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Abstract We calculate the Sivers and cos 2φ azimuthal
asymmetries in J/ψ production in the polarized and unpolar-
ized semi-inclusive ep collision, respectively, using the for-
malism based on the transverse momentum-dependent parton
distributions (TMDs). The non-relativistic QCD-based color
octet model is employed in calculating the J/ψ production
rate. The Sivers asymmetry in this process directly probes
the gluon Sivers function. The estimated Sivers asymmetry
at z = 1 is negative, which is in good agreement with the
COMPASS data. The effect of TMD evolution on the Sivers
asymmetry is also investigated. The cos 2φ asymmetry is siz-
able and probes the linearly polarized gluon distribution in
an unpolarized proton.

1 Introduction

Single spin asymmetry (SSA) has been playing a vital role
in spin physics since the observation of large SSA in high
energy pp collision experimentally [1–5]. SSA arises in a
scattering process in which the target or one of the colliding
proton is transversely polarized with respect to the scatter-
ing plane. In order to explain the SSA theoretically nonper-
turbative quark or gluon correlators are required. There are
two approaches to this. The first one is based on general-
ized factorization [6] where one includes intrinsic transverse
momentum in the parton distribution functions and fragmen-
tation functions (TMDs). This approach is applicable when
the process involves two scales, namely a hard and a soft
scale. An example of such a process is the semi-inclusive
deep inelastic scattering ( SIDIS) where the hard scale is the
virtuality of the gauge boson exchanged and the soft scale can
be characterized by the transverse momentum of the observed
hadron. Another such process is the Drell–Yan (DY) process
where the hard scale is the same as the SIDIS and the soft
scale is the transverse momentum of the lepton pair pro-
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duced. This approach is phenomenologically well studied
[7–15]. The second approach describes the SSAs in terms of
collinear higher twist quark-gluon correlators. This formal-
ism uses collinear factorization and was originally proposed
in [16–20] and further developed by [21–23]. This is use-
ful for processes having only one hard scale like SSA in pp
collision.

Among the single spin asymmetries the Sivers asymmetry
is one of the most important and well studied asymmetry, both
theoretically and experimentally. This asymmetry involves
the Sivers function [24]. The asymmetry arises because the
distribution of quarks and gluons in a transversely polarized
proton is not left–right symmetric with respect to the plane
formed by its transverse momentum and spin direction. The
Sivers effect leads to an asymmetry in the azimuthal angle
of the hadron produced in SIDIS and has been observed in
HERMES [25,26] and COMPASS experiments [27,28] for
proton target and by JLab Hall-A collaboration for 3He target
[29]. The Sivers function has been shown in a model depen-
dent way to be related to the orbital angular momentum of the
quarks and gluons [30,31]. The first transverse moment of
the Sivers function is related to the quark–gluon twist three
Qiu–Sterman function [32]. A detailed discussion of such
relations can be found in [33].

The Sivers function is a T-odd (time reversal odd) object.
The operator definitions of the quark and gluon Sivers func-
tion need gauge links (one for the quark Sivers function and
two for the gluon Sivers function) for the color gauge invari-
ance. As these gauge links or Wilson lines depend on the spe-
cific process under consideration non-universality or process
dependence in the Sivers function [32] is introduced. For the
gluon Sivers function there are two gauge links and the pro-
cess dependence is more involved. However, the gluon Sivers
function for any process can be written in terms of two “uni-
versal” gluon Sivers functions [34], one involving a C-even
operator (f-type), the other a C-odd operator (d-type).
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The gluon Sivers function (GSF) plays an important role
in understanding the SSAs observed in the pp collision as
those in the SIDIS over a wide kinematical region. What is
more interesting is that different experiments probe differ-
ent gluon Sivers functions. Burkardt’s sum rule [35] gives
a bound on the GSF. This sum rule is derived from the fact
that the total transverse momentum of all partons in a trans-
versely polarized proton should vanish. Fits to the SIDIS data
at low scale have found that this sum rule is almost saturated
by contribution from the u and d quark’s Sivers function
[36]. However, there is still room for about 30% contribution
from the GSF. Moreover, one of the gluon Sivers functions
(d-type) is not constrained by Burkardt’s sum rule. Apart
from the SIDIS and the DY [36–38], the Sivers effect has
been studied theoretically in several ep↑ collision processes;
among them photoproduction of J/ψ [39–41], heavy quark
pair and dijet production in ep↑ scattering [42]. In the SSA
in proton–proton collision the process- dependent initial and
final state interactions play a major role and usually need to
be carefully taken into account [43].

