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Abstract Here we analyse a particular type of F(R) grav-
ity, the so-called exponential gravity which includes an expo-
nential function of the Ricci scalar in the action. Such a
term represents a correction to the usual Hilbert–Einstein
action. By using Supernovae Ia, Barionic Acoustic Oscil-
lations, Cosmic Microwave Background and H(z) data, the
free parameters of the model are well constrained. The results
show that such corrections to General Relativity become
important at cosmological scales and at late times, providing
an alternative to the dark energy problem. In addition, the
fits do not determine any significant difference statistically
with respect to the �CDM model. Finally, such model is
extended to include the inflationary epoch in the same grav-
itational Lagrangian. As shown in the paper, the additional
terms can reproduce the inflationary epoch and satisfy the
constraints from Planck data.

1 Introduction

Over the last decade, the study of some modifications of Gen-
eral Relativity have drawn a lot of attention, particularly in the
framework of cosmology as an attempt to provide a more nat-
ural explanation to the accelerating expansion at early times
(inflation) and at late times (dark energy epoch). In this sense,
the most simple and natural extension of GR arises as the
generalisation of the Hilbert–Einstein action by assuming a
non-linear function of the Ricci scalar, which is commonly
called f (R) gravity (for a review see [1–8]). Other exten-
sions include curvature invariants such as the Gauss–Bonnet
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gravity [9–13] or generalisations of the so-called Teleparallel
gravity, an equivalent theory to GR constructed as a gauge
theory of the translation group leading to a null-curvature the-
ory with non-null torsion (see Ref. [14–17]). Nevertheless,
f (R) gravities have been by far the most analysed exten-
sion of GR over the last years, also due to the motivation
as regards more fundamental theories as string theory [18].
This extensive study has provided a very deep knowledge and
comprehension of this type of theories, whose field equations
turn out fourth order differential equations instead of second
order as in GR. Nevertheless, f (R) gravities can easily be
reduced to a type of scalar–tensor theory, i.e. f (R) grav-
ity basically implies the appearance of an extra scalar mode
[19–21]. As every theory with extra propagating modes, this
may imply the existence of ghosts. Fortunately, this is not
the case in f (R) gravities. However, the extra scalar mode
may imply violations and deformations of well-known and
tested predictions of GR. In order to avoid large corrections at
scales where GR is very well tested, f (R) gravities can hide
such extra mode through a mechanism known as chameleon
mechanism, proposed initially in the framework of scalar–
tensor theories [22,23], but rapidly extended to f (R) gravi-
ties [24,25].

In addition, the versatility of f (R) gravities allows one
to reconstruct any cosmological solution with the suitable
evolution [26–35]. Then late-time acceleration may arise in
a natural way as a consequence of the gravitational theory
instead of being the aftermath of any extra unknown field.
Moreover, simultaneously f (R) gravities may contribute to
the compensation of the large value predicted by quantum
field theories for the vacuum energy density, and particularly
may play an essential role in the framework of the so-called
unimodular gravity theories. In this regard, f (R) gravity sce-
narios as an alternative to the �CDM-cosmology are inter-

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-017-5419-z&domain=pdf
mailto:odintsov@ice.csic.es
mailto:saez@ice.csic.es
mailto:sharov.gs@tversu.ru


862 Page 2 of 17 Eur. Phys. J. C (2017) 77 :862

esting and attractive, since they are able to describe simulta-
neously the early-time inflation and the late-time acceleration
in the expansion of our universe [19–21,25,36–39]. Partic-
ularly, some of the most promising inflationary models are
constructed within the f (R) gravity scenario, since some
of these models can easily reproduce slow-roll inflation by
mimicking a cosmological constant at early times and then
decaying, leading to a power spectrum for scalar perturba-
tions nearly invariant and a negligible scalar-to-tensor ratio,
coinciding with the last data released by the Planck collabora-
tion [40,41]. This is the case for instance of Starobinsky infla-
tion [42], a quadratic Lagrangian on the Ricci scalar that pre-
dicts the correct values for the spectral index and the scalar-
to-tensor ratio. Actually, some analysis suggest that any devi-
ation from Starobinsky inflation should be small enough to
avoid deviations from its well-established predictions [43].
Keeping this in mind, over the last years some efforts have
been focussed on the attempt to unify inflation and dark
energy epoch in the framework of f (R) gravities, and par-
ticularly within the so-called viable f (R) gravity models
[25]. As mentioned above, these viable models pass the well-
known local tests, where the scalar mode acquires a large
mass through the chameleon mechanism avoiding large cor-
rections with respect to GR. Hence, the local tests or the Solar
System tests for viable f (R) theories include correct Newto-
nian and post-Newtonian limit [24,25]. In addition, this type
of models are capable of reproducing the correct late-time
acceleration, in general by simulating an effective cosmo-
logical constant that becomes important at late times, while
�CDM behaviour is recovered at high redshift. Moreover,
these models provide good fits when compared with obser-
vational data, being almost indistinguishable from �CDM
[44]. However, viable f (R) gravities contain a type of future
cosmological singularity, the so-called sudden singularity, a
consequence directly related to the mass of the scalar field
that avoids corrections at local scales [45], although such sin-
gularity occurs in the future when the right parameters are set
and can be avoided by adding some extra terms. Moreover,
some extensions of such models are also capable of repro-
ducing inflation at early times, when tends asymptotically to
a power Lagrangian, leading to a Starobinsky-like inflation
keeping the right predictions [25].

In this paper, we focus on the analysis of a type of viable
f (R) models that reproduces late-time acceleration by mim-
icking a cosmological constant but where corrections may
have some distinguishable effects. This class of f (R) mod-
els are given by a negative exponential of the Ricci scalar
in the action, which turns out negligible at large redshifts
but becomes important at late times, an effect easily con-
trolled with a free parameter related to current Hubble param-
eter. Exponential gravity has been previously analysed in
Refs. [39,46–48] as a reliable alternative to other viable f (R)

gravities, since GR results are recovered at local scales but

reproduce dark energy behaviour at cosmological ones. In
addition, the previous analysis has shown the existence of an
asymptotically stable de Sitter solution in such exponential
Lagrangians, leading to an approximated �CDM behaviour
at the present time [47,48]. Moreover, some recent analysis
of such type of exponential gravities suggest that observa-
tional constraints can be well satisfied from the cosmological
point of view, in such a way that f (R) gravity and �CDM
model turn out nearly indistinguishable, as suggested by pre-
vious analysis [49–51]. In addition, exponential gravity can
be extended to cover the inflationary stage as well. To do
so, an additional exponential is considered in the gravita-
tional action becoming important at large curvature when
the inflationary period occurs, and turning out to be negli-
gible as curvature decreases [39,47]. Hence, in this paper
we analyse such a type of f (R) gravities, firstly by fitting
the free parameters of the model by using data from Type Ia
supernovae, baryon acoustic oscillations (BAO), estimations
of the Hubble parameter H(z) and parameters of the cosmic
microwave background radiation (CMB) [52–55], and also
considering different approaches. Then we analyse how the
full gravitational Lagrangian can cover also the inflationary
epoch, obtaining the spectral index for scalar perturbations
and the tensor-to-scalar ratio.

The paper is organised as follows: Sect. 2 reviews the
basics of f (R) gravities, while Sect. 3 is devoted to the
introduction of the exponential f (R) gravity model and its
dynamical equations. In Sect. 4 the observational data con-
sidered in the paper is shown, this includes Union 2.1 obser-
vations of Type Ia supernovae, BAO effects, the latest mea-
surements of the Hubble parameter H(z) and CMB parame-
ters. In Sect. 5 we estimate the constraints on the exponential
F(R) model from the aforementioned data. In Sect. 6 we
investigate the variant of the exponential model with infla-
tion terms in the Lagrangian. Finally Sect. 7 is devoted to the
conclusions of the paper.

2 F(R) gravity

Modified F(R) gravities are described by the following gen-
eralisation of the Einstein–Hilbert action [26–35]:

S = 1

2κ2

∫
d4x

√−g F(R) + Sm, (2.1)

where κ2 = 8πG and Sm is the matter action. Einstein Gen-
eral Relativity is very well understood and tested at many
scales, so that one should assume the action (2.1) to contain
slightly deviations from GR, such that we can rewrite the
action in the following way:

F(R) = R + f (R) . (2.2)
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Here, the function f (R) accounts for the gravitational mod-
ifications and should become negligible at scales where GR
is well tested. By varying the action (2.1) with respect to the
metric tensor gμν , the field equations are obtained:

FRRμν − F

2
gμν + (

gμνg
αβ∇α∇β − ∇μ∇ν

)
FR = κ2Tμν,

(2.3)

where R and Rμν are the Ricci scalar and Ricci tensor,
respectively, whereas FR ≡ F ′(R) and Tμν is the energy-
momentum tensor of matter. Note that the F(R) field equa-
tions are fourth order to be compared to the second order
of General Relativity. However, the action (2.1) hides an
additional scalar mode, such that it can be expressed by the
Lagrangian of a type of scalar–tensor theory as follows:

S = 1

2κ2

∫
d4x

√−g [φR − V (φ)] + Sm, (2.4)

where the following relations are found:

φ = FR , V (φ) = RFR − F. (2.5)

Hence, in order to avoid large deviations from GR, this addi-
tional degree of freedom should be hidden at the appropri-
ate scale, a mechanism commonly known as the chameleon
mechanism [22,23]. In this sense, some F(R) actions which
accomplish this requirement have been proposed in the lit-
erature [24,25], particularly some of them with the form
of a negative exponential, the type of Lagrangians we are
exploring in this manuscript. Nevertheless, let us first anal-
yse the general properties of F(R) gravities, and in partic-
ular in the cosmology framework. By assuming a spatially
flat Friedman–Lemaître–Robertson–Walker (FLRW) space-
time with the metric

ds2 = −dt2 + a2(t) dx2,

where a(t) is the scale factor of the universe, c = 1, and the
Ricci scalar is expressed as

