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Abstract We calculate explicitly the one-loop effective
potential in different Lorentz-breaking field theory models.
First, we consider a Yukawa-like theory and some exam-
ples of Lorentz-violating extensions of scalar QED. We
observe, for the extended QED models, that the resulting
effective potential converges to the known result in the limit
in which Lorentz symmetry is restored. Besides, the one-
loop corrections to the effective potential in all the cases
we study depend on the background tensors responsible for
the Lorentz-symmetry violation. This has consequences for
physical quantities like, for example, in the induced mass due
to the Coleman–Weinberg mechanism.

1 Introduction

The hypothesis of Lorentz-symmetry breaking and its possi-
ble impacts on different field theory models are now inten-
sively discussed. Many examples of Lorentz-breaking exten-
sions of well-known models are presented in [1]. These the-
ories are known to display nontrivial features both at clas-
sical [2–20] (birefringence of electromagnetic waves in the
vacuum, superluminal modes of propagation, non-zero mag-
netic moment for neutral elementary particles, etc.) and quan-
tum levels. Concerning quantum effects, one of the most
important directions of study is the investigation whether
new Lorentz-breaking terms are induced starting from some
underlying coupling which breaks this symmetry. The new
generated extensions are, thus, treated as emergent phenom-
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ena, like in the seminal paper [21] in which it was shown
that the famous Carroll–Field–Jackiw term [22] arises as
a quantum correction. Following this procedure, many new
examples of additive terms were obtained, such as the four-
dimensional gravitational Chern–Simons, the aether-like and
higher-derivative Lorentz-breaking terms [23–25].

In the study of quantum corrections, sometimes it is
necessary to understand the low-energy dynamics. In this
context, the key tool for this investigation is the effective
potential [26]. In this interesting approach, also known as
the Coleman–Weinberg mechanism, the Higgs potential is
induced by radiative corrections, in place of being inserted
by hand. Higher-loop graphs are considered in order to gen-
erate an effective potential, which may produce spontaneous
symmetry breaking. Certainly, it would be interesting to find
the possible Lorentz-breaking modifications of the effective
potential in different Lorentz-breaking extensions of known
field theory models. Up to now, this study has been performed
only for a purely scalar theory [27]. Therefore, a natural con-
tinuation would consist in studying the effective potential in
other Lorentz-breaking field theories. In this paper, we carry
out a study of effective potentials in Lorentz-breaking exten-
sions of QED and of a Yukawa-like theory.

The paper is organized as follows: in Sect. 2, we set a
Yukawa-like model which breaks Lorentz symmetry and pro-
ceed to the calculation of the effective potential, obtaining the
corrections depending on the Lorentz-breaking parameters;
in Sect. 3, we perform the same study in the extended scalar
QED for different kinds of Lorentz violation. We present our
conclusions in Sect. 4.

2 Yukawa-like Lorentz-breaking theory

We start our study with a Lorentz-breaking generalization
of the Yukawa theory. The first attempt to study such the-
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ory at the quantum level has been performed in [27], where
the following action in a d-dimensional space-time has been
considered:

S1,Yu =
∫

dd xψ̄(i∂/ − m + a/φ)ψ. (1)

However, while the derivative-dependent corrections in this
theory (in particular, the aether ones) are nontrivial [27], it is
clear that the one-loop effective potential in this theory van-
ishes. Indeed, the effective potential, by definition, is evalu-
ated at constant values of the background scalar field, that is,
φ = �, with � a constant. When the scalar field is purely
external, we have

�
(1)
1 = −iTr

∫
ddk

(2π)d
ln(k/ + a/� − m), (2)

which, after a trivial change of variable, km → km + am�,
becomes field-independent and hence vanishes. Therefore,
we introduce another coupling, so that

S2,Yu =
∫

dd xψ̄(i∂/ − b/γ5φ)ψ, (3)

in which bm is a pseudovector and the mass is taken to be
zero. The corresponding one-loop effective potential is given
by

�
(1)
2 = −iTr

∫
ddk

(2π)d
ln(k/ − b/γ5�). (4)

Therefore, we should calculate the trace. It is well known
that to do this, we should rewrite this expression in terms of
some quadratic operator. Let us restrict ourselves to the usual
case, d = 4.