The J/ψ production in ep↑ scattering provides direct
access to the GSF (f-type) through the leading order (LO)
subprocess. It has been shown that [44], due to the final state
interaction in ep and pp scattering processes, the SSA in the
heavy quarkonium production is zero in ep scattering when
the heavy quark pair is produced in a color singlet state,
whereas for the pp scattering the SSA is zero when the heavy
quark pair is produced in color octet state. The quarkonium
production has been studied in unpolarized pp scattering
within the TMD evolution formalism in [45,46]. In Refs. [39–
41], SSA in J/ψ production in ep↑ collision using a low vir-
tuality electroproduction approximation (photoproduction)
is studied in a color evaporation model (CEM) and sizable
asymmetries are reported. In this work the Sivers asymme-
try in the semi-inclusive process e + p↑ → e + J/ψ + X
and the cos 2φ azimuthal asymmetry in the unpolarized pro-
cess e + p → e + J/ψ + X using a non-relativistic Quan-
tum Chromo Dynamics (NRQCD)- based color octet model
(COM) [47] are investigated. In the COM, the cc̄ pair is pro-
duced in the color octet state that forms J/ψ by emitting
soft gluons [48]. The COM is based on a factorization for-
mula in NRQCD. The cross section is described in terms of
a product of a perturbative part where the initial state par-
tons form a cc̄ pair having a definite color and total angular
momentum quantum numbers and a nonperturbative matrix
element through which the cc̄ pair forms J/ψ . These matrix
elements are obtained by fitting data. They are universal. We
use a recent extraction [49] for the gluon Sivers function from
the SSA data in pp collision at RHIC.

The TMDs (unpolarized as well as the Sivers function)
depend on the scale. As a result the SSA also depends on the
scale [50]. The scale dependence is given by the TMD evo-
lution and is usually performed in the impact parameter or

b⊥-space [51,52]. There are different schemes of performing
the TMD evolution and an improved evolution scheme called
CSS2 has been proposed. A detailed discussion of the evo-
lution schemes is presented and the scheme transformation
issues are discussed in the recent paper [53]. The evolution in
the renormalization scale and rapidity scales are performed
using a renormalization group and Collins–Soper (CS) equa-
tions. To incorporate the correct evolution at a large b⊥ value
a nonperturbative Sudakov factor is included in the evolution
which is usually obtained by fitting the data. Also the effect
of the TMD evolution on the Sivers asymmetry in the J/ψ
production in the COM has been studied.

The cos 2φ azimuthal asymmetry long ago was observed
experimentally both in unpolarized SIDIS [54,55] and in DY
[56,57] processes. Recently the HERMES [58] and COM-
PASS [59] experiments reported sizable azimuthal asymme-
tries in a low transverse momentum region. In [12] it was
suggested that the cos 2φ asymmetry could be explained by
the Boer–Mulders effect. The cos 2φ asymmetry arises in
the unpolarized cross section due to the correlation between
the transverse spin and transverse momentum of the parton
inside the nucleon. As a result the Boer–Mulders TMD func-
tion appears along with the cos 2φ term in the unpolarized
cross section. The quark (anti-quark) version of the Boer–
Mulders function, h⊥q

1 (T-odd), represents the transversely
polarized quark (anti-quark) distribution inside an unpolar-
ized hadron. h⊥q

1 has been extracted in [60–62] from the
cos 2φ asymmetry SIDIS data assuming a relation with the
Sivers function. However, the gluon Boer–Mulders function,
h⊥g

1 (T-even), has not been extracted yet. h⊥g
1 represents the

linearly polarized gluon distribution inside an unpolarized
hadron. The cos 2φ asymmetry in the production of J/ψ in
the unpolarized semi-inclusive ep collision process directly
allows us to probe h⊥g

1 . The paper is organized as follows.
The Sivers asymmetry and the TMD evolution are presented
in Sects. 2 and 3, respectively. Sections 4 and 5 discuss the
cos 2φ azimuthal asymmetry and numerical results, respec-
tively, along with the conclusion in Sect. 6.

2 Sivers asymmetry

The single spin asymmetry for the semi-inclusive process
A↑ + B → C + X is defined

AN = dσ↑ − dσ↓

dσ↑ + dσ↓ , (1)

where dσ↑ and dσ↓ are, respectively, the differential cross-
sections measured when one of the particles is transversely
polarized up (↑) and down (↓) with respect to the scattering
plane. We consider the process

e(l) + p↑(P) → e(l ′) + J/ψ(Ph) + X, (2)
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Fig. 1 Definition of azimuthal angles (φs , φh), lepton and hadron scat-
tering planes in semi-inclusive deep inelastic scattering

where the electron scatters by the transversely polarized pro-
ton target. The letters within the brackets represent the four
momentum of the corresponding particle. We follow the
generalized factorization theorem where the intrinsic par-
tonic transverse momentum is taken into account, unlike the
collinear factorization. The kinematics considered below is
different from [39–41]. We consider the frame as shown in
Fig. 1 in which the proton and virtual photon are moving
along the −z and +z axes, respectively. The four momenta
of target system P and virtual photon q = l − l ′ are given by

