) = i

2
√

6
[/pφS(x) + mSφ

S
S (x)

+mS(/n/v − 1)φT
S (x)], (6)

with the lightlike vectors n = (1, 0, 0T ) and v = (0, 1, 0T ).
φS and φ

S,T
S are the leading-twist and twist-3 light-cone dis-

tribution amplitudes respectively, where x is the momentum
fraction of the “quark”. The leading-twist light-cone distribu-
tion amplitude φS(x, μ) of the scalar meson has the general
form [5,6]

φS(x, μ) = 3

2
√

6
x(1 − x) [ fS(μ)

+ f S

∞∑
m=1

Bm(μ)C3/2
m (2x − 1) ], (7)

with the Gegenbauer moments Bm and the Gegenbauer poly-
nomials C3/2

m . For the twist-3 distribution amplitudes, we
adopt the asymptotic forms for simplicity,

φS
S = f S

2
√

6
, φT

S = f S
2
√

6
(1 − 2x). (8)

The fS and f S are the vector decay constant and scalar decay
constant of the scalar meson, respectively. For the neutral
scalar mesons (σ , f0, and a0

0), the vector decay constant van-
ishes due to the conservation of the vector current. However,
the scalar decay constant f S , related by the equation

f S = μ fS, μ = mS

m2(μ) − m1(μ)
, (9)

remains finite. Note that the above parameters, Bm , fS , and
f S , depend on certain scenarios, for the numerical results of
which one is referred to Refs. [5,6].

For the neutral light scalars σ and f0(980), in the two-
quark model, much experimental evidence indicates that
there is a mixing between σ and f0(980), which is similar to
the η–η′ system,
(

σ

f0

)
=

(
cos θ − sin θ

sin θ cos θ

) (
fn
fs

)
, (10)

with fn = (uu + dd)/
√

2 and fs = ss. For the mixing
angle θ , various experimental measurements have provided
different values [76–78]. Recently, the LHCb has proposed
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the upper limit |θ | < 30◦ by the process B
0 → J/ψ f0(980)

[79]. Analyzing the present experimental implications, we
prefer to adopt the two possible ranges of 25◦ < θ < 40◦ and
140◦ < θ < 165◦ [80–85]. It is noted that, for the f0(980)

and σ mesons, there are other interpretations, for example,
the ππ generalized distribution amplitudes [86,87].

For the f0(1370)– f0(1500) system, according to Ref. [88]
and neglecting the tiny contribution from the scalar glueball
[89–91], the mixing form can be simplified as

f0(1370) = 0.78 fn + 0.51 fs,

f0(1500) = −0.54 fn + 0.84 fs . (11)

For the initial B meson, neglecting the numerically sup-
pressed Lorentz structure, the remaining leading order wave
function can be decomposed as [92,93]

�B(x, b) = − i√
2Nc

{
(/P + mB)γ5

[ /n√
2
φ+
B (x, b)

+ /v√
2
φ−
B (x, b)

}

= i√
2Nc

{
(/P + mB)γ5

[
φB(x, b) + /vφB(x, b)

}
,

(12)

with

φB = φ+
B , φB = (φ−

B − φ+)/
√

2. (13)

The contribution from φB starts from the next-to-leading-
power 
̄/mB , which should be included together with other
next-to-leading-power contributions in order to form a com-
plete analysis. So, we here neglected it in the current work.
The light-cone distribution amplitude φB(x, b) can be writ-
ten as [92–94]

φB(x, b) = NBx
2(1 − x2) exp

[
−m2

Bx
2

2ω
− 1

2
ω2
Bb

2

]
, (14)

with the normalization constant NB , which can be deter-
mined through the following normalization condition:
∫ 1

0
dxφB(x, b = 0) = fB

2
√

6
. (15)

For the shape parameter ωB and the decay constant fB ,
we will take (0.4 ± 0.04) GeV and (0.19 ± 0.02) GeV for
the B meson, respectively, and take (0.5 ± 0.05) GeV and
(0.23±0.03) GeV for the Bs meson, due to the SU(3) break-
ing effects [51–54].

In terms of the heavy quark limit, the two-parton light-
cone distribution amplitudes of the D(D∗) meson will be
taken as [95–98]

〈D(p)|qα(z)cβ(0)|0〉 = i

2
√

6

∫ 1

0
dxeixp·z[γ5(/p

+mD)φD(x, b)]α,β, (16)

〈D∗(p)|qα(z)cβ(0)|0〉
= −1

2
√

6

∫ 1

0
dxeixp·z[/εL(/p + mD∗)φL

D∗(x, b)

+ /εT (/p + mD∗)φT
D∗(x, b)]α,β, (17)

with the distribution amplitudes [96–98]

φD(x, b) = φ
L ,T
D∗ (x, b) = 1

2
√

6
fD(∗)6x(1 − x)[1

+CD(1 − 2x)] exp

[
−1

2
ω2
Db

2
]

, (18)

with the shape parameter ωD = 0.15 ± 0.5 GeV. Note that
the high-twist distribution amplitudes are not included either,
because they are suppressed by 
/mD(∗) . We choose CD =
0.5 ± 0.1 and fD = 207 MeV for the D meson, and CD =
0.4 ± 0.1 and fDs = 241 MeV for the Ds meson [99]. The
parameters CD are fitted from the B → DP(V ) and Bs →
Ds P(V ) decays [96–98]. For D∗

(s), the decay constants can
be obtained through the relation based on the heavy quark
effective theory, which can be found in Refs. [61–64,97].