R = 6(2H2 + Ḣ). (2.6)

Here, the Hubble parameter is defined as usual by H = ȧ/a,
where the dot denotes derivatives with respect to the cos-
mic time. By assuming an energy-momentum tensor Tμ

ν =
diag (−ρ, p, p, p) as a perfect fluid, where ρ and p are the
matter energy density and pressure, the field equations (2.3)
turn out to be [26–35]

H2FR + 1

6
(F − RFR) + H ḞR = 1

3
κ2ρ,

(2Ḣ + 3H2) FR + 1

2
(F − RFR)

+ 2H ḞR + F̈R = −κ2 p . (2.7)

While the divergence of the field equations lead to the energy
conservation equation ∇μTμν = 0, which in a FLRW metric
becomes

ρ̇ + 3H(ρ + p) = 0 . (2.8)

The FLRW equations (2.7) can be expressed in terms of
other independent variables instead of the cosmic time for
convenience. Here we use the number of e-folds, given by
x = log a = − log(z + 1) with a(t0) = 1 at the present time
t0, to express the above equations in the form of a dynamical
system as follows:

dH

dx
= R

6H
− 2H,

dR

dx
= 1

FRR

(
κ2ρ

3H2 − FR + RFR − F

6H2

)
,

dρ

dx
= −3(ρ + p). (2.9)

Here FRR ≡ F ′′(R) are derivatives with respect to x and we
have used the Ricci scalar definition Eq. (2.6) and the conti-
nuity equation (2.8). Hence, the analysis of the above system
can provide all the information as regards the dynamics pro-
duced by a particular action F(R).

3 Exponential gravity

Let us now introduce the type of exponential F(R) gravity,
we are considering in this manuscript [39,46–51]

F(R) = R − 2�

[
1 − exp

(
− R

R0

)]

= R − 2�

[
1 − exp

(
− β

R

2�

)]
. (3.1)

The model contains just two free parameters � and R0, which
may be expressed in a more convenient way as R0 = 2�/β,
where β is dimensionless [49–51],

β = 2�/R0.

Note that in principle the model (3.1) can well describe
the universe evolution for z < 104, including the recom-
bination epoch, the matter-dominated era and the late-time
acceleration. This is true as far as β ≥ 0, since the expo-
nential becomes negligible and the action (3.1) recovers the
usual �CDM model at large redshifts, where the curvature
becomes much larger than �. In Sect. 6 we will also consider
corrections to this model such that early-time inflation is also
described.

Here we focus on the epoch for 0 ≤ z ≤ 104, when
the content of the universe includes pressureless (non-
relativistic) matter and radiation (relativistic particles): ρ =
ρm +ρr , such that the continuity equation (2.8) can be solved
and yields
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ρ = ρ0
ma

−3 + ρ0
r a

−4, (3.2)

where ρ0
m and ρ0

r are the present time values of these com-
ponents, which can be normalised over the critical density as
follows:


i = ρ0i
3
κ2 H

2
0

. (3.3)

Here H0 is the Hubble parameter today. Let us first explore
the behaviour of model (3.1) during the early universe, when
the curvature becomes large R → ∞ as z → ∞ (or for
z ≥ 104 in practical applications). Then the model (3.1)
transforms into the �CDM model with F(R) = R − 2�,
so the solutions of the system (2.9) tend asymptotically to
�CDM at large redshifts, leading to

H2

(H�CDM
0 )2

= 
�CDM
m

(
a−3 + X�CDMa−4) + 
�CDM

� ,

R

2�
= 2 + 
�CDM

m

2
�CDM
�

a−3, a → 0. (3.4)

Here the index “�CDM” refers to quantities calculated
within the �CDM model, where 
�CDM

� = �

3(H�CDM
0 )2 and

H�CDM
0 the Hubble parameter today as predicted by the

�CDM model, while X = 
r/
m . However, despite the
model (3.1) recovering �CDM at large redshifts, late-time
evolution deviates from �CDM, such that the above quan-
tities as measured today, t = t0, would differ from �CDM
unless initial conditions are fixed at z = 0, which is not the
case of our paper. Note that other viable f (R) models shows
a similar behaviour when they are analysed asymptotically
[24]. Hence, we have in general

H0 
= H�CDM
0 , 
0

m 
= 
�CDM
m ,

where we have denoted by 0 those magnitudes measured
today as predicted by our model (3.1). Nevertheless, we can
connect the two models through the relation of the physical
matter density [24]


0
mH

2
0 = 
�CDM

m (H�CDM
0 )2 = κ2

3
ρm(t0). (3.5)

As will be shown below, this remark is important when per-
forming the fitting analysis for the observable parameters in
Sect. 4. Moreover, note that the first FLRW Eq.(2.7) for the
�CDM model is a constraint equation which evaluated at
t = t0 can be expressed as follows:


�CDM
m + 
�CDM

� = 1 . (3.6)

This expression is very well known in standard cosmology
when GR is assumed but breaks down when other gravita-
tional actions beyond GR are considered, like F(R) gravity.

In such a case, the first FLRW equation becomes a dynami-
cal equation, since it contains second derivatives of the Hub-
ble parameter. By evaluating the FLRW equation in (2.7) at
z = 0, the above equation can be expressed as


0
m + 
0

� = 1 − 
0
f (R0)

. (3.7)

Note that here we have defined 
0
� = �

3H2
0

, which refers

to the cosmological constant term in the action (3.1), while

0

f (R) includes the exponential function in (3.1). The smaller


0
f (R) is, the closer our model is to �CDM at the present

time, where Eq. (3.7) is evaluated. Nevertheless, note that our
model recovers �CDM asymptotically at high redshifts (z >

10) such that the differences among the relative densities

i (z) become negligible in both models at high redshifts.

Let us now, for convenience in the calculations, introduce
the following dimensionless variables:

E = H

H�CDM
0

, R = R

2�
. (3.8)

Hence, the gravitational action (3.1) becomes

F(R) = 2�(R − 1 + e−βR),

while the system of equations (2.9) takes the form

dE

dx
= 
�CDM

�

R
E

− 2E, (3.9)

dR
dx

= eβR

β2

[

�CDM

m
a−3 + X�CDMa−4

E2 − 1 + βe−βR

+ 
�CDM
�

1 − (1 + βR) e−βR

E2

]
. (3.10)

Recall that the variable x = log a = − log(z + 1) refers to
the number of e-folds. This system can be solved numerically
by setting the appropriate initial conditions. As is natural for
the model (3.1), we assume initial conditions that match the
�CDM model at a particular high redshift:

E2(xi ) = 
�CDM
m

(
e−3xi + X�CDMe−4xi

) + 
�CDM
� ,

R(xi ) = 2 + 
�CDM
m

2
�CDM
�

e−3xi , (3.11)

which corresponds to the �CDM asymptotic solution (3.4)
at an initial redshift zi , or alternatively at xi . The value of xi
is determined by assuming the following condition:

e−βR(xi ) = ε

⇐⇒ xi = 1

3
log

β
�CDM
m

2
�CDM
� (log ε−1 − 2β)

, (3.12)

where ε is a small number in the range 10−10 < ε < 10−7,
such that our model mimics the �CDM solution (3.4) at
x < xi , and the corresponding solutions practically do not
depend on ε or xi for all x .
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Alternatively, we can also use the following variable [24,
47,49–51]:

yH = 3H2

κ2ρ0
m

− a−3 − X�CDMa−4. (3.13)

Then the equation for H in (2.9) can be rewritten as follows:

dyH
dx

= −4yH + 2

�CDM

�


�CDM
m

R − e−3x ,

yH (xi ) = 
�CDM
�


�CDM
m

, (3.14)

where the second expression corresponds to the initial condi-
tion (3.11). The advantage of the function yH and its deriva-
tive (3.14) lies on their finiteness at z → ∞ (x → −∞).
However, the same does not apply for Eq. (3.10), since
yR = 3(κ2ρ0

m)−1R − 3a−3 is not finite for every redshift.
Hence, numerical integration of the system Eq. (3.14) or
the corresponding second order differential equation for yH
shows similar difficulties to the system (3.9) and (3.10).

4 Observational data

Let us now present the data we are using here to fit the free
parameters of our model. Besides the late-time evolution data
from SNe Ia, BAO and H(z), we are also considering the
CMB parameters. Then, to do so, we have to include radiation
in our equations, or in other words, assuming Eq. (3.11), or
alternatively Eq. (3.14). As our model mimics �CDM at high
redshifts, we can reduce the number of free parameters by
fixing the radiation–matter ratio as provided by Planck [55]:

X = 
r


m
= 2.9656 · 10−4 . (4.1)

Hence, our model contains four free parameters (3.1):

β, 
�CDM
m , 
�CDM

� and H�CDM
0 . (4.2)

Recall that the Hubble parameter differs from the true Hubble
constant H0 = H�CDM

0 E
∣∣
z=0, as well as the density parame-

ters 
0
mH

2
0 = 
�CDM

m (H�CDM
0 )2. Nevertheless, the Hubble

constant H�CDM
0 can be considered as a nuisance parameter,

so that can be marginalized for all fits.
Here, we use the catalogue provided by the Union 2.1

data, which contains 580 points from Type Ia Supernovae
(SNe Ia) [52]. BAO data described in Table 1, Refs. [56–74].
We also use 30 estimations of the Hubble parameter H(z)
measured from differential ages of galaxies and summarised
in Table 2, [75–80]. Finally, the CMB parameters are con-
sidered from the Planck mission [55]. In order to proceed
with the analysis we use the technique of the minimum χ2,
which establishes the best set of the parameters. To do so,
we use a two-dimensional grid, such that the number of free

Table 1 Values of dz(z) = rs(zd )/DV (z) and A(z) (4.5) with errors
and references

z dz(z) σd A(z) σA Refs. Survey

0.106 0.336 0.015 0.526 0.028 [68] 6dFGS

0.15 0.2232 0.0084 – – [73] SDSS DR7

0.20 0.1905 0.0061 0.488 0.016 [66,69] SDSS DR7

0.275 0.1390 0.0037 – – [66] SDSS DR7

0.278 0.1394 0.0049 – – [67] SDSS DR7

0.314 0.1239 0.0033 – – [69] SDSS LRG

0.32 0.1181 0.0026 – – [62] BOSS DR11

0.35 0.1097 0.0036 0.484 0.016 [66,69] SDSS DR7

0.35 0.1126 0.0022 – – [70] SDSS DR7

0.35 0.1161 0.0146 – – [59] SDSS DR7

0.44 0.0916 0.0071 0.474 0.034 [69] WiggleZ

0.57 0.0739 0.0043 0.436 0.017 [60] SDSS DR9

0.57 0.0726 0.0014 – – [62] SDSS DR11

0.60 0.0726 0.0034 0.442 0.020 [69] WiggleZ

0.73 0.0592 0.0032 0.424 0.021 [69] WiggleZ

2.34 0.0320 0.0021 – – [65] BOSS DR11

2.36 0.0329 0.0017 – – [64] BOSS DR11

Table 2 Hubble parameter values H(z) with errors σH from Refs. [75–
80]

z H(z) σH Refs. z H(z) σH Refs.