First of all, for dimensional reasons and due to the proper-
ties of the trace, the one-loop effective potential is even in �

and b/. So, we can use the symmetrized form of the integral,

�
(1)
2 =− i

2

{
Tr
∫

ddk

(2π)d

[
ln(k/ − b/γ5�)+ln(k/+b/γ5�)

]}
,

(5)

which yields

�
(1)
2 =− i

2

{
Tr
∫

ddk

(2π)d
ln
(
k2−b2�2+2(b · k)�γ5

)}
.

(6)

Now, we face the problem of calculating the matrix trace
Tr ln

[
C + (A + Bb/)γ5

]
, where C , A and B are some c-

numbers. One can easily show that

Tr ln
[
C + (A + Bb/)γ5

]

= D

{
lnC + 1

2
ln

(
1 − A2 − B2b2

C2

)}
, (7)

where D is the dimension of the Dirac matrices in the cor-
responding representation. In our case, with D = 4, it is
obtained in the form

�
(1)
2 = −2iTr

∫
ddk

(2π)d

{
ln(k2 − b2�2)

+1

2
ln

[
1 − 4(b · k)2�2

(k2 − b2�2)2

]}
. (8)

For calculating this integral, we first perform the replacement
kakb → 1

4k
2ηab, and we carry out the Wick rotation k0 →

ik0E , which, for our signature (+−−−), yields k2 → −k2
E .

As a result, we get

�
(1)
2 = 2Tr

∫
ddkE
(2π)d

{
ln(k2

E + b2�2)

+1

2
ln

[
1 + b2k2

E�2

(k2
E + b2�2)2

]}
, (9)

which yields, after some simplifications,

�
(1)
2 =

∫
ddkE
(2π)d

ln
[
(k2

E + b2�2)2 + k2
Eb

2�2
]
. (10)

If we use

(k2
E + b2�2)2 + k2

Eb
2�2 = (k2

E + r1�
2)(k2

E + r2�
2),

(11)

with

r1,2 = −b2

2

(
3 ± √

5
)

, (12)

and integration with use of dimensional reduction, we obtain

�
(1)
2 = μ−ε

∫
ddkE
(2π)d

ln
[
(k2

E + r1�
2)(k2

E + r2�
2)
]

= μ−ε �(ε/2)

16π2(−1 + ε/2)(2 + ε/2)

×
[(

r1�
2

4π

)2+ε/2

+
(
r2�

2

4π

)2+ε/2
]

= − �4

16π2

{
7b4

[
1

ε
+ 1

2
ln

(
�2

μ2

)]

+1

2

(
r2

1 ln r1 + r2
2 ln r2

)}
, (13)

where ε = d − 4. We see that this result, first, is quartic
in the Lorentz-breaking vector (and hence very small) and,
second, involves a logarithmic dependence on the Lorentz-
breaking parameter. It is necessary to comment here on the
fine-tuning problem [28], that is, on the possibility of large
Lorentz-breaking quantum corrections. It was shown in [28]
that in certain cases the loop corrections are not suppressed
if the Lorentz-breaking parameters are small, and hence they
should essentially affect the effective dynamics. While in
certain cases the large corrections are really observed, see
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e.g. [29], it is not so in our case. Indeed, in (13), the effec-
tive potential depends on the Lorentz-breaking vector ba as
b4 ln b2, which goes to zero at ba → 0. This is reasonable
since our Lorentz-breaking term does not affect the propaga-
tors but only couplings, and, moreover, our vertex vanishes
at ba → 0.