3 Perturbative calculation

In this section, within the PQCD approach, we specifically
calculate the decay amplitudes without the Wilson coeffi-
cients in Eq. (5) for each Feynman diagram, and we express
the calculated amplitudes as a convolution of the hard kernel
and the mesons’ wave functions. It is noted that there are two
kinds of diagrams contributing to the considered decays at
the leading order. The diagrams with a D meson emitted are
presented in Fig. 1, and those with a scalar meson emitted
are listed in Fig. 2.

For the two factorizable emission diagrams (a) and (b) in
Fig. 1, the amplitudes can be written as

Mef = 8πC f fDm
4
B

∫ 1

0
dx1dx3

∫ 1/


0
b1db1b3db3φB(x1, b1)

×
{[

φS(x3)(r2
D(2x3 + 1) − (x3 + 1))

+ rS(2x3 − 1)(φS
S (x3) + φT

S (x3))
]

·Eef (ta)hef (x1, x3(1 − r2
D), b1, b3)

− 2rSφ
S
S (x3)Eef (tb)hef (x3, x1(1 − r2

D), b3, b1)
}

, (19)

where rS = mS/mB , rD = mD/mB , and the color factor
C f = 4/3 for B decays. The expressions for the scale t ,
the Sudakov factor E , and the hard functions h from the
denominator of the propagators can be found in Appendix A
of Ref. [63].

The two diagrams (c) and (d) in Fig. 1 are the so-called
hard-scattering emission diagrams. Compared to the previous
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b̄

a

b̄

b

b̄

c

b̄

d

b̄

e

b̄

f

b̄

g

b̄

h

c̄ c̄ c̄ c̄

c̄ c̄ c̄ c̄

Fig. 1 Leading order Feynman diagrams contributing to the B → D
(∗)

S decays in PQCD approach

two, each decay amplitude involves three meson wave func-
tions. After integrating out b3 with the δ function δ(b1 −b3),
the amplitudes for these two diagrams can be expressed by

Menf = 16

√
2

3
πC f m

4
B

∫ 1

0
dx1dx2dx3

×
∫ 1/


0
b1db1b2db2φB(x1, b1)φD(x2, b2)

×
{
[φS(x3)(r2

D − r2
S(2x2 + x3 − 2) + x2 − 1)

+ rSx3(φS
S (x3) − φT

S (x3))]Eenf (tc)hen f 1(xi , bi )

−[φS(x3)(x2(r2
D + 2r2

S − 1) + x3(2r2
D + r2

S − 1))

+ rSx3(φS
S (x3) + φT

S (x3))]Eenf (td )henf2(xi , bi )

}
.

(20)

The four diagrams in the second row are the annihilation
type diagrams, which can be perturbatively calculated in the
PQCD approach. Diagrams (e) and (f) are the factorizable
diagrams with the B meson factorized out, and the amplitudes
can be written as

Ma f = 8πC f fBm
4
B

∫ 1

0
dx2dx3

×
∫ 1/


0
b2db2b3db3φD(x2, b2)

×
{
[φS(x3)(r

2
D(2x3 − 3) + (r2

S − 1)(x3 − 1))

+ rDrS(φ
S
S (x3)(2x3 − 3) − φT

S (x3)(2x3 − 1)]
×Ea f (te)ha f ((1 − x3), x2(1 − r2

D), b2, b3)

+[φS(x3)((r
2
D − 1)x2 + r2

S(2x2 − 1))

+, 2rDrS(x2 + 1)φS
S (x3)]

·Ea f (t f )ha f (x2, (1 − x3)(1 − r2
D), b3, b2)

}
. (21)

For the nonfactorizable diagrams (g) and (h), the correspond-
ing amplitudes are given as follows:

Manf = −16

√
2

3
πC f m

4
B

∫ 1

0
dx1dx2dx3

×
∫ 1/


0
b1db1b2db2φB(x1, b1)φD(x3, b2)

×
{
[φS(x3)(r

2
D + r2

S(2x2 + x3 − 1) − x2)

+ rDrS(φ
S
S (x3)(x2 − x3 + 3)

+φT
S (x3)(1 − x2 − x3))]Eanf(tg)hg(xi , b1, b2)

+[φS(x3)(r
2
D(x2 + 2x3 − 2) − x3 + 1)

− rDrS(φ
S
S (x3)(x2 − x3 + 1)

+φT
S (x3)(x2 + x3 − 1))]Eanf(th)hh(xi , b1, b2).

(22)

For these diagrams with a scalar meson emitted in Fig. 2,
the decay amplitudes are expressed as

M′
ef = 8πC f fSm

4
B

∫ 1

0
dx1dx3

×
∫ 1/


0
b1db1b3db3φB(x1, b1)φD(x3, b3)

×
{
[rD(2x3−1)−(1+x3)]Eef(ta)hef(x1, x3, b1, b3)

− rDEef(tb)he f (x3, x1, b3, b1)

}
, (23)

M′
enf = −16

√
2

3
πC f m

4
B

∫ 1

0
dx1dx2dx3

×
∫ 1/


0
b1db1b2db2φB(x1, b1)φD(x3, b1)φS(x2)

×
{
[r2

D(2x2 + x3 − 2) − rDx3 − x2 + 1]

123
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S

b̄

q

c̄

D

a b c d

Fig. 2 Leading order Feynman diagrams contributing to the B → D
(∗)

S decays with a scalar meson emitted in PQCD

×Eenf(t
′
c)h

′
en f 1(xi , bi )

+[x2(2r
2
D + r2

S − 1) + x3(r
2
D + rD

+ 2r2
S − 1)]Eenf(t

′
d)h

′
enf2(xi , bi )

}
. (24)

From Eq. (23), one finds that the amplitudes of factorizable
emission diagrams with a scalar meson emitted are propor-
tional to the vector decay constant of the scalar, so it will
be highly suppressed by the tiny vector decay constant of the
scalar meson, or even vanishes for the decays emitting a neu-
tral scalar meson, because the neutral scalar meson cannot
be produced through (V − A) current.