0.070 69 19.6 [78] 0.4783 80.9 9 [80]

0.090 69 12 [75] 0.480 97 62 [76]

0.120 68.6 26.2 [78] 0.593 104 13 [77]

0.170 83 8 [75] 0.6797 92 8 [77]

0.1791 75 4 [77] 0.7812 105 12 [77]

0.1993 75 5 [77] 0.8754 125 17 [77]

0.200 72.9 29.6 [78] 0.880 90 40 [76]

0.270 77 14 [75] 0.900 117 23 [75]

0.280 88.8 36.6 [78] 1.037 154 20 [77]

0.3519 83 14 [77] 1.300 168 17 [75]

0.3802 83 13.5 [80] 1.363 160 33.6 [79]

0.400 95 17 [75] 1.430 177 18 [75]

0.4004 77 10.2 [80] 1.530 140 14 [75]

0.4247 87.1 11.2 [80] 1.750 202 40 [75]

0.445 92.8 12.9 [80] 1.965 186.5 50.4 [79]

parameters (4.2) is reduced to two, either by theoretical con-
siderations or through marginalisation.

4.1 Supernovae Ia data

The Union 2.1 compilation provides [52] NSN = 580 Sne Ia
with their observed (estimated) distance moduli μi = μobs

i
for redshifts zi in the interval 0 ≤ zi ≤ 1.41. In order to fit
the free parameters of our model, we compare μobs

i with the
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theoretical value μth(zi ), where the distance moduli is given
by

μ(z) ≡ μth(z) = 5 log10
DL(z)

10pc
,

DL(z) = c(1 + z)
∫ z

0

dz̃

H(z̃)
. (4.3)

Here DL(z) is the luminosity distance. The corresponding χ2

function is calculated by computing the differences between
the SNe Ia observational data and the predictions of a partic-
ular model with parameters p1, p2, . . . ,

χ2
SN (p1, p2, . . . ) = min

H0

NSN∑
i, j=1

�μi
(
C−1
SN

)
i j�μ j , (4.4)

where �μi = μth(zi , p1, . . . ) − μobs
i , CSN is the 580 ×

580 covariance matrix [52]. The marginalisation over the
nuisance parameter H�

0 is widely described in the literature
(see Refs. [81–83]).

4.2 BAO data

Baryon acoustic oscillations (BAO) are obtained from galaxy
clustering analysis and include measurements of two cosmo-
logical parameters [53]

dz(z) = rs(zd)

DV (z)
, A(z) = H0

√

0

m

cz
DV (z), (4.5)

where rs(zd) is the sound horizon at the decoupling epoch
and DV (z) is given by

DV (z) =
[

czD2
L(z)

(1 + z)2H(z)

]1/3

.

The values (4.5) were estimated for redshifts z = zi (and red-
shift ranges) of galaxies from a peak in the correlation func-
tion of the galaxy distribution at the comoving sound horizon
scale rs(zd), which corresponds to the decoupling of the pho-
tons zd . In this paper we use the BAO data from Refs. [56–74]
for the parameters (4.5), which provides NBAO = 17 data
points for dz(z) and 7 data points for A(z), both shown in
Table 1. We use the covariance matricesCd andCA for corre-
lated data from Refs. [66,69] described in detail in Ref. [81].
So the χ2 function for the values (4.5) yields

χ2
BAO(p1, p2, . . . ) = �d · C−1

d (�d)T + �A · C−1
A (�A)T ,

(4.6)

where �d and �A are vector columns with �di = dobs
z (zi )−

d th
z (zi ) and �Ai = Aobs(zi ) − Ath(zi ).

As pointed out above, the Hubble parameter today H0 as
predicted by our model (3.1) differs from the one predicted

by the �CDM model H�CDM
0 , which is considered here as

a free parameter. Both are related by the expression H0 =
H�CDM

0 E(t0). However, the theoretical values of dz and A
(4.5) do not contain H0, since the distances DL (4.3), DV and
rs(zd) are proportional to H−1

0 . In the expression for A(z) we
can use the equivalence (3.5) H0

√

0

m = H�CDM
0

√

�CDM

m .
All these considerations have to be carefully studied in

order to choose the appropriate approach to calculating the
sound horizon rs(zd) from different fitting formulae [50,74,
84,85]. Here we are considering the following simple fitting
formula [81]:

rs(zd) = 104.57Mpc

h
, h = H0

100km/(s · Mpc)
, (4.7)

with explicit h dependence. For the �CDM model, one
obtains (rd · h) f id = 104.57 ± 1.44 Mpc as the best fit
(see Ref. [81] ). Other approaches give the same predictions
as using Eq. (4.7); see Ref. [74].

4.3 H(z) data

The Hubble parameter values H at certain redshifts z can
be measured with two methods: (1) extraction of H(z) from
line-of-sight BAO data [56–65] and (2) making H(z) estima-
tions from differential ages �t of galaxies [75–80] via the
following relation:

H(z) = ȧ

a
 − 1

1 + z

�z

�t
.

To avoid additional correlation with the BAO data from
Table 1, we use in this paper only NH = 30 values H(z)
estimated from differential ages of galaxies, shown in Table 2.
The theoretical values H th(zi , p1, . . . ) naturally depend on
H0. so the χ2 function is marginalized over H0 [86]:

χ̃2
H =

NH∑
i=1

[
Hobs(zi ) − H th(zi , p j )

σH,i

]2

,

χ2
H = min

H0
χ̃2
H . (4.8)

4.4 CMB data

Unlike the SNe Ia, BAO and H(z) data described above,
corresponding to the late-time era 0 < z ≤ 2.36, cosmolog-
ical observations associated with CMB radiation [74,84,85]
include parameters at the photon-decoupling epoch z∗ 
1090 (z∗ = 1089.90 ± 0.30 [55]), particularly the comoving
sound horizon rs(z∗) and the transverse comoving distance,
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rs(z) = 1√
3

∫ 1/(1+z)

0

da

a2H(a)

√
1 + [

3
0
b/(4
0

r )
]
a

,

DM (z∗) = DL(z∗)
1 + z∗

= c
∫ z∗

0

dz̃

H(z̃)
. (4.9)

In the present manuscript, we use the CMB parameters in the
following form [84,85]:

x = (
R, �A, ωb

) =
(√


0
m
H0DM (z∗)

c
,

πDM (z∗)
rs(z∗)

, 
0
bh

2
)

(4.10)

with the estimations (distance priors) from Ref. [85]

RPl = 1.7448 ± 0.0054, �PlA = 301.46 ± 0.094,

ωPl
b = 0.0224 ± 0.00017. (4.11)

Here 
0
b is the present time baryon fraction. The distance

priors (4.11) with their errors σi and the covariance matrix

CCMB = ‖C̃i jσiσ j‖, C̃ =
⎛
⎝ 1 0.53 −0.73

0.53 1 −0.42
−0.73 −0.42 1

⎞
⎠

were derived in Ref. [85] from the Planck collaboration data
[55] with free amplitude of the lensing power spectrum. For
the value z∗ we use the fitting formula from Refs. [84,85,87];
the sound horizon rs(z∗) is estimated from Eq. (4.9) as the
correction �rs = drs

dz �z.
Hence, the χ2 function corresponding to the data (4.10)–

(4.11) is obtained as follows:

χ2
CMB = min

H0,ωb
χ̃2

CMB,

χ̃2
CMB = �x · C−1

CMB

(
�x

)T
, �x = x − xPl , (4.12)

which is minimised by marginalizing over the additional
parameter ωb = 
0

bh
2, which should be considered as a nui-

sance parameter, as well as over H0 or H�CDM
0 . However, for

the joint analysis of H(z) and CMB data, the marginalisation
over H0 is calculated simultaneously:

χ2
H + χ2

CMB = min
H0

(
χ̃2
H + min

ωb
χ̃2

CMB

)
. (4.13)

Let us now present the results for the f (R) model considered
here.

5 Testing exponential F(R) gravity

By considering the SNe Ia, H(z), BAO and CMB data illus-
trated in the previous section, the above exponential model
is well constrained. Here, we calculate these limitations and
the best-fitted values of the parameters for the exponential
F(R) model (3.1). After marginalizing over H0 (and over

ωb for the CMB data in χ2
CMB), the F(R) model (3.1) has

three free parameters: β, 
�CDM
m and 
�CDM

� . Recall that
they differ from 
0

m and 
0
�, these values are connected


0
m = 
�CDM

m /E2(0) and 
0
� = 
�CDM

� /E2(0), as shown
above in Eq. (3.5). Consequently, the sum 
0

m + 
0
� = 1 −


0
f (R) 
= 1 as given in (3.7). The sum (3.6) 
�CDM

m +
�CDM
�

is also not equal 1 in general for the considered F(R) model.
However, firstly let us assume the following condition:


�CDM
m + 
�CDM

� = 1. (5.1)

This means that the model is assumed to be close to
�CDM. This assumption relaxes the difficulties to fit the
free parameters, since the free parameters of the model can
be automatically reduced, leading to two free parameters: β

and 
�CDM
m .