3 Lorentz-violating electrodynamics

Let us now study the effective potential for a more elaborated
model. We consider the following Lorentz-breaking exten-
sion of scalar QED:

L = −1

4
FμνF

μν + ξ

2
εμναβcμAν∂αAβ − α

2
bμFμνbαF

αν

+ κμν(D
μφ)∗Dνφ − λ

4! (φ
∗φ)2, (14)

in which, as usual, Dμφ = (∂μ−ieAμ)φ and Fμν = ∂μAν −
∂ν Aμ. The constant tensors cμ, bμ and κμν are responsible for
the violation of Lorentz symmetry. The breaking terms are
controlled by the dimensionless parameters ξ and α, which
from now on will be used to turn off some terms and simplify
the analysis.

3.1 QED with the Carroll–Field–Jackiw term

3.1.1 Classical action

If we set ξ = 1, α = 0 and κ
μ
ν = δ

μ
ν , the unique Lorentz-

breaking term which remains is the CPT-odd one, known as
the Carroll–Field–Jackiw term. The Lagrangian density is
then given by

L1 = −1

4
FμνF

μν + 1

2
εμναβcμAν∂αAβ

+ (Dμφ)∗Dμφ − λ

4! (φ
∗φ)2. (15)

In order to perform the calculation of the effective poten-
tial, we make use of the background field method. For this
purpose, we write the scalar field as φ → φ +�, in which �

is a constant background scalar field. In addition, we decom-
pose the complex scalar field in terms of real scalar fields as
φ = 1√

2
(φ1 + iφ2). The quadratic part of the action is then

rewritten as
∫

d4xL(φa,�a, A
μ)

=
∫

d4xd4y

{
1

2
Aμ(x)(i�−1)μν A

ν(y)

+ 1

2
φa(x)(iD−1)abφ

b(y) + Aμ(x)Mμaφ
a(y)

}
, (16)

with

(�−1)μβ = (�+e2�2)ημβ −∂μ∂β(1−χ)+ενμαβcν∂α,

(17)

(D−1)ab =
(

−� − λ

6
�2
)

δab − λ

3
�a�b (18)

and Mμa = −eεab�
b∂μ. (19)

In the equations above, the Latin indices refer to the real
components of the scalar field and χ is a gauge parameter.
We also note that the inverse of the propagators are written
in function of the background field �.

3.1.2 The effective potential

We proceed to the calculation of the effective potential fol-
lowing the lines of the paper from Jackiw [34]. The effective
potential can be written as

�(�) = − i

2

∫
ddk

(2π)d
ln det(iD−1)

− i

2

∫
ddk

(2π)d
ln det

[
i�−1 + i N

]
, (20)

in which we have used the identity ln det A = Tr ln A and

Nμβ = MμaDabMβb. (21)

Let us start with the determinant of the inverse propagator
of the scalar field. In momentum space, the propagator is
given by

Dab = �a�b

�2

i

k2 − λ
2 �2

+
(

δab − �a�b

�2

)
i

k2 − λ
6 �2

,

(22)

and we have for the determinant

det(D−1) =
(
k2 − λ

6
�2
)(

k2 − λ

2
�2
)

. (23)

For the second term of Eq. (20), we first obtain

Nμβ = ie2�2kμkβ

k2 − λ�2

6

(24)

and the sum of terms

i(�−1)μβ + i Nμβ

=
(

− k2 + e2�2
)

ημβ

− e2�2kμkβ(
k2 − λ�2

6

) + (1 − χ)kμkβ − iενμαβcνkα. (25)
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After a lengthy calculation, one obtains

det
[
i�−1 + i N

]=−a
(
a+gk2

)(
a2+c2k2−(c · k)2

)
,

(26)

with

a = −k2 + e2�2 (27)

and

g = (1 − χ) − e2�2

k2 − λ�2

6

. (28)

We, thus, are left with

�(�) = − i

2

∫
ddk

(2π)d
ln
[(

k2 − λ

6
�2
)(

k2 − λ

2
�2
)]

− i

2

∫
ddk

(2π)d
ln
[

− a
(
a+gk2

)(
a2+c2k2−(c · k)2

)]

≡ �1(�) + �2(�). (29)

The first term is independent on the Lorentz-breaking vector
and gives, with the help of the dimensional reduction proce-
dure, the following result:

�1(�) = − 5

288π2 λ2�4

×
{

1

ε
+ 1

2

[
ln

(
�2

μ2

)
+ ln

(
λ

2

)
− 1

10
ln 3

]}
.