For the B → D
∗
S decays, there are only the longitudi-

nal polarization contributions in the light of the conservation
of angular momentum. The expressions of the factorizable
emission contributions can be obtained by the following sub-
stitutions in Eq. (19):

Mef → −ML
ef , φD → φL

D∗ ,

mD → mD∗ , fD → f LD∗ . (25)

For the hard-scattering emission diagrams, the decay ampli-
tudes can be expressed as

ML
enf = 16

√
2

3
πC f m

4
B

∫ 1

0
dx1dx2dx3

×
∫ 1/


0
b1db1b2db2φB(x1, b1)φ

L
D∗(x2, b2)

×
{[

φS(x3)(r
2
D(1 − 2x2) + r2

S(x2 + x3 − 1)

+
(

1

2
r2
S − 1

)
(x2 − 1))

−rSx3(φ
S
S (x3) − φT

S (x3))
]
Eenf(tc)hen f 1(xi , bi )

+
[
φS(x3)

(
x2

(
r2
D + 3

2
r2
S − 1

)

+x3

(
2r2

D + 1

2
r2
S − 1

))

+ rSx3(φ
S
S (x3) + φT

S (x3))
]
Eenf(td)henf2(xi , bi )

}
.

(26)

Similarly, the annihilation type contributions can be written
as

ML
a f = 8πC f fBm

4
B

∫ 1

0
dx2dx3

×
∫ 1/


0
b2db2b3db3φ

L
D∗ (x2, b2)

×
{[

φS(x3)(r
2
D(1 − 2x3) +

(
1 − 1

2
r2
S

)
(x3 − 1))

+rDrS(φ
S
S (x3) + φT

S (x3))
]
ha f ((1 − x3), x2(1

− r2
D), b2, b3)Ea f (te)

+
[
φS(x3)((1 − rd2

D)x2 + r2
S

(
1 − 3

2
x2

)
)

+ 2rDrS(1 − x2)φ
S
S (x3)

]
ha f (x2, (1 − x3)(1

− r2
D), b3, b2)Ea f (t f )

}
, (27)

ML
anf = −16

√
2

3
πC f m

4
B

∫ 1

0
dx1dx2dx3

×
∫ 1/


0
b1db1b2db2φB(x1, b1)φ

L
D∗ (x2, b2)

×
{[

φS(x3)(r
2
D(1 − 2x2) − r2

S(x2 + x3 − 1)

+ x2

(
1 − 1

2
r2
S

)
)

− rDrS((x2 + x3 − 1)φS
S (x3) + (1 − x2

+ x3)φ
T
S (x3))

]
hg(xi , b1, b2)Eanf (tg)

+
[
φS(x3)(r

2
D(x2 − 2x3 + 2) +

(
1 + 1

2
r2
S

)
(x3 − 1))

− rDrS((x2 + x3 − 1)φS
S (x3) + (x2 − x3

+ 1)φT
S (x3))

]
hh(xi , b1, b2)Eh(th)

}
. (28)

For those diagrams with a scalar meson emitted in B →
D

∗
S decays, the factorizable emission contributions can be

obtained from Eq. (23) directly by adopting the same substi-
tutions as Eq. (25), and the hard-scattering emission contri-
butions can be expressed as

M′L
enf = 16

√
2

3
πC f m

4
B

∫ 1

0
dx1dx2dx3

×
∫ 1/


0
b1db1b2db2φB(x1, b1)φ

L
D∗(x3, b1)φS(x2)
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×
{[
r2
D(x2 − x3 − 2) + rDx3 + r2

Sx2

+ (1 − x2)

(
1 + 1

2
r2
S

) ]
Eenf(t

′
c)h

′
en f 1(xi , bi )

+
[
x2

(
r2
D − 1 − 1

2
r2
S

)
+ x3(r

2
D + rD

+ 3

2
r2
S − 1)

]
Eenf(t

′
d)h

′
enf2(xi , bi )

}
. (29)

As for the Wilson coefficients of each decay modes, they

are the same as those of Bq → D
(∗)

(s)T decays, and can be
found in Ref. [63].

4 Numerical results and discussions

In this section, we will present the numerical results and some

phenomenological analyses of the considered B → D
(∗)

S
decays. First of all, we should list the input parameters in our
numerical calculations [1]:



f=4
MS

= 0.25 ± 0.05GeV, mB(s) = 5.28(5.37)GeV,

mb = 4.8GeV,

mD(s) = 1.87/1.97GeV, mD∗
(s)

= 2.00/2.11GeV,

τB±/0 = 1.64/1.52ps, τBs = 1.48ps,

Vcb = 0.0412+0.0011
−0.0005, Vus = 0.22534 ± 0.00065,

Vud = 0.97427 ± 0.00015. (30)

For the decay constants of the scalar mesons calculated
within the QCD sum rules, we adopt the values in Ref. [6].