The results are depicted in Fig. 1 where the 1σ , 2σ and 3σ

regions are shown in the contour plots for the 
�CDM
m − β

plane (the top-left panel) and for the 
0
m − β plane (the top-

right panel). The magenta contours correspond to χ2
�3 =

χ2
SN + χ2

H + χ2
BAO whereas the black lines describe χ2

tot =
χ2
SN + χ2

H + χ2
BAO + χ2

CMB.
At each point in the 
�CDM

m −β plane, or in other words,
for given values of β, 
�CDM

m (and 
�CDM
� = 1 −
�CDM

m ),
the differential equations (3.9), (3.10) are solved by assuming
the �CDM model as the initial conditions at high redshift
(3.11). Then, once the solution E(x) is determined for each
set of the free parameters, the χ2 functions: χ2

SN (4.4), χ2
BAO

(4.6) are obtained. Furthermore, by considering the function
H(z) = H�CDM

0 E(z), we calculate then the χ2
H and the

χ2
CMB by marginalizing over H�CDM

0 (and overωb forχ2
CMB),

or, in other words, keeping H�CDM
0 as a nuisance parameter,

which avoids further bias on the results, so that we obtain the
optimal value H�CDM

0 (for these fixed β and 
�CDM
m ) and

calculate the corresponding values H0 = H�CDM
0 E(0) and


0
m = 
�CDM

m (H�CDM
0 /H0)

2 from Eqs. (3.8) and (3.5); see
Ref. [88].

By following this procedure, we can calculate 
0
m at each

point and draw the contour plots in the 
0
m − β plane, as

shown in the top-right panel of Fig. 1. These calculations
were made separately for SNe+H(z)+BAO data (the filled
contours) and for SNe+H(z)+BAO+CMB data (the black
contours). The difference between the 
�CDM

m −β panel and
the 
�CDM

m −β planel is clearly shown for small β, while in
the limit β → ∞ the model (3.1) tends to the �CDM, where

�CDM

m and 
0
m coincide.

In the bottom-left panel of Fig. 1 the one-dimensional
dependencies of χ2

min on 
�CDM
m are shown for χ2

tot =
χ2
SN + χ2

H + χ2
BAO + χ2

CMB (the black dash-dotted line), for
χ2
SN +χ2

H +χ2
BAO (the solid magenta line) and for χ2

SN +χ2
H

(the green dashed line). The latter is not depicted in the upper
panels, however, for all three cases, the one-dimensional dis-
tributions f (
�CDM

m ) are calculated from the corresponding
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Fig. 1 Upper panels: contour plots for the free parameters of the expo-
nential F(R) model (3.1) when assuming 
�CDM

m + 
�CDM
� = 1, the

left panel shows the 
�CDM
m −β plane while the 
0

m−β plane is depicted

in the right panel. Bottom panels: the one-dimensional dependencies of
χ2

min with respect to 
�CDM
m (left panel) and to β (right panel)

two-dimensional matrices describing the contours in the top-
left panel. Hence, under the restriction (5.1), the dependence
of χ2

tot with respect to the CMB data (4.10)–(4.11) on 
�CDM
m

is very strong (unlike for the late-time SNe + H(z) + BAO
data χ2

�3 = χ2
SN + χ2

H + χ2
BAO).

Similarly, the one-dimensional dependency of χ2
min on β

(calculated from the two-dimensional matrices χ2(
�CDM
m −

β)) are depicted at the bottom-right panel of Fig. 1. Under the
restriction (5.1) for all χ2 functions, the absolute minimum is
achieved at the limit β → ∞, in other words, at the “�CDM”
limit of the model (3.1).

This conclusion may be illustrated in another way: the
curves of the bottom-left panel of Fig. 1 will coincide with
the ones for the flat �CDM model, since these minima are
achieved at large β, where 
�CDM

m coincide with 
0
m .

While in the bottom-right panel of Fig. 1, one can see
the unusual behaviour of the one-dimensional distributions
χ2

tot(β) and χ2
�3(β): these functions have the local minima

at β  0.4. These minima are not shown in the top panels
of Fig. 1, because they lie beyond the 3σ confidence levels.

However, suitable level lines of χ2 =const show these local
minima as “islands” in the 
�CDM

m −β or 
0
m−β planes. For

instance, the corresponding coordinates or optimal values for
χ2

�3(

�CDM
m , β) are 
�CDM

m  0.252, β  0.415.
Furthermore, let us now consider the model (3.1) for its

general case (3.7) beyond the restriction (5.1) 
�CDM
m +


�CDM
� = 1. In this case the model has three free parame-

ters: β, 
�CDM
m and 
�CDM

� (or alternatively 
0
m and 
0

�).
So in order to calculate the corresponding χ2, the value of the
three parameters has to be given before solving numerically
the system (3.9), (3.10) with the initial conditions (3.11),
as described above. In this case every χ2 function (after
marginalisation over H�CDM

0 and ωb for χ2
H and χ2

CMB) will
depend on β, 
�CDM

m and 
�CDM
� .

Hence, when we draw the contour plots for χ2
�3 and χ2

tot
in the 
�CDM

m − β plane in the top-left panel of Fig. 2,
we minimize these functions over 
�CDM

� at each point of
the plane. In other words, we calculate χ2

min(

�CDM
m , β) =

min

�CDM

� ,H0,ωb

χ2 for χ2
�3 and χ2

tot.
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Fig. 2 General case where 
�CDM
m +
�CDM

� 
= 1. Upper panels: con-
tour plots for 
�CDM

m −β (left panel) and 
0
m −β (right panel). Bottom

plots: one-dimensional distributions for χ2
tot (solid black lines) and for

χ2
�3 (solid blue lines and filled contours) are compared with the ones

from Fig. 1 for χ2
�3 (magenta lines) and for χ2

tot (thin black dash-dotted
lines)

Table 3 Predictions of the
exponential F(R) model (3.1)
and the �CDM for different
data sets
(χ2

�3 = χ2
SN + χ2

H + χ2
BAO ,

χ2
tot = χ2

�3 + χ2
CMB ): min χ2

and 1σ estimates of model
parameters

Model Data 
�CDM
m 
0

m 
�CDM
� β Minχ2/d.o. f

F(R) (3.1) χ2
�3 0.282+0.010

−0.009 0.285+0.012
−0.010 0.696+0.025

−0.037 3.36+∞
−2.16 572.07 / 631

F(R) (3.1) χ2
tot 0.280+0.001

−0.001 0.294+0.009
−0.007 0.637+0.047

−0.062 2.38+∞
−0.80 575.51 / 634

�CDM χ2
�3 = 
0

m 0.282+0.010
−0.009 0.718+0.009

−0.010 ∞ 572.93 / 633

�CDM χ2
tot = 
0

m 0.2772+0.0003
−0.0004 0.7228+0.0004

−0.0003 ∞ 583.24 / 636

At each point of the 
�CDM
m , β plane, the minima of the

χ2
�3 and χ2

tot functions are calculated, also the optimal values
of the free parameters 
�CDM

� , H�CDM
0 , H0 = H�CDM

0 E(0)

and 
0
m = 
�CDM

m /[E(0)]2 are obtained. These values help
us to draw the contour plots in the 
0

m, β plane in the top-right
panel of Fig. 2.

The same panels and notations of Fig. 1 are used in Fig. 2,
but the blue contours corresponds to χ2

�3(

�CDM
m , β) in

Fig. 2 while the blue lines refer to the one-dimensional dis-
tributions χ2

�3 min(

�CDM
m ) and χ2

�3 min(β) in the bottom

panels of Fig. 2. In order to compare these results with those
obtained under the approximation (5.1), the curves of Fig. 1
are depicted as well, denoted by magenta lines for χ2

�3 min
and by thin black dash-dotted lines for χ2

tot min (in the bottom
panels).

The black stars in Fig. 2 denote the minimum points
of the two-dimensional distributions χ2

tot(

�CDM
m , β) and

χ2
tot(


0
m, β). Their coordinates (the optimal values of param-

eters) are tabulated in Table 3. In the same way, the minimum
points for χ2

�3 are shown as the blue circles.
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Fig. 3 The top panels in the logarithmic scale illustrate the dependence
of E = H/H�CDM

0 , ρ/ρ0
m (the blue dots) and R = R/(2�) on a for

the F(R) model (3.1) (the black solid lines) and for the �CDM (the

red dashed lines). The corresponding plots E(z), ρ(z)/ρ0
m and R(z) in

the usual scale are shown at the bottom panels. For both models the
parameters are from Table 3 for χ2

tot

The contour plots in Fig. 2 demonstrate that the model
(3.1) in absence of the approximation (5.1), and with the free
parameters β, 
�CDM

m and 
�CDM
� the regions of 1σ , 2σ or

3σ confidence level in the 
�CDM
m − β plane are essentially

enlarged in comparison with Fig. 1. Particularly, for χ2
�3

the 1σ domains (the blue filled contours) occupies the range
β > 0.91, whereas under the restriction (5.1) (the magenta
contours in Figs. 1 and 2) the range is β > 2.8. For the joint
function χ2

tot (the black contours) these areas are larger in the
β direction and wider in the 
�CDM

m direction, especially for
the parameter 
0

m , as shown in the top-right panel of Fig. 2.
These enlarged domains of suitable model parameters

include the above-mentioned “islands” or local minima of
χ2

�3 and χ2
tot functions existed under the restriction (5.1).

This effect is hidden in the top panels of Fig. 2 (it is beyond
the 3σ confidence level), but it is shown in the bottom-right
panel, where the local minima at β  0.4 from Fig. 1 (for the
magenta and black dash-dotted lines) are naturally included
in the general behaviour of χ2

�3 (the blue line) and χ2
tot (the

solid black line). These one-dimensional distributions deter-
mine the optimal values and 1σ errors of the parameter β;
this information is included in Table 3, where the absolute
minima of χ2 and the mean of the model parameters are
provided.