(30)

The second term, which involves the gauge and mixed prop-
agators, will depend on the constant vector cμ. First, we can
rewrite this term as

�2(�) = 1

2

∫
ddkE
(2π)d

ln

×
[

(k2
E +e2�2)(k2

E +c1�
2)(k2

E +c2�
2)(k2

E +a1)(k2
E +a2)

(k2
E + λ�2

6 )

]
,

(31)

where

c1,2 = − λ

12

⎛
⎝1 ±

√
1 − 24e2

λ

⎞
⎠ (32)

and

a1,2 = 1

8

{
−8e2�2 + 3c2 ±

√
3c2
[
3c2 − 8e2�2

]}
, (33)

in which we have used kμkν → ημνk2/4. Again, we follow
the procedures of dimensional reduction and obtain

�2(�) = − 1

32π2 �4
{(

3e4 − λ

3
e2
)

1

ε
+ 1

2

(
e4 − λ

3
e2
)

× ln

(
�2

μ2

)
+ c2

1

2
ln(c1) + c2

2

2
ln(c2)

+ e4

2
ln(e2) + λ2

72
ln

(
λ

6

)}

− 1

32π2

{(
−3c2e2�2+ 9

16
c4
)

1

ε
+ a2

1

2
ln

(
a1

μ2

)

+ a2
2

2
ln

(
a2

μ2

)}
. (34)

One should observe that we have chosen the gauge with
χ = 1 (Feynman gauge), c2 = cμcμ; the mass parameter
μ2 appears as a feature of the dimensional reduction. It is
also to be noted that only the last line is cμ-dependent and
that, in the limit cμ → 0, the result of Coleman and Weinberg
[26] is recovered.

3.2 CPT-even Lorentz-violating QED

3.2.1 Formulation of the model

If we set ξ = 0, α = 1 and κ
μ
ν = δ

μ
ν , the unique Lorentz-

breaking term which remains is the CPT-even one of the
gauge sector, known as the aether term. The Lagrangian den-
sity is then given by

L2 = −1

4
FμνF

μν − 1

2
bαFαμbβF

βμ

+ (Dμφ)∗Dμφ − λ

4! (φ
∗φ)2. (35)

All the steps carried out in the first model, concerning the
decomposition of the complex scalar field and the use of the
background field method, are again applied, so that we get
for the quadratic part of the action∫

d4xL(φa,�a, A
μ)

=
∫

d4xd4y
{1

2
Aμ(x)(i�−1)μν A

ν(y) +

× 1

2
φa(x)(iD−1)abφ

b(y) + Aμ(x)Mμaφ
a(y)

}
, (36)

for which, in momentum space, we have

(�−1)μβ =
[
−k2−(k · b)2+e2�2

]
ημβ +kμkβ(1−χ)

+ (k · b)
(
kμbβ + kβbμ

)
− k2bβbμ,

(D−1)ab =
(
k2 − λ

6
�2
)

δab − λ

3
�a�b

and Mμa = −ieεab�
bkμ, (37)

with χ again the gauge parameter.
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3.2.2 The effective potential

We proceed, as before, to the calculation of the effective
potential. The first step is the evaluation of the determinants.
The scalar propagator, Dab, is the same as in the first model.
So, we concentrate our efforts on the term which involves the
gauge and the mixed sectors, for which we obtain

det
[
i�−1 + i N

] = −a′2 [(1 + b2)k2 − e2�2
]

×
[
(1 − g)k2 − e2�2

]
, (38)

where

a′ = 1

4

[
4e2�2 − (4 + b2)k2

]
(39)

and

g = − e2�2

k2 − λ�2

6

, (40)

in which again we adopted the Feynman gauge and the limit
kμkν → ημνk2/4 was taken.