In Tables 1, 2, 3 and 4, we tabulate our numerical results
of the branching fractions with uncertainties. Considering
the four-quark picture beyond the conventional quark model,
we cannot calculate the decay constants and the distribution
amplitudes within the QCD sum rules and the lattice QCD
approach. So, for the light scalars below 1 GeV, we only
list the results of S1, i.e., the two-quark scenario. For the
heavy scalars, the numerical results in the two scenarios are
both presented. Indeed, previous studies [5,6] indicated that
S2 is favorable. Of course, there are many uncertainties in
our calculations, and here we mainly evaluate three kinds.
The first errors are caused by nonperturbative parameters,
such as the decay constants fB , fS , f S , the shape param-
eters ωB/D in distribution amplitudes of B/D mesons, the
Gegenbauer moments Bi in the distribution amplitudes of
the scalar mesons. The second ones are from the unknown
next-to-leading order (NLO) corrections, characterized by
the choice of the 
QCD(0.25 ± 0.05GeV) and the variations
of the factorization scales t (0.75t → 1.25t). NLO contri-
butions in PQCD are not available. In Refs. [100,101], the
authors have estimated the NLO effects in B → ππ decays
by including the NLO form factors, NLO Wilson coefficients,
vertex corrections, the quark loops, and the chromomagnetic

Table 1 Branching fractions of Bq → DS(a0(980), κ, σ, f0(980))

decays calculated in the PQCD approach in S1

Decay modes Class BRs(10−6)

B+ → D
0
a+

0 C 483+244+64+26
−215−68−12

B0 → D−a+
0 T 17.6+9.8+11.4+0.9

−7.6−7.7−0.4

B0 → D
0
a0

0 C 160+88+35+9
−75−31−4

B0 → D
0
σ( fn) C 134+65+32+7

−55−39−3

B0 → D
0
f0( fn) C 78.4+42.8+33.6+4.3

−36.2−36.8−1.9

B0 → D−
s κ+ E 72.6+24.3+8.0+4.0

−22.1−8.8−1.8

Bs → D
0
κ C 262+154+57+14

−131−66−7

Bs → D−
s a

+
0 T 64.3+42.3+11.0+3.5

−28.7−10.2−1.6

B+ → D
0
κ+ C 10.8+7.9+1.9+0.7

−6.4−1.9−0.3

B0 → D−κ+ T 4.83+1.92+0.73+0.29
−1.64−0.63−0.14

B0 → D
0
κ C 6.89+5.26+2.36+0.41

−4.28−2.51−0.21

Bs → D−a+
0 E 3.42+1.31+0.41+0.21

−1.17−0.44−0.10

Bs → D
0
a0 E 1.70+0.65+0.20+0.10

−0.58−0.21−0.05

Bs → D
0
σ( fn) E 1.13+0.42+0.17+0.07

−0.40−0.14−0.04

Bs → D
0
σ( fs) C 14.2+7.9+2.5+0.9

−6.7−2.7−0.4

Bs → D
0
f0( fn) E 1.36+0.51+0.15+0.08

−0.45−0.15−0.04

Bs → D
0
f0( fs) C 10.6+6.1−2.5−0.6

−5.3−2.6−0.3

Bs → D−
s κ+ T 1.02+0.59+0.29+0.06

−0.47−0.29−0.03

penguin. The results showed that the NLO effects are modest
and the uncertainties due to the scale variation in the LO are
reasonable. The last errors come form the uncertainties of the
CKM matrix elements listed in Eq. (30). In our calculations,
we admit that the next-leading power (
̄/mB) corrections are
not included, which have been estimated to be no more than
10% [55,56]. Moreover, the next-leading power corrections
of 
̄/mD are even larger. Yet now, all next-leading power
corrections are not available, so we will not include them
here and leave them as our future work. From the tables, it
is apparent that the most significant theoretical uncertainties
are from the nonperturbative parameters. In these tables, in
order to indicate the dominant contributions, we also mark
each channel by the symbols “T” (color-allowed tree contri-
butions), “C” (color-suppressed tree contributions), and “E”
(W exchange type contributions). Because all of these decays
only occur through tree operators, the CP asymmetries of
these decays are null in SM.

From the tables, one can find that, compared with the
�S = 0 processes, the �S = 1 processes are all suppressed
by the CKM matrix elements |Vus/Vud |2. For these T-type
decays with a scalar meson emitted, the contributions from
factorizable emission diagrams are either suppressed by the
tiny vector decay constant of the scalar meson or even vanish
for the neutral scalar mesons, though they have large Wilson
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Table 2 Branching fractions of
B(s) →
DS(a0(1450), K ∗

0 (1430), f0(1370),
and f0(1500)) calculated in the
PQCD approach in S1 and S2,
respectively