The optimal values and 1σ errors for 
�CDM
m in Table 3

are deduced from the one-dimensional distributions χ2
min

(
�CDM
m ). They are shown in the bottom-left panel of Fig. 2

as the solid black and blue curves in comparison with the
corresponding plots for the case 
�CDM

m +
�CDM
� = 1 (the

dash-dotted and magenta lines; they are taken from Fig. 1).
The latter distributions coincide with the predictions of the
�CDM model.

One can conclude from Table 3 (and Fig. 2) that the abso-
lute minima for the F(R) model (3.1) χ2

�3  572.07 and
χ2

tot  575.51 are smaller than the ones for �CDM model
(572.93 and 583.24 respectively). Such a difference lies in
the existence of degrees of freedom for the model (3.1).

In Fig. 3 we demonstrate how the numerical solution of the
system (3.9), (3.10) behaves (the black solid lines in the phase
space diagram) in comparison with the �CDM model (the
red dashed lines). We show the plots for the Hubble param-
eter E = H/H�CDM

0 and the Ricci scalar R = R/(2�)

(in the right panels) depending on a in the top panels with
the logarithmic scale and the same plots E(z), R(z) (with
z instead of a) in the usual scale in the bottom panels. The
model parameters for both models are taken from Table 3;
they are optimal for χ2

tot.
One can see that for the optimal parameters the F(R)

and �CDM models demonstrate rather close dynamics of
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�3

(solid blue lines and filled contours). The red lines correspond to the �CDM model
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Fig. 5 Luminosity distance (left panel) and Hubble parameter (right panel) for the best fit when considering the general case described by (3.7)
for the model (3.1). The best fit for �CDM is also depicted

the Hubble parameter E with the small future divergence for
a > 1. The plots for the density ρ/ρ0

m (the blue dots) are the
same for both models.

For the parameter 
�CDM
� , the optimal values and 1σ

errors in Table 3 were found after preliminary calculation
of two-dimensional distributions χ2(
�CDM

m ,
�CDM
� ) for

χ2
�3 and χ2

tot. The contour plots for these two-dimensional
distributions and the corresponding one-dimensional plot for
χ2

min(

�CDM
� ) = min

β,
�CDM
m

χ2 are depicted in Fig. 4 with the

same notations. We see that the CMB data (4.10–4.11) for
χ2

tot essentially restrict the 1σ bounds of 
�CDM
m in compari-

son with the χ2
�3 function for SNe+ H(z)+BAO data. This

is also connected with the factor
√


0
m in the parameter R

(4.10) and the narrow restrictions (4.11). The minimum value
for χ2

tot(

�CDM
m ,
�CDM

� ) (the black star in Fig. 4) is shifted
lower from the “�CDM line” 
�CDM

� + 
�CDM
m = 1.

In the right panel of Fig. 4 we compare the predictions
of the F(R) model (3.1) and the �CDM model, where

�CDM

� ≡ 
0
� = 1 − 
0

m . The �CDM dependencies
χ2(
0

�) coincide with their analogs for the model (3.1) under
the restriction (5.1) 
�CDM

m + 
�CDM
� = 1 (after minimis-

ing over β). In the �CDM case, the 1σ errors are essentially
smaller. Finally, Fig. 5 shows the evolution of the luminos-
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ity distance and the Hubble rate for the exponential grav-
ity model and for �CDM for their best fits. As shown, both
curves fit the data similarly, such that the two models become
indistinguishable.

6 Exponential model and inflation

The exponential F(R) model (3.1) considered in the previ-
ous sections, describes all observational manifestations of
the late-time acceleration. However, such a model can also
explain the early-time inflation when introducing some suit-
able modifications in the form of F(R) as follows [47]:

F(R) = R − 2�

[
1 − exp

(
− β

R

2�

)]

−�i

[
1 − exp

(
−

( R

Ri

)n)]
+ γ Rα. (6.1)

These additional terms can generate the expected cosmolog-
ical constant �i during the inflationary era, when R is near or
larger than Ri . The natural number n > 1 helps to avoid the
effects of inflation during the matter era when R � Ri and
the last termγ Rα in Eq. (6.1) is necessary for a successful exit
from inflation. As pointed out in Ref. [47], the model (6.1)
has the following properties: a de Sitter phase naturally arises
during inflation in the high-curvature regime, the inflationary
terms become negligible in the small curvature era R � Ri ,
inflation ends successfully and avoids anti-gravity effects and
instabilities during the matter era. To satisfy all these prop-
erties, the following requirements are obtained over the free
parameters:

2 < α < 3 , n > α , Ri = 2�i , γ  �1−α
i ,

(6.2)

where �i can vary in the range

�i

�
= 1086 − 10104. (6.3)

In addition, inflation occurs when R � Ri , where an
unstable de Sitter point R = RdS arises in the phase space,
if the condition [47]

G(RdS) = 0 (6.4)

for the function

G(R) = 2F(R) − RFR

is satisfied. The condition (6.4) may be deduced, if we search
a de Sitter solution R = RdS = const, H = const of the
system (2.9) before the matter era.

If RdS/Ri > 1.5, we can neglect the e−(R/Ri )n terms in
G(R) and the condition (6.4) for de Sitter solutions takes the
form

RdS − (α − 2)γ Rα
dS − 2�i = 0 , (6.5)

Here the constant γ in Eq. (6.1) is expressed as γ =
(��i )

1−α . In Ref. [47] the de Sitter solution with parameters
n = 4, γ = (4�i )

1−α , α = 5/2, RdS = 4�i was consid-
ered. The corresponding values here are � = 4, RdS = ��i

with α = 5/2 satisfy the condition (6.5). However, below we
analyse a wider set of inflationary solutions which obey the
observational limitations for the slow-roll parameters.

Let us now focus on the realisation of slow-roll inflation
within the model (6.1) and its predictions. In order to do so,
the scalar–tensor counterpart of F(R) gravities is more con-
venient than its original action, such that the F(R) gravities
can be expressed in terms of a scalar field as shown in (2.4)
and (2.5). By varying the action (2.4) with respect to the
scalar field φ, it yields

R − ∂V (φ)

∂φ
= 0 → φ = φ(R)

→ F(R) = φ(R)R − V (φ(R)). (6.6)

Here recall that the relations of Eq. (2.5) for the scalar field
and its potential hold:

φ = FR , V (φ) = RFR − F.

In order to analyse slow-roll inflation for the model (6.1), the
action (2.4) can be transformed into the Einstein frame by
the following conformal transformation:

g̃μν = 
2gμν where 
2 = φ . (6.7)

The action (2.4) turns out to be

S̃ =
∫

d4x
√−g̃

[
R̃

2κ2 − 1

2
∂μφ̃ ∂μφ̃ − Ṽ (φ̃)

]
. (6.8)

Here, we have redefined the scalar field to keep the kinetic
term in a canonical form:

φ = e

√
2
3 κφ̃

, Ṽ = e−2
√

2
3 κφ̃

2κ2 V . (6.9)

The FLRW equations for the action (6.8) become simpler
than working directly on the F(R) action:

3

κ2 H
2 = 1

2
˙̃
φ2 + Ṽ (φ̃) ,

− 1

κ2

(
3H2 + 2Ḣ

)
= 1

2
˙̃
φ2 − Ṽ (φ̃) , (6.10)

whereas the scalar field equation is given by

¨̃
φ + 3H ˙̃

φ + V ′(φ̃) = 0 . (6.11)

During slow-roll inflation the scalar field mimics an effective

cosmological constant, what basically means that H ˙̃
φ � ¨̃

φ

and Ṽ � ˙̃
φ2. Both conditions can also be expressed through
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the so-called slow-roll parameters

ε = 1

2κ2

(
Ṽ ′(φ̃)

Ṽ (φ̃)

)2

, η = 1

κ2

Ṽ ′′(φ̃)

Ṽ (φ̃)
. (6.12)

These quantities remain very small when inflation occurs
such that ε � 1 and η < 1, while at the end of inflation
ε � 1. In addition, the slow-roll parameters (6.12) are related
to the amplitude and scale dependence of the perturbations
originated during inflation, such that the spectral index of the
perturbations and the tensor-to-scalar ratio, are given by

ns − 1 = −6ε + 2η , r = 16ε. (6.13)

Since both values are very well constrained by the last data
from Planck and Bicep2 collaborations [40,41], which give

ns = 0.968 ± 0.006, r < 0.07. (6.14)

Then we can test whether the model (6.1) is capable to sat-
isfy such constraints. Firstly, let us analyse the action (6.1),
as during inflation, R � �i , the action (6.1) can be approx-
imated as follows:

F(R) ∼ R − �i + γ Rα. (6.15)

Then, by Eq. (6.9), the relation among the scalar field and
the curvature is obtained:

R = ��i

⎛
⎝−1 − e

√
2
3 κφ̃

α

⎞
⎠

1
α−1

. (6.16)

Here recall that γ = (��i )
1−α . During inflation R � �i ,

and consequently κφ̃ � 1, so Eq. (6.16) can be approximated
by

R ∼ ��i

⎛
⎝e

√
2
3 κφ̃

α

⎞
⎠

1
α−1

. (6.17)

The scalar potential yields

Ṽ (φ̃) = �i

2κ2

1 + �(α − 1)

(
e
√

2
3 κφ̃

α

) α
α−1

e2
√

2
3 κφ̃

. (6.18)

Inflation usually requires a number of e-foldings N  55–65,
which is defined as

N ≡
∫ tend

tstart

H̃dt. (6.19)

Applying the slow-roll approximation to the above relation
(6.19), the number of e-foldings yields

N  −κ2
∫ φ̃end

φ̃start

Ṽ (φ̃)

Ṽ ′(φ̃)
dφ , (6.20)

where φ̃start >> φ̃end. For the model analysed here, this
expression cannot be solved analytically even by taking some
approximations. Hence, in order to illustrate the powerful of
the model, let us consider an example for the parameter α of
the model that satisfy the conditions (6.2):

α = 2.001, � = 2. (6.21)

Note that the value α = 2 corresponds to Starobisnky infla-
tion. Then, by integrating (6.20), the following results are
obtained:

N ∼ 58, ns = 0.965, r = 0.0034. (6.22)

As shown above in (6.14), these values lie within the allowed
ranges provided by Planck, such that the model (6.1) can
reproduce well inflation and then recover late-time accelera-
tion, leading to a unified description of the universe evolution.