The effective potential is, thus, given by

�(�) = − i

2

∫
ddk

(2π)d

{
ln
[(

k2 − λ

6
�2
)(

k2 − λ

2
�2
)]

+ ln
{
−a′2 [(1 + b2)k2 − e2�2

]
[
(1 − g)k2 − e2�2

] }}
. (41)

The first term is the same as in the calculation for the
Carroll–Field–Jackiw model and does not depend on the
Lorentz-violating vector. For the second term, we can write
in Euclidean space

�2(�) = 1

2

∫
ddkE
(2π)d

ln

×

⎧⎪⎨
⎪⎩

(
4+b2

4 k2
E +e2�2

)2(
k2
E +c1�

2
)(

k2
E +c2�

2
)(

(1+b2)k2
E +e2�2

)
(
k2
E + λ�2

6

)
⎫⎪⎬
⎪⎭ ,

(42)

with c1 and c2 already defined in the first model. With the
help of the dimensional reduction, we obtain

�2(�)

= − �4

32π2

{
−λe2

3

[
1

ε
+ 1

2
ln

(
�2

μ2

)]

+c2
1

2
ln c1 + c2

2

2
ln c2 − λ2

72
ln

(
λ

6

)

+ e4
{[

32

(4 + b2)2 + 1

(1 + b2)2

] [
1

ε
+ 1

2
ln

(
�2

μ2

)]

+ 16

(4 + b2)2 ln

(
4e2

4 + b2

)

+ 1

2(1 + b2)2 ln

(
e2

1 + b2

)}}
+ constant terms. (43)

Again, it is important to note that the result of Coleman
and Weinberg [26] is recovered in the limit bμ → 0.

3.3 The model with Lorentz-symmetry breaking in a scalar
sector

3.3.1 Formulation of the model

We now set ξ = α = 0 and preserve only the Lorentz-
breaking tensor κμν . The Lagrangian density is then given
by

L3 = −1

4
FμνF

μν + κμν(D
μφ)∗Dνφ − λ

4! (φ
∗φ)2. (44)

The quadratic part of the action of the present model after
the decomposition of the complex scalar field in its real com-
ponents and the introduction of the background field is writ-
ten as∫

d4xL(φa,�a, A
μ)

=
∫

d4xd4y

{
1

2
Aμ(x)(i�−1)μν A

ν(y)

+1

2
φa(x)(iD−1)abφb(y) + Aμ(x)Mμaφ

a(y)

}
, (45)

with

(�−1)μβ = −k2ημβ + kμkβ(1 − χ) + e2κμβ�2;
(D−1)ab = κμβδabkμkβ − λ

3
�a�b − λ

6
δab�2;

Mμa = −ieκμβεab�
bkβ. (46)

The background tensor κμν should be symmetric and con-
verge to ημν in the limit in which the Lorentz symmetry is
restored. We will use a convenient and simple form for this
tensor, given by κμν = ημν + bμbν with bμ a dimensionless
Lorentz-breaking vector.

3.3.2 The effective potential

For this third model, we follow the same steps for the calcu-
lation of the effective potential, given, as before, by

�(�) = − i

2

∫
ddk

(2π)d
ln det(iD−1)

− i

2

∫
ddk

(2π)d
ln det

[
i�−1 + i N

]
. (47)
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However, now, even in the purely scalar sector, we will have
modifications. First, we have

det
(
D−1

)
= κ̄2

16

(
k2 − 2λ

3κ̄
�2
)(

k2 − 2λ

κ̄
�2
)