Decay modes Class BRs(10−5)S1 BRs(10−5)S2

B+ → D
0
a+

0 (1450) C 72.1+39.2+13.9+3.9
−31.6−12.5−1.8 123+73+12+5

−64−14−4

B0 → D−a+
0 (1450) T,E 4.09+2.63+1.59+0.23

−2.09−0.86−0.10 0.92+0.57+0.41+0.05
−0.43−0.24−0.02

B0 → D
0
a0(1450) C 31.3+17.4+4.8+1.7

−14.3−5.6−0.8 66.2+37.6+6.4+3.6
−32.8−7.1−1.7

B0 → D
0
f0(1370)( fn) C 28.6+13.7+2.5+1.5

−12.0−3.4−0.8 16.3+9.1+4.9+0.8
−7.6−4.0−0.4

B0 → D
0
f0(1500)( fn) C 27.2+13.2+2.6+1.5

−11.1−2.8−0.7 13.2+7.4+3.9+0.7
−5.9−2.6−0.3

B0 → D−
s K ∗+

0 (1430) E 1.41+0.53+0.46+0.08
−0.46−0.46−0.03 9.08+4.21+0.63+0.50

−3.76−0.58−0.22

Bs → D
0
K

∗
0(1430) C 53.9+26.8+3.8+2.9

−23.0−6.2−1.3 68.8+38.3+7.6+3.8
−35.4−8.5−1.7

Bs → D−
s a

+
0 (1450) T 10.3+5.8+1.9+0.5

−4.9−1.8−0.3 4.35+3.28+1.21+0.23
−2.43−0.97−0.11

B+ → D
0
K ∗+

0 (1430) C 4.72+2.22+1.03+0.28
−1.83−0.94−0.15 4.96+4.02+0.98+0.29

−3.15−0.39−0.15

B0 → D−K ∗+
0 (1430) T 0.97+0.45+0.14+0.06

−0.36−0.12−0.03 0.79+0.46+0.14+0.05
−0.38−0.11−0.03

B0 → D
0
K ∗0

0 (1430) C 3.39+1.47+0.43+0.21
−1.27−0.46−0.10 3.19+3.21+0.44+0.20

−2.34−0.40−0.09

Bs → D−a+
0 (1450) E 0.14+0.06+0.01+0.01

−0.07−0.01−0.01 0.43+0.21+0.02+0.02
−0.18−0.03−0.01

Bs → D
0
a0

0(1450) E 0.07+0.03+0.01+0.01
−0.03−0.01−0.01 0.21+0.11+0.02+0.02

−0.09−0.01−0.01

Bs → D
0
f0(1370)( fn) E 0.05+0.04+0.01+0.01

−0.02−0.01−0.01 0.17+0.09+0.01+0.01
−0.07−0.01−0.01

Bs → D
0
f0(1370)( fs) C 2.30+1.46+0.15+0.14

−1.12−0.25−0.07 2.97+2.99+0.30+0.18
−1.53−0.32−0.09

Bs → D
0
f0(1500)( fn) E 0.05+0.04+0.01+0.01

−0.02−0.01−0.01 0.17+0.10+0.01+0.01
−0.07−0.01−0.01

Bs → D
0
f0(1500)( fs) C 2.24+1.39+0.18+0.13

−1.08−0.23−0.07 2.71+2.81+0.26+0.17
−2.04−0.22−0.08

Bs → D−
s K ∗+

0 (1430) T,E 0.36+0.24+0.13+0.02
−0.18−0.08−0.01 0.39+0.21+0.04+0.02

−0.16−0.04−0.01

Table 3 Branching fractions of Bq → D
∗
S(a0, κ, σ, f0) decays cal-

culated in the PQCD approach in S1

Decay modes Class BRs(10−6)

B+ → D
∗0
a+

0 C 520+215+127+29
−188−160−13

B0 → D∗−a+
0 T 250+91+63+13

−84−41−7

B0 → D
∗0
a0 C 128+76+34+7

−67−40−3

B0 → D
∗0

σ( fn) C 171+78+45+9
−70−54−4

B0 → D
∗0

f0( fn) C 119+57+48+6
−51−50−4

B0 → D∗−
s κ+ E 13.0+4.5+1.8+0.7

−4.3−2.5−0.4

Bs → D
∗0

κ C 320+178+69+17
−153−80−8

Bs → D∗−
s a+

0 T 169+73+56+10
−63−52−4

B+ → D
∗0

κ+ C 8.80+5.78+3.09+0.53
−4.41−3.67−0.27

B0 → D∗−κ+ T 3.42+1.58+1.44+0.21
−1.32−0.98−0.10

B0 → D
∗0

κ C 9.25+6.54+3.03+0.56
−5.03−3.55−0.27

Bs → D∗−a+
0 E 0.76+0.30+0.14+0.04

−0.28−0.15−0.03

Bs → D
∗0
a0 E 0.38+0.14+0.06+0.02

−0.15−0.08−0.02

Bs → D
∗0

σ( fn) E 0.19+0.07+0.03+0.01
−0.08−0.04−0.01

Bs → D
∗0

σ( fs) C 16.4+8.8+2.9+1.0
−7.6−3.4−0.5

Bs → D
∗0

f0( fn) E 0.27+0.10+0.04+0.01
−0.10−0.06−0.01

Bs → D
∗0

f0( fs) C 12.7+7.1+3.1+0.8
−6.0−3.4−0.3

Bs → D∗−
s κ+ T 6.83+3.43+2.08+0.41

−2.92−1.80−0.20

coefficients. For the two hard-scattering diagrams ((c) and
(d) in Fig. 2), because the light-cone distribution amplitude
φS of the scalar meson is antisymmetric, the contributions
of these two diagrams no longer cancel but are enhanced,
which can be seen from Eqs. (24) and (29). So, although the
hard-scattering diagrams are suppressed by the Wilson coef-
ficient C1, they also provide sizable contributions and even
dominate the decay amplitudes in some decay modes. In addi-
tion, we note that, for the T-type decays with κ/K ∗

0 (1430)

emission, the contributions from factorizable emission dia-
grams are still sizable, because the vector decay constants of
κ/K ∗

0 (1430) are not too small due to the mass difference of
the up and strange quarks.