Let us now analyse the system of equations (2.9) during
the inflationary epoch, which are reduced to

d log E

dx
= 
�CDM

�

R
E2 − 2,

d logR
dx

= 
�CDM
�

[
λi (1 − ei ) + 2r3

i Rei + (α − 1)γ̃Rα
]
/E2 − 1 + 2r3

i ei − αγ̃Rα−1

R[
λ−1
i (4r6

i − 3r2
i )ei + α(α − 1)γ̃Rα−2

] .

Here λi = �i/(2�), ri = R/Ri , ei = e−r4
i , γ̃ = (�λi )

1−α .
In the top-left panel of Fig. 6, the F(R) function (6.1) is

depicted for the values

n = 4, α = 5/2, ψ = 0.883, � = 3.871,

RdS/�i = 3.419, �i/� = 1094, (6.23)

and compared to the exponential gravity (3.1) and the �CDM
model. As shown, the two F(R) models are not distinguish-
able at low curvature regimes but they are when the curva-
ture becomes very large, as during inflation. Moreover, the
model (6.1) practically coincides with the �CDM model in
the range � < R < Ri (or 1 < R < �i/�), while differs for
R > Ri because of the γ Rα term. Finally for R ∼ H2

0 , both
F(R) models (3.1) and (6.1) behave similarly and deviate
from �CDM.

One can conclude that the difference between the models
(3.1) and (6.1) is negligible during the radiation/matter era,
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Fig. 6 Plots of F(R) (top-left), a(τ ) (top-right), E2(a) and R(a) (the bottom-right panel) for the models: (3.1), (6.1) and the �CDM model with
the parameters from Table 3. In the bottom-left panel the level lines of ns are shown for the model (6.1)

so their observational predictions coincide. In order to illus-
trate such behaviour for both F(R) models as well as for the
�CDM model, the top-right panel in Fig. 6 depict the evolu-
tion of the scale factor a(τ ), where τ = H0t is dimensionless
time. Here the differences between the F(R) models are not
visible, because it takes place for a � 10−20, but the late
time and future behaviour of the �CDM model differs from
that for the F(R) models.

The early-time evolution and the inflationary epoch (R �
Ri and R  Ri ) of the model (6.1 in comparison with the
�CDM model are shown in the bottom-right panel of Fig. 6.
Here the dashed and dash-dotted lines correspond to the Hub-
ble parameter E2(a) and dots describe the Ricci scalar R(a)

in their normalized form (3.8) as functions of the scale factor.
The inflationary solution is unstable [47]: after N  55

e-foldings the de Sitter solution decays and the evolution
transforms into the �CDM behaviour.

7 Conclusions

Exponential gravity may be considered as an alternative to the
so-called concordance model. The main gravitational action

studied along this manuscript and described in (3.1) rep-
resents an slightly correction to the usual Hilbert–Einstein
action with a cosmological constant. Such correction is mod-
elled by a free parameter, which has been called β, such that it
controls the scale at which corrections to GR become impor-
tant. As shown in some previous works [39,47], such a type of
F(R) models can reproduce a late-time acceleration epoch.
However, the aim of this work was to show in an accurate way
whether such type of gravitational actions fulfil the necessary
cosmological constraints leading to a reasonable bound on
the crucial parameter β. Note that an equivalent analysis was
performed in [50] and more recently in [51]. In our paper we
have updated the constraints obtained in previous works by
assuming new released data from the last years. In addition,
we have also analysed the exponential model at late times by
following two approaches: the first one by assuming the con-
dition (5.1) and the second one by assuming a more general
approach. The former provides a more restricted case as we
are forcing the model to mimic �CDM at the present time,
while the latter keeps the model free, except for the initial
conditions which are the same for the two cases. As expected,
the more restrictive on the theoretical conditions are, the bet-
ter the constraints on the free parameter turn out, as shown in
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the bottom panels of Fig. 2. On the other hand, whereas the β

parameter is not upper bounded (recall that GR is recovered
for β → ∞), the fits realised in the paper, where SNe Ia,
BAO, CMB and H(z) data were used, provides a sufficiently
small lower bound on β, which may have consequences at
the perturbation level, an aspect that should be studied in
the future. In addition, the values for the matter density 
m

do not differ too much among the one given by the �CDM
model and the one from the exponential gravity model, either
when some approximations are assumed or when the general
case is considered. Moreover, the χ2

min is a bit smaller for the
exponential gravity case than in �CDM, such that the best
fit does not correspond to �CDM, although the difference is
not statistically significant. From a qualitative point of view,
the tiny differences among exponential gravity and �CDM
can be shown by looking at the form of the action in (3.1). By
a sufficient small exponent, i.e. a β parameter large enough,
the Lagrangian mimics quite well the Hilbert–Einstein action
with a cosmological constant, such that there is not signif-
icant difference on the cosmological evolution among both
models, as shown in Fig. 4.

In addition, the exponential gravity action (3.1) can be
extended in such a way that the new action (6.1) can repro-
duce inflation as well. Note that inflationary models within
the framework of F(R) theories have been widely studied in
the literature, as shown by one of the most successful infla-
tionary models, the so-called Starobinsky inflation [42]. In
this sense, we have proposed here a model where the expo-
nential term responsible for the late-time acceleration is sup-
pressed at the large curvature regime and consequently its
induced cosmological constant while two additional terms
may become important: a different effective cosmological
constant �i (much larger than �) and a power term Rα .
Recalling that Starobinsky inflation is described by a R2 term,
the inclusion of Rα just generalised the latter and ensures a
successful exit from inflation [47]. However, as shown in
some previous papers, such exponent has to be 2 < α < 3 in
order to avoid instabilities [47]. Here, we have extended the
previous analysis by using the usual scalar–tensor counter-
part and obtaining the explicit form of the potential for the
scalaron. Then we computed explicitly the spectral index of
curvature fluctuations during inflation. An example fulfilling
all the requirements provides an spectral index that leads to
a nearly invariant power spectrum and an almost null ampli-
tude for the tensor modes, predictions in agreement with the
last data released by the Planck collaboration. Note that the
constant �i establishes the energy scale at which the last
terms in the action (6.1) become important, such that then
the action also provides a quasi-de Sitter inflationary expan-
sion, similar to Starobinsky model, where the Rα term guar-
antees a successful exit from inflation. As shown, the values
for the free parameters which provide the correct values for
the spectral index and the scalar-to-tensor ratio, also avoid

further corrections when inflation ends. Such model is then
able to reproduce inflation and successfully exit.

Hence, we can conclude that the full gravitational
Lagrangian (6.1) is capable of reproducing inflation and
late-time acceleration in such a way that no other fields are
required. Recently, one more extension of this type of expo-
nential gravity with log-corrected R2 term was proposed to
explain the unified universe history (see Ref. [89]). As shown
here, the Lagrangian satisfies the observational constraints,
with a no statistical significant difference with respect to the
�CDM model, what means that they cannot be distinguished.
Simultaneously, the F(R) model (6.1) provides the right pre-
dictions for the inflationary epoch. The next steps should be
focussed on the analysis of cosmological perturbations and
the possible effects of such Lagrangian at the astrophysical
level.

Acknowledgements SDO and DSG acknowledge the support by
MINECO (Spain), project FIS2013-44881, FIS2016-76363-P and by
CSIC I-LINK1019. DSG is funded by the Juan de la Cierva program
(Spain) No. IJCI-2014-21733. This article is based upon work from
CANTATA COST (European Cooperation in Science and Technology)
action CA15117, EU Framework Programme Horizon 2020.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

References

1. S. Nojiri, S.D. Odintsov, Phys. Rept. 505, 59 (2011)
2. S. Nojiri, S.D. Odintsov, eConf C 0602061, 06 (2006). [Int. J.

Geom. Meth. Mod. Phys. 4 (2007) 115] arXiv:hep-th/0601213
3. S. Capozziello, M. De Laurentis, Phys. Rept. 509, 167 (2011).

arXiv:1108.6266 [gr-qc]
4. S. Capozziello, V. Faraoni,BeyondEinsteinGravity (Springer, Dor-

drecht, 2010)
5. A. de la Cruz-Dombriz, D. Sáez-Gómez, Entropy 14, 1717 (2012)
6. T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Phys. Rept. 513, 1

(2012). arXiv:1106.2476 [astro-ph.CO]
7. S. Capozziello, M. de Laurentis, V. Faraoni, Open. Astron. J. 3, 49

(2010). arXiv:0909.4672
8. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys. Rept.