, (48)

where again we have used the limit, under integration,

kμkβ → ημβk2

4 and κ̄ = κ
μ
μ represents the trace of the back-

ground tensor κμβ . We also will have

Nμβ = i
4e2�2

κ̄

k̃μk̃β

k2 − 2λ�2

3κ̄

, (49)

with k̃μ = κμνkν . So, we get

i(�−1)μβ + i Nμβ = −k2ημβ + kμkβ(1 − χ) + e2κμβ�2

−4e2�2

κ̄

k̃μk̃β

k2 − 2λ�2

3κ̄

, (50)

with the following result for the determinant in the Feyn-
man gauge, after some manipulations and the use of the limit
kμkν → k2ημν/4:

det
[
i�−1 + i N

]

= −1

4

[
−k2 + e2�2

]2 {[−k2 + e2�2
]

×
[(

g(b2 + 2)2 − 4
)
k2 + 4(1 + b2)e2�2

]

+ 3gb2e2�2k2
}

, (51)

with

g = −4e2�2

κ̄

1

k2 − 2λ�2

3κ̄

. (52)

The integral (47) with the determinant given by (51) appar-
ently furnishes a complicated result in its explicit form.
However, its general form can be obtained. If one considers
λ = αe2, with α some number, it is clear that, for dimensional
reasons, the renormalized result for the effective potential
will look like

�2(�) = e4�4
(
a1 + a2 ln

�2

μ2

)
, (53)

where a1 and a2 are some finite constants depending on κ̄ .
Also, we note that, for light-like bμ, one has

det
[
i�−1 + i N

]

= −
[
−k2 + e2�2

]3 [
(g − 1)k2 + e2�2

]
; (54)

κ̄ in this case is simply 4, and in this case we evidently repro-
duce the Lorentz-invariant result.

It is interesting to comment on the general dependence
of the effective potential on the Lorentz-breaking param-
eters. It was shown in [30,31] (and in the supersymmet-
ric case, in [32,33]) that in theories where the modified
Lorentz-breaking kinetic term of the scalar field is propor-
tional to (ημν + κ̃μν)∂

μφ∂νφ, with κμν = ημν + κ̃μν , the
L-loop correction is proportional to det−L/2(1 + κ̃). Hence,
the constants a1 and a2 from (53) will be proportional to
det−1/2(1 + κ̃).

This conclusion allows us to make a final estimation of
Lorentz-breaking impacts for the effective potential. Indeed,
we have argued that the effective potential will be corrected
by the multiplier det−1/2(1 + κ̃), which, for |κ̃μν | � 1, can
be represented as 1 − 1

2 κ̃
μ
μ . Therefore, we can see that the

Lorentz-breaking modifications to the effective potential will
be of the order of κ̃

μ
μ , which, following [35], is 10−27. Hence,

already the LV leading order contribution will be very tiny,
differing from the usual result by 27 orders.

4 Conclusions

In this paper, we studied how the one-loop effective poten-
tial is modified by Lorentz-symmetry violation in some
extended models. We note that it is the first calculation
of this type since, up to now, the effective potential in a
Lorentz-breaking case has been evaluated only in a purely
scalar theory [27]. First, we considered a massless Yukawa-
like model and some examples of Lorentz-breaking scalar
QED. The one-loop corrections to the effective potential in
all the cases we studied depend on the background tensors
responsible for the Lorentz-symmetry violation, but con-
verge to the known results in the limit Lorentz symmetry is
restored. More interesting is the fact that this limit is recov-
ered even in the presence of the Lorentz-breaking vectors if
they are light-like. Particularly, for the massless Yukawa-like
model, the effective potential vanishes if the four-vector bμ is
light-like.

It is well known from Ref. [34] that the effective potential
in the traditional massless scalar QED is gauge dependent.
This is explained by the fact that the shift in the scalar field
performed in the process of calculation of effective potential
induces a mass for the gauge field. Despite this, we adopted
in our calculation the Feynman gauge, since we are inter-
ested here in observing the dependence of the results on the
Lorentz-breaking parameters. One of the physical aspects to
be discussed further is the possible dependence of the induced
masses on the background tensors responsible for the Lorentz
violation. It would be interesting for a future investigation to
check if there exists a particular gauge in which this depen-
dence of physical results on Lorentz-breaking parameters is
removed.
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