We now discuss the C-type decays with a D
(∗)

meson
emitted. The factorizable emission diagrams are suppressed
by the small Wilson coefficientsC1+C2/3. Since the cancel-
lation between the hard-scattering emission diagrams (c and
d in Fig. 1) is suppressed by the mass difference between the

c quark and the “light” quark in the emitted D
(∗)

meson, the
contributions of the hard-scattering emission diagrams with
the large Wilson coefficientC2 are no longer negligible; even
they dominate the decay amplitudes. Therefore, their branch-
ing fractions are expected to be large enough to be detected
at on-going experiments, especially for these �S = 0 pro-
cesses.
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Table 4 Branching fractions of
B(s) → D

∗
S(a0(1450),

K ∗
0 (1430), f0(1370),

and f0(1500)) calculated in the
PQCD approach in S1 and S2,
respectively

Decay modes Class BRs(10−5)(S1) BRs(10−5)(S2)

B+ → D
∗0
a+

0 (1450) C 207+90+24+11
−81−23−5 98.2+70.1+28.9+5.3

−56.1−29.2−2.5

B0 → D∗−a+
0 (1450) T 26.8+12.7+7.5+1.5

−11.1−7.3−0.6 11.3+7.4+2.1+0.7
−5.9−2.7−0.2

B0 → D
∗0
a0(1450) C 40.1+21.2+5.2+2.1

−17.3−5.3−1.0 58.9+36.7+7.7+3.3
−31.2−8.4−1.4

B0 → D
∗0

f0(1370)( fn) C 44.8+21.3+2.1+2.4
−18.4−4.0−1.1 27.8+32.0+6.7+1.6

−21.4−6.0−0.7

B0 → D
∗0

f0(1500)( fn) C 44.5+21.2+2.6+2.5
−18.1−3.4−1.0 25.1+30.0+5.7+1.4

−20.1−4.6−0.6

B0 → D∗−
s K ∗+

0 (1430) E 0.53+0.22+0.19+0.03
−0.17−0.17−0.01 0.99+0.56+0.28+0.05

−0.49−0.21−0.03

Bs → D
∗0
K

∗
0(1430) C 73.0+36.5+4.0+4.0

−30.7−5.9−1.8 79.0+72.0+9.6+4.3
−55.6−11.6−2.0

Bs → D∗−
s a+

0 (1450) T 23.0+11.1+8.9+1.2
−10.1−7.8−0.6 6.20+4.58+1.46+0.33

−3.62−1.64−0.16

B+ → D
∗0
K ∗+

0 (1430) C 10.1+3.9+1.3+0.6
−3.3−1.1−0.3 3.08+3.62+0.82+0.18

−2.25−0.71−0.08

B0 → D∗−K ∗+
0 (1430) T 0.75+0.26+0.32+0.05

−0.24−0.27−0.02 0.09+0.14+0.02+0.01
−0.07−0.02−0.01

B0 → D
∗0
K ∗0

0 (1430) C 4.90+2.08+0.44+0.30
−1.81−0.51−0.14 3.80+3.80+0.61+0.23

−2.79−0.60−0.11

Bs → D∗−a+
0 (1450) E 0.06+0.03+0.01+0.01

−0.03−0.02−0.01 0.05+0.03+0.01+0.01
−0.02−0.01−0.01

Bs → D
∗0
a0

0(1450) E 0.03+0.01+0.01+0.01
−0.01−0.01−0.01 0.03+0.01+0.01+0.01

−0.01−0.01−0.01

Bs → D
∗0

f0(1370)( fn) E 0.02+0.01+0.01+0.01
−0.01−0.01−0.01 0.02+0.01+0.01+0.01

−0.01−0.01−0.01

Bs → D
∗0

f0(1370)( fs) C 3.29+1.94+0.18+0.20
−1.53−0.21−0.10 3.43+3.50+0.39+0.20

−2.56−0.45−0.11

Bs → D
∗0

f0(1500)( fn) E 0.02+0.01+0.01+0.01
−0.01−0.01−0.01 0.02+0.01+0.01+0.01

−0.01−0.01−0.01

Bs → D
∗0

f0(1500)( fs) C 3.25+1.90+0.23+0.20
−1.49−0.19−0.09 3.21+3.32+0.34+0.19

−2.43−0.36−0.10

Bs → D∗−
s K ∗+

0 (1430) T 1.40+0.55−0.44−0.09
−0.50−0.41−0.04 0.24+0.27+0.06+0.01

−0.20−0.08−0.01

As is well known, the annihilation type diagrams are
power suppressed in the PQCD approach, and the branch-
ing fractions of the E-type decays are expected to be much

smaller than the others. However, for the B → D
(∗)

S decays,
because there is a large mass difference between the D meson
and the scalar meson, which will weaken the cancellation
between the two nonfactorizable annihilation type diagrams
(g) and (h) in Fig. 1, the contributions of the annihilation
diagrams might be sizable. As a result, the branching frac-
tions of these E-type decays are not too small, as usual, espe-
cially for these �S = 0 processes. For example, enhanced
by the CKM matrix elements, the branching fractions of the
B0 → D−

s K ∗+
0 (800/1430) even reach 10−5, the order of

which is measurable in the on-going experiments. When the
experimental data is available, it will provide another plat-
form to study the dynamical mechanism of the annihilation
diagrams in two-body hadronic B decays.

Specially, B+ → D
(∗)0

a+
0 (980) and B+ → D

(∗)0
κ+

(800) decays have both a T-type contribution with a scalar

meson emitted and a C-type contribution with D
(∗)

emit-

ted. For B+ → D
(∗)0

a+
0 (980) decays, the constructive inter-

ference between those two contributions makes the branch-
ing fractions larger than the pure C-type decays, such as

Bs → D
(∗)0

κ0 decay. Similarly, the constructive (destruc-
tive) interferences also lead the branching fractions of B+ →
D

(∗)0
κ+ larger (smaller) than the pure C-type B0 → D

(∗)0
κ0

decays. In particular, because the vector decay constant
of κ is not tiny, the T-type contributions with a κ emit-
ted are sizable. From the Table 1, one can also find that
B(Bs → D−

s a
+
0 (980)) > B(B0 → D−a0(980)+) and

B(B0 → D−κ+(800)) > B(Bs → D−
s κ+(800)), which

can be understood by the interference between T-type and E-
type contributions. The relationsB(B0 → D∗−a0(980)+) >

B(Bs → D∗−
s a+

0 (980)) and B(Bs → D∗−
s κ+(800)) >

B(B0 → D∗−κ+(800)) in Table 3 can also be explained
in the same manner.