692, 1 (2017). https://doi.org/10.1016/j.physrep.2017.06.001.
arXiv:1705.11098 [gr-qc]

9. S. Nojiri, S.D. Odintsov, M. Sasaki, Phys. Rev. D 71,
123509 (2005). https://doi.org/10.1103/PhysRevD.71.123509.
arXiv:hep-th/0504052

10. S. Nojiri, S.D. Odintsov, Phys. Lett. B 631, 1 (2005). https://doi.
org/10.1016/j.physletb.2005.10.010. arXiv:hep-th/0508049

11. G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov, S. Zerbini, Phys.
Rev. D 73, 084007 (2006). https://doi.org/10.1103/PhysRevD.73.
084007. arXiv:hep-th/0601008

12. E. Elizalde, R. Myrzakulov, V.V. Obukhov, D. Saez-Gomez,
Class. Quant. Grav. 27, 095007 (2010). https://doi.org/10.1088/
0264-9381/27/9/095007. arXiv:1001.3636 [gr-qc]

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/hep-th/0601213
http://arxiv.org/abs/1108.6266
http://arxiv.org/abs/1106.2476
http://arxiv.org/abs/0909.4672
https://doi.org/10.1016/j.physrep.2017.06.001
http://arxiv.org/abs/1705.11098
https://doi.org/10.1103/PhysRevD.71.123509
http://arxiv.org/abs/hep-th/0504052
https://doi.org/10.1016/j.physletb.2005.10.010
https://doi.org/10.1016/j.physletb.2005.10.010
http://arxiv.org/abs/hep-th/0508049
https://doi.org/10.1103/PhysRevD.73.084007
https://doi.org/10.1103/PhysRevD.73.084007
http://arxiv.org/abs/hep-th/0601008
https://doi.org/10.1088/0264-9381/27/9/095007
https://doi.org/10.1088/0264-9381/27/9/095007
http://arxiv.org/abs/1001.3636


862 Page 16 of 17 Eur. Phys. J. C (2017) 77 :862

13. A. de la Cruz-Dombriz, D. Saez-Gomez, Class. Quant. Grav.
29, 245014 (2012). https://doi.org/10.1088/0264-9381/29/24/
245014. arXiv:1112.4481 [gr-qc]

14. R. Aldrovandi, J.G. Pereira, Teleparallel Gravity: An Intro-
duction (Springer, Dordrecht, 2012). https://doi.org/10.1007/
978-94-007-5143-9

15. Y.F. Cai, S. Capozziello, M. De Laurentis, E.N. Saridakis,
Rept. Prog. Phys. 79(10), 106901 (2016). https://doi.org/10.1088/
0034-4885/79/10/106901. arXiv:1511.07586 [gr-qc]

16. E.V. Linder, Phys. Rev. D 81, 127301 (2010). [Erratum-ibid. D 82,
109902 (2010)] [arXiv:1005.3039 [astro-ph.CO]]

17. K. Bamba, S.D. Odintsov, D. Sáez-Gómez, Phys. Rev. D 88,
084042 (2013). arXiv:1308.5789 [gr-qc]

18. S. Nojiri, S.D. Odintsov, Phys. Lett. B 576, 5 (2003). https://doi.
org/10.1016/j.physletb.2003.09.091. arXiv:hep-th/0307071

19. S. Nojiri, S.D. Odintsov, Phys. Rev. D 68, 123512 (2003).
arXiv:hep-th/0307288

20. F. Briscese, E. Elizalde, S. Nojiri, S.D. Odintsov, Phys. Lett. B
646, 105 (2007). https://doi.org/10.1016/j.physletb.2007.01.013.
arXiv:hep-th/0612220

21. D. Saez-Gomez, Gen. Rel. Grav. 41, 1527 (2009). arXiv:0809.1311
[hep-th]

22. J. Khoury, A. Weltman, Phys. Rev. Lett. 93, 171104
(2004). https://doi.org/10.1103/PhysRevLett.93.171104.
arXiv:astro-ph/0309300

23. J. Khoury, A. Weltman, Phys. Rev. D 69, 044026 (2004). https://
doi.org/10.1103/PhysRevD.69.044026. [astro-ph/0309411]

24. W. Hu, I. Sawicki, Phys. Rev. D 76, 064004 (2007).
arXiv:0705.1158

25. S. Nojiri, S.D. Odintsov, Phys. Lett. B 657, 238 (2007).
arXiv:0707.1941 [hep-th]

26. S. Capozziello, Int. J. Mod. Phys. D 11, 483 (2002).
arXiv:gr-qc/0201033

27. S. Capozziello, S. Carloni, A. Troisi, Rec. Rs. Developments in
Astronomy and Astrophysics (Research Signpost Publisher, Kerala,
2003). arXiv:astro-ph/0303041

28. S.M. Carroll, V. Duvvuri, M. Trodden, M.S. Turner, Phys. Rev. D
70, 043528 (2004). arXiv:astro-ph/0306438

29. A. de la Cruz-Dombriz, A. Dobado, Phys. Rev. D 74, 087501
(2006). arXiv:gr-qc/0607118

30. P.K.S. Dunsby, E. Elizalde, R. Goswami, S. Odintsov, D. Saez-
Gomez, Phys. Rev. D 82, 023519 (2010). arXiv:1005.2205 [gr-qc]

31. S. Carloni, R. Goswami, P.K.S. Dunsby, Class. Quant. Grav. 29,
135012 (2012). arXiv:1005.1840 [gr-qc]

32. E. Elizalde, D. Saez-Gomez, Phys. Rev. D 80, 044030 (2009).
arXiv:0903.2732 [hep-th]

33. N. Goheer, J. Larena, P.K.S. Dunsby, Phys. Rev. D 80, 061301
(2009). arXiv:0906.3860 [gr-qc]

34. K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Astrophys.
Space Sci. 342, 155 (2012). arXiv:1205.3421

35. S. Das, N. Banerjee, N. Dadhich, Class. Quant. Grav.
23, 4159 (2006). https://doi.org/10.1088/0264-9381/23/12/012.
[astro-ph/0505096]

36. S. Nojiri, S.D. Odintsov, Phys. Rev. D 77, 026007 (2008).
arXiv:0710.1738 [hep-th]

37. S. Nojiri, S.D. Odintsov, D. Saez-Gomez, Phys. Lett. B
681, 74 (2009). https://doi.org/10.1016/j.physletb.2009.09.045.
arXiv:0908.1269 [hep-th]

38. G. Cognola, E. Elizalde, S.D. Odintsov, P. Tretyakov, S.
Zerbini, Phys. Rev. D 79, 044001 (2009). https://doi.org/10.1103/
PhysRevD.79.044001. arXiv:0810.4989 [gr-qc]

39. G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov, L. Sebastiani, S.
Zerbini, Phys. Rev. D 77, 046009 (2008). arXiv:0712.4017

40. P.A.R. Ade et al., Planck Collaboration. Astron. Astrophys. 571,
A22 (2014). [arXiv:1303.5082 [astro-ph.CO]]

41. P. A. R. Ade, et al., [BICEP2 and Keck Array Collaborations],
Phys. Rev. Lett. 116, 031302 (2016) https://doi.org/10.1103/
PhysRevLett.116.031302. [arXiv:1510.09217 [astro-ph.CO]]

42. A.A. Starobinsky, Phys. Lett. 91B, 99 (1980). https://doi.org/10.
1016/0370-2693(80)90670-X

43. A. de la Cruz-Dombriz, E. Elizalde, S.D. Odintsov, D. Sez-Gmez,
JCAP 1605(05), 060 (2016). https://doi.org/10.1088/1475-7516/
2016/05/060. arXiv:1603.05537 [gr-qc]

44. A. de la Cruz-Dombriz, P.K.S. Dunsby, S. Kandhai, D. Saez-
Gomez, Phys. Rev. D 93(8), 084016 (2016). https://doi.org/10.
1103/PhysRevD.93.084016. arXiv:1511.00102 [gr-qc]

45. D. Saez-Gomez, Class. Quant. Grav. 30, 095008 (2013). https://doi.
org/10.1088/0264-9381/30/9/095008. arXiv:1207.5472 [gr-qc]

46. S. Tsujikawa, Phys. Rev. D 77, 023507 (2008). https://doi.org/10.
1103/PhysRevD.77.023507. arXiv:0709.1391 [astro-ph]

47. E. Elizalde, S. Nojiri, S.D. Odintsov, L. Sebastiani, S. Zerbini,
Phys. Rev. D 83, 086006 (2011). arXiv:1012.2280

48. E.V. Linder, Phys. Rev. D 80, 123528 (2009). arXiv:0905.2962
49. K. Bamba, C.Q. Geng, C.C. Lee, Cosmological evolution in

exponential gravity. J. Cosmol. Astropart. Phys. 08, 021 (2010).
arXiv:1005.4574

50. L. Yang, C.C. Lee, L.W. Luo, C.Q. Geng, Phys. Rev. D 82, 103515
(2010). arXiv:1010.2058

51. Y. Chen, C.-Q. Geng, C.-C. Lee, L.-W. Luo, Z.-H. Zhu, Phys. Rev.
D 91, 044019 (2015). arXiv:1407.4303

52. N. Suzuki et al., Astrophys. J. 746, 85 (2012). arXiv:1105.3470
53. D.J. Eisenstein et al., Astrophys. J. 633, 560 (2005).

arXiv:astro-ph/0501171
54. Planck Collaboration, P. A. R. Ade et al. Astron. Astrophys. 571,

A16 (2014). arXiv:1303.5076
55. Planck Collaboration, P. A. R. Ade et al. Astron. Astrophys. 594,

A13 (2016). arXiv:1502.01589 [astro-ph.CO]
56. E. Gaztañaga, A. Cabre, L. Hui, Mon. Not. Roy. Astron. Soc.

399(3), 1663 (2009). arXiv:0807.3551 [astro-ph]
57. C. Blake et al., Mon. Not. Roy. Astron. Soc. 425(1), 405 (2012).

arXiv:1204.3674 [astro-ph.CO]
58. N.G. Busca et al., Astron. and Astrop. 552, A96 (2013).

arXiv:1211.2616 [astro-ph.CO]
59. C.-H. Chuang, Y. Wang, Mon. Not. Roy. Astron. Soc. 435(1), 255

(2013). arXiv:1209.0210 [astro-ph.CO]
60. C.-H. Chuang et al., Mon. Not. Roy. Astron. Soc. 433(4), 3559

(2013). arXiv:1303.4486 [astro-ph.CO]
61. L. Anderson et al., Mon. Not. Roy. Astron. Soc. 439(1), 83 (2014).

arXiv:1303.4666 [astro-ph.CO]
62. L. Anderson et al., Mon. Not. Roy. Astron. Soc. 441, 24 (2014).

arXiv:1312.4877 [astro-ph.CO]
63. A. Oka et al., Mon. Not. Roy. Astron. Soc. 439(3), 2515 (2014).

arXiv:1310.2820 [astro-ph.CO]
64. A. Font-Ribera et al., J. Cosmol. Astropart. Phys. 05, 027 (2014).

arXiv:1311.1767 [astro-ph.CO]
65. T. Delubac et al., Astron. Astrop. 574, A59 (2015).

arXiv:1404.1801 [astro-ph.CO]
66. W.J. Percival et al., Mon. Not. Roy. Astron. Soc. 401, 2148 (2010).

arXiv:0907.1660 [astro-ph.CO]
67. E.A. Kazin et al., Astrophys. J. 710, 1444 (2010). arXiv:0908.2598

[astro-ph.CO]
68. F. Beutler et al., Mon. Not. Roy. Astron. Soc. 416, 3017 (2011).

arXiv:1106.3366 [astro-ph.CO]
69. C. Blake et al., Mon. Not. Roy. Astron. Soc. 418, 1707 (2011).

arXiv:1108.2635 [astro-ph.CO]
70. N. Padmanabhan et al., Mon. Not. Roy. Astron. Soc. 427, 2132

(2012). arXiv:1202.0090 [astro-ph.CO]
71. H.-J. Seo et al., Astrophys. J. 761, 13 (2012). arXiv:1201.2172

[astro-ph.CO]
72. E.A. Kazin et al., Mon. Not. Roy. Astron. Soc. 441, 3524 (2014).

arXiv:1401.0358 [astro-ph.CO]

123

https://doi.org/10.1088/0264-9381/29/24/245014
https://doi.org/10.1088/0264-9381/29/24/245014
http://arxiv.org/abs/1112.4481
https://doi.org/10.1007/978-94-007-5143-9
https://doi.org/10.1007/978-94-007-5143-9
https://doi.org/10.1088/0034-4885/79/10/106901
https://doi.org/10.1088/0034-4885/79/10/106901
http://arxiv.org/abs/1511.07586
http://arxiv.org/abs/1005.3039
http://arxiv.org/abs/1308.5789
https://doi.org/10.1016/j.physletb.2003.09.091
https://doi.org/10.1016/j.physletb.2003.09.091
http://arxiv.org/abs/hep-th/0307071
http://arxiv.org/abs/hep-th/0307288
https://doi.org/10.1016/j.physletb.2007.01.013
http://arxiv.org/abs/hep-th/0612220
http://arxiv.org/abs/0809.1311
https://doi.org/10.1103/PhysRevLett.93.171104
http://arxiv.org/abs/astro-ph/0309300
https://doi.org/10.1103/PhysRevD.69.044026
https://doi.org/10.1103/PhysRevD.69.044026
http://arxiv.org/abs/0705.1158
http://arxiv.org/abs/0707.1941
http://arxiv.org/abs/gr-qc/0201033
http://arxiv.org/abs/astro-ph/0303041
http://arxiv.org/abs/astro-ph/0306438
http://arxiv.org/abs/gr-qc/0607118
http://arxiv.org/abs/1005.2205
http://arxiv.org/abs/1005.1840
http://arxiv.org/abs/0903.2732
http://arxiv.org/abs/0906.3860
http://arxiv.org/abs/1205.3421
https://doi.org/10.1088/0264-9381/23/12/012
http://arxiv.org/abs/0710.1738
https://doi.org/10.1016/j.physletb.2009.09.045
http://arxiv.org/abs/0908.1269
https://doi.org/10.1103/PhysRevD.79.044001
https://doi.org/10.1103/PhysRevD.79.044001
http://arxiv.org/abs/0810.4989
http://arxiv.org/abs/0712.4017
http://arxiv.org/abs/1303.5082
https://doi.org/10.1103/PhysRevLett.116.031302
https://doi.org/10.1103/PhysRevLett.116.031302
http://arxiv.org/abs/1510.09217
https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1088/1475-7516/2016/05/060
https://doi.org/10.1088/1475-7516/2016/05/060
http://arxiv.org/abs/1603.05537
https://doi.org/10.1103/PhysRevD.93.084016
https://doi.org/10.1103/PhysRevD.93.084016
http://arxiv.org/abs/1511.00102
https://doi.org/10.1088/0264-9381/30/9/095008
https://doi.org/10.1088/0264-9381/30/9/095008
http://arxiv.org/abs/1207.5472
https://doi.org/10.1103/PhysRevD.77.023507
https://doi.org/10.1103/PhysRevD.77.023507
http://arxiv.org/abs/0709.1391
http://arxiv.org/abs/1012.2280
http://arxiv.org/abs/0905.2962
http://arxiv.org/abs/1005.4574
http://arxiv.org/abs/1010.2058
http://arxiv.org/abs/1407.4303
http://arxiv.org/abs/1105.3470
http://arxiv.org/abs/astro-ph/0501171
http://arxiv.org/abs/1303.5076
http://arxiv.org/abs/1502.01589
http://arxiv.org/abs/0807.3551
http://arxiv.org/abs/1204.3674
http://arxiv.org/abs/1211.2616
http://arxiv.org/abs/1209.0210
http://arxiv.org/abs/1303.4486
http://arxiv.org/abs/1303.4666
http://arxiv.org/abs/1312.4877
http://arxiv.org/abs/1310.2820
http://arxiv.org/abs/1311.1767
http://arxiv.org/abs/1404.1801
http://arxiv.org/abs/0907.1660
http://arxiv.org/abs/0908.2598
http://arxiv.org/abs/1106.3366
http://arxiv.org/abs/1108.2635
http://arxiv.org/abs/1202.0090
http://arxiv.org/abs/1201.2172
http://arxiv.org/abs/1401.0358


Eur. Phys. J. C (2017) 77 :862 Page 17 of 17 862

73. A.J. Ross et al., Mon. Not. Roy. Astron. Soc. 449, 835 (2015).
arXiv:1409.3242 [astro-ph.CO]

74. E. Aubourg et al., Phys. Rev. D 92, 123516 (2015).
arXiv:1411.1074 [astro-ph.CO]

75. J. Simon, L. Verde, R. Jimenez, Phys. Rev. D 71, 123001 (2005).
astro-ph/0412269

76. D. Stern, R. Jimenez, L. Verde, M. Kamionkowski, S.A. Stanford, J.
Cosmol. Astropart. Phys. 02, 008 (2010). arXiv:0907.3149 [astro-
ph.CO]

77. M. Moresco et al., J. Cosmol. Astropart. Phys. 08, 006 (2012).
arXiv:1201.3609

78. C. Zhang et al., Res. Astron. Astrophys. 14, 1221 (2014).
arXiv:1207.4541

79. M. Moresco, Mon. Not. Roy. Astron. Soc. 450, L16 (2015).
arXiv:1503.01116

80. M. Moresco et al., J. Cosmol. Astropart. Phys. 05, 014 (2016).
arXiv:1601.01701

81. G.S. Sharov, J. Cosmol. Astropart. Phys 06, 023 (2016).
arXiv:1506.05246

82. J. Beltran Jimenez, R. Lazkoz, D. Saez-Gomez, V. Salzano,
Eur. Phys. J. C 76(11), 631 (2016). https://doi.org/10.1140/epjc/
s10052-016-4470-5. arXiv:1602.06211 [gr-qc]

83. I. Leanizbarrutia, D. Saez-Gomez, Phys. Rev. D 90(6),
063508 (2014). https://doi.org/10.1103/PhysRevD.90.063508.
arXiv:1404.3665 [astro-ph.CO]

84. Y. Wang, S. Wang, Phys. Rev. D 88, 069903 (2013).
arXiv:1304.4514

85. Q.-G. Huang, K. Wang, S. Wang, J. Cosmol. Astropart. Phys 1512,
022 (2015). arXiv:1509.00969

86. G.S. Sharov, S. Bhattacharya, S. Pan, R.C. Nunes, S. Chakraborty,
MNRAS 466(3), 3497 (2017). arXiv:1701.00780

87. W. Hu, N. Sugiyama, Astrophys. J. 471, 542 (1996). astro-
ph/9510117

88. C.L. Bennett, D. Larson, J.L. Weiland, G. Hinshaw, Astrophys.
J. 794, 135 (2014). https://doi.org/10.1088/0004-637X/794/2/135.
arXiv:1406.1718 [astro-ph.CO]

89. S.D. Odintsov, V.K. Oikonomou, L. Sebastiani, Nucl. Phys. B
923, 608 (2017). https://doi.org/10.1016/j.nuclphysb.2017.08.018.
arXiv:1708.08346 [gr-qc]

123

http://arxiv.org/abs/1409.3242
http://arxiv.org/abs/1411.1074
http://arxiv.org/abs/0907.3149
http://arxiv.org/abs/1201.3609
http://arxiv.org/abs/1207.4541
http://arxiv.org/abs/1503.01116
http://arxiv.org/abs/1601.01701
http://arxiv.org/abs/1506.05246
https://doi.org/10.1140/epjc/s10052-016-4470-5
https://doi.org/10.1140/epjc/s10052-016-4470-5
http://arxiv.org/abs/1602.06211
https://doi.org/10.1103/PhysRevD.90.063508
http://arxiv.org/abs/1404.3665
http://arxiv.org/abs/1304.4514
http://arxiv.org/abs/1509.00969
http://arxiv.org/abs/1701.00780
https://doi.org/10.1088/0004-637X/794/2/135
http://arxiv.org/abs/1406.1718
https://doi.org/10.1016/j.nuclphysb.2017.08.018
http://arxiv.org/abs/1708.08346

	Is exponential gravity a viable description for the whole cosmological history?
	Abstract 
	1 Introduction
	2 F(R) gravity
	3 Exponential gravity
	4 Observational data
	4.1 Supernovae Ia data
	4.2 BAO data
	4.3 H(z) data
	4.4 CMB data

	5 Testing exponential F(R) gravity
	6 Exponential model and inflation
	7 Conclusions
	Acknowledgements
	References