From Tables 2 and 4, it is found that, for these C-type

decays, such as Bs → D
(∗)0

K
∗0
0 (1430) and B0 → D

(∗)0

K ∗0
0 (1430) decays, the branching fractions in S1 are roughly

equal to those in S2. This can be explained by the fact that
the two dominant nonfactorizable diagrams (c) and (d) in
Fig. 1 will be cancelled out by each other. Thus, the effects
caused by the wave functions of scalar mesons are inconspic-
uous. In fact, such cases also occur in the color-suppressed
B → D(∗)S decays in Ref. [50]. We also note that the branch-

ing fraction of B+ → D
0
a+

0 (1450) in S2 is larger than that in
S1. That is because the constructive interference between the
C-type contributions with D emitted and the T-type contribu-
tions with the scalar meson emitted in S2 is much larger than

that in S1. However, for the decays B+ → D
∗0
a+

0 (1450) and

B+ → D
∗0
K ∗+

0 (1430), the destructive interference causes
their branching fractions in S2 to be smaller than those in
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S1. As for B+ → D
0
K ∗+

0 (1430), although the interference
between the two type contributions is also constructive in S2,
its branching fraction in S2 is only slightly larger than that
in S1, because the contributions from factorizable diagrams
and the nonfactorizable ones are canceled out by each other,
especially when the vector decay constant of K ∗+

0 (1430)

is no longer as small as the others. We also note that the

B+ → D
(∗)0

a+
0 (1450) decays can be used to identify differ-

ent scenarios. Similarly, for the decays B0 → D
(∗)0

a0
0(1450)

and B0 → D
(∗)0

f0(1370/1500), the branching fraction dif-
ferences between the two scenarios are ascribed to the inter-
ference between the emission contributions and the annihi-
lation ones.

The T-type Bs → D(∗)−
s a+

0 (1450) decays, which are pure
emission processes with a+

0 (1450) emitted, are dominated by
the hard-scattering emission diagrams, since the factorizable
diagrams are highly suppressed by the small vector decay
constant of the a+

0 (1450). The ratio of branching fractions
between S1 and S2 is about 2 and 4, for Bs → D−

s a
+
0 (1450)

and Bs → D∗−
s a+

0 (1450), respectively, which indicates that
the branching fractions are sensitive to the scenarios. From
Eq. (20), it is found that the contributions from the two hard-
scattering diagrams are enhanced by each other. When we
switch from S1 to S2, the changes induced by the distribu-
tion amplitudes in S2 will overlap with each other, which
makes the branching fractions different from those in S1.
As for B0 → D(∗)−a+

0 (1450) decays, the ratio between S1
and S2 is about 4 for B0 → D−a+

0 (1450) and about 2 for
B0 → D∗−a+

0 (1450), which is contrary to the cases in Bs →
D(∗)−
s a+

0 (1450) decays. This is caused by the interferences
between the emission diagrams and the annihilation ones. In
S2, the interference is destructive for B0 → D−a+

0 (1450)

decays, but constructive for B0 → D∗−a+
0 (1450). Unlike

the cases of the above T-type decays with the a0(1450),
the branching fractions of the B0 → D−K ∗+

0 (1430) and
Bs → D−

s K ∗+
0 (1430) decays in the two scenarios are

roughly equal. However, for B0 → D∗−K ∗+
0 (1430) and

Bs → D∗−
s K ∗+

0 (1430) decays, the branching fractions in S1
are much larger (about seven–eight times larger) than those
in S2. For the above four decays, the color-allowed factor-
izable emission contributions are sizable in S2, because the
vector decay constant of the K ∗+

0 (1430) in S2 is larger than
in S1. For B0 → D−K ∗+

0 (1430) and Bs → D−
s K ∗+

0 (1430)

decays, the interference between the above contributions and
the ones of the hard-scattering emission diagrams is construc-
tive, so their branching fractions in S2 are roughly equal to
those in S1. However, this kind of interference is destruc-
tive for B0 → D∗−K ∗+

0 (1430) and Bs → D∗−
s K ∗+

0 (1430)

decays, and their branching fractions in S2 are smaller than
those in S1.

Now, we turn to a discussion of the pure annihilation
decays, which are dominated by the nonfactorizable annihila-

tion diagrams. From Table 2, one can find that the branching
fractions of pure E-type B → DS decays in S2 are much
larger than those in S1. As is well known, the cancellation
between two nonfactorizable annihilation diagrams is sup-
pressed by the large mass difference between the b quark
and the light quark. So, the changes induced by the distri-
bution amplitudes of the scalars become important, which
leads to the fact that the branching fractions are obviously
dependent on the scenarios. Taking Bs → D−a+

0 (1450) for
illustration, the branching ratios in S2 are about three times
larger than that in S1. However, from Table 4, we find that
the situation is reversed for the pure annihilation B → D

∗
S

decays, the discrepancies of branching fractions in differ-
ent scenarios are quit small. Comparing the Eq. (21) with
Eq. (27), we notice that the two factorizable annihilation dia-
grams are cancelled by each other in B → DS decays but
enhanced in B → D

∗
S decays. So, in B → D

∗
S decays,

the contributions from two factorizable diagrams are com-
parable with those from nonfactorizable ones. Moreover, the
interference between the factorizale annihilation diagrams
and the nonfactorizable ones is destructive (or constructive)
in S1 (S2), which causes that the branching fractions in S2
are almost equal to or even larger than those in S1.

In the conventional two-quark picture for the light scalars,
although the LHCb experiment had measured the branching
fractions of B(Bs) → Dσ and D f0(980) [48,49], the mixing
angle θ cannot be constrained stringently due to the large
uncertainties. For convenience, we present individually the
branching fractions under the pure nn̄ and ss̄ components in
the tables. Once the S1 is confirmed and the mixing angle is
fixed, one can obtain the branching fractions directly from the
two predictions with the nn̄ and ss̄ components. For instance,
if the popular value ranges [25◦, 40◦] and [140◦, 165◦] are
adopted, we can predict the branching fractions as listed in
Table 5. In the same manner, by neglecting the tiny glueball
contents and adopting the results of Eq. (11), we also list
the branching fractions of the decay modes with f0(1370) or
f0(1500) in Table 6. Note that we here only list the center
values for simplicity.

In fact, under the two-quark assumption, only the nn̄ com-

ponent contributes to the decay modes B0 → D
0
f0(980) and

B0 → D
0
σ . Thus, we can define the ratio

r = B0 → D
0
f0(980)

B0 → D̄0σ
= sin2 θ

cos2 θ
= tan2 θ. (31)

Using the latest experimental data in Eq. (1), we can obtain
r = 0.12+0.09

−0.06, which can constrain the range of the mixing
angle as

θ ∈ [14◦, 24◦] or [155◦, 166◦]. (32)

Compared with the results of Ref. [80–85], the obtuse angle
solutions agree with each other, but the acute angle we
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Table 5 The calculated branching fractions of B(s) → D
(∗)

f0(980)

and σ with the mixing in the PQCD approach (unit:10−6)

Decay modes [25◦, 40◦] [140◦, 165◦]

B0 → D
0
σ 78.6 ∼ 110 78.6 ∼ 125

B0 → D
0
f0(980) 46.0 ∼ 64.4 46.0 ∼ 73.1

Bs → D
0
σ 3.99 ∼ 7.22 1.66 ∼ 5.87

Bs → D
0
f0(980) 5.46 ∼ 7.92 8.09 ∼ 10.6

B0 → D
∗0

σ 100 ∼ 140 100 ∼ 159

B0 → D
∗0

f0(980) 70.2 ∼ 98.2 70.2 ∼ 111

Bs → D
∗0

σ 2.93 ∼ 6.70 1.37 ∼ 7.09

Bs → D
∗0

f0(980) 7.62 ∼ 10.5 7.55 ∼ 11.9

Table 6 The calculated branching fractions of B(s) → D
(∗)

f0(1370)

and f0(1500) with the mixing in the PQCD approach (unit:10−6)

Decay modes S1 S2

B0 → D
0
f0(1370) 173 99.2

B0 → D
0
f0(1500) 79.3 38.5

Bs → D
0
f0(1370) 7.40 4.85

Bs → D
0
f0(1500) 14.9 24.5

B0 → D
∗0

f0(1370) 272 168

B0 → D
∗0

f0(1500) 129 73.2

Bs → D
∗0

f0(1370) 10.7 7.55

Bs → D
∗0

f0(1500) 20.8 24.6

obtained is a bit smaller than the previous results. Using the
mixing angle value in Eq. (32) and the results in Table 1, we
get the branching fractions of B0 → D f0(80)/σ :

B(B0 → D
0
σ) ∼ (11.9+0.7

−0.8) × 10−5,

B(B0 → D
0
f0(980) ∼ (0.8+0.5

−0.4) × 10−5, (33)

where the errors are only from the mixing angle. Compared
to Eq. (1), one can find that our numerical results can accom-
modate the experimental data well within the limit of errors.

It should be noted that there are large uncertainties in our
results and discussions, especially ones induced by the non-
perturbative parameters, which might lower our prediction
power and blur the distinction between the two scenarios even
in favorable cases. Therefore more reliable nonperturbative
approaches and experimental data are needed for describing
the nature of the scalar mesons in the future.

5 Summary

Motivated by recent results of the charmed B decays with a
scalar from LHCb experiment, we attempted to investigate

the B/Bs → D
(∗)

S decays induced by the b → c transi-

tion within the framework of the PQCD approach. Although
the light scalar mesons, especially f0(980) and a0(980), are
widely perceived as primarily four-quark bound states, in
practice it is difficult to make quantitative predictions based
on the four-quark picture for light scalars. Hence, predic-
tions are made in the two-quark model for the decays with
the light scalar mesons. For the decays with scalar mesons
above 1 GeV, we have explored two possible scenarios, the
difference depending on whether the light scalars are treated
as the lowest lying qq̄ states or four-quark particles. By com-
paring with the experimental data, we can deduce whether
the heavy scalars are the ground states or the first excited
ones, though the current studies prefer the former. Since
the considered decays occur only through tree operators,
there are no CP asymmetries. The branching fractions of
most decay modes are in the range of 10−4–10−7, which
can be tested in the LHCb experiment and by Belle-II in
the near future. Some decays have large branching frac-

tions, such as the B+ → D
(∗)0

a+
0 (980/1450) and B+ →

D(∗)−a+
0 (980/1450), which are measurable in the current

experiment. For the B0 → D
0
σ and B0 → D

0
f0(980)

decays, our numerical results accommodate the experimental
data well within the limit of the errors, even in the two-quark
picture. We note that although the nonperturbative parame-
ters, the higher-order and high-power correction, and even the
effects of the final states interaction lead rather large uncer-
tainties, the orders of magnitude and some phenomenologi-
cal discussions will be useful for the on-going LHCb and the
forthcoming Belle-II experiments.
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