P = n− + M2
p

2
n+ ≈ n− and q = −xBn− + Q2

2xB
n+

≈ −xBP + (P · q)n+, (3)

with Q2 = −q2 and we have the Bjorken variable xB = Q2

2P·q
(up to proton mass correction). Here Mp is the mass of the
proton. The leptonic four momenta are expanded in terms of
n− = P and n+ = n = (q + xBP)/P · q [63] as follows:

l = 1 − y

y
xBP + 1

y

Q2

2xB
n +

√
1 − y

y
Ql̂⊥

= 1 − y

y
xBP + s

2
n +

√
1 − y

y
Ql̂⊥, (4)

l ′ = 1

y
xBP + 1 − y

y

Q2

2xB
n +

√
1 − y

y
Ql̂⊥

= 1

y
xBP + (1 − y)

s

2
n +

√
1 − y

y
Ql̂⊥; (5)

here y = P·q
P·l . The invariant mass of the electron–target sys-

tem is s = (P + l)2 = 2P · l = 2P·q
y and then we have

Q2 = xBys. The virtual photon–target invariant mass is

defined as W 2 = (q + P)2 = Q2(1−xB)
xB

. Using the Sudakov
decomposition, the four momenta of the initial gluon k and
the final hadron Ph are

k = x P + k⊥ + k2⊥
2x

n ≈ x P + k⊥, (6)

Ph = z(P · q)n + M2 + P2
hT

2zP · q P + PhT , (7)

where x = k · n is the longitudinal momentum fraction,
z = P · Ph/P · q and P2

hT = −P2
hT . The mass of the J/ψ

is denoted with M . In line with Ref. [63] we assume that the
generalized factorization theorem allows one to factorize the
unpolarized differential cross section,

dσ = 1

2s

d3l ′

(2π)32E ′
l

d3Ph
(2π)32Eh

∫
dxd2k⊥(2π)4δ4(q + k − Ph)

× 1

Q4 L
νν′

(l, q)�μμ′
g (x, k⊥)Mγ ∗g→J/ψ

μν M∗ γ ∗g→J/ψ
μ′ν′ . (8)

The leptonic tensor is given by

Lνν′
(l, q) = e2

(
−gνν′

Q2 + 2(lνl ′ν′ + lν
′
l ′ν)

)
. (9)

The gluon–gluon correlator, �μμ′
g (x, k⊥), describes the tran-

sition of the hadron to the parton, which is parametrized in
terms of eight TMDs at leading twist. The gluon correlator is
defined for an unpolarized and transversely polarized hadron,
respectively, [64]

�μμ′
g (x, k⊥) = 1

2x

{
− gμμ′

T f g1 (x, k2⊥) +
(
kμ
⊥k

μ′
⊥

M2
p

+gμμ′
T

k2⊥
2M2

p

)
h⊥g

1 (x, k2⊥)

}
, (10)

�Tμμ′
g (x, k⊥) = − 1

2x
gμμ′
T

ε
ρσ
T k⊥ρSTσ

Mp
f ⊥g
1T (x, k2⊥), (11)

where gμμ′
T = gμμ′ − Pμnμ′

/P · n − Pμ′
nμ/P · n is the

transverse metric tensor. Here we have kept only the part of
the hadronic tensor for the transverse polarization that con-
tributes to the Sivers asymmetry. f g1 and h⊥g

1 represent the
unpolarized and linearly polarized gluon distribution func-
tions inside the unpolarized hadron, respectively. f ⊥g

1T , the
gluon Sivers function, describes the density of the unpolar-
ized gluons inside the transversely polarized hadron. The
only LO subprocess for J/ψ production is γ ∗g → cc̄. In
Eq. (8), Mγ ∗g→J/ψ is the amplitude of J/ψ production.
The J/ψ production mechanism for instance contains both
perturbative and nonperturbative regimes which have to be
separated out systematically. We employ the COM to calcu-
late the amplitude of the J/ψ bound state. The detailed cal-
culation is discussed in the appendix. In the COM framework
initially a heavy quark pair is produced in a definite quantum
state which can be calculated using the perturbation theory
up to a fixed order in αs . The long distance matrix element
(LDME), 〈0|OJ/ψ

n |0〉, contains the transition probability of
J/ψ production from heavy quark pair. The momentum con-
servation delta function can be decomposed
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δ4(q + k − Ph) = 2

ys
δ

(
x − xB − M2 + P2

hT

zys

)

×δ(1 − z)δ2(k⊥ − PhT ). (12)

The phase space factors in Eq. (8) can be written as follows:

d3l ′

(2π)32E ′
l

= 1

16π2 sydxBdy,
d3Ph

(2π)32Eh
= dzd2PhT

(2π)32z
.

(13)

The differential cross section can be expressed in terms of
TMDs by substituting the parameterization of gluon corre-
lator, the leptonic tensor and Eqs. (A.65)–(A.69) in Eq. (8).
Using Eqs. (9)–(13) and after integrating with respect to x
and z

dσ

dydxBd2PhT
= α

8sxQ4

∫
d2k⊥ [A0

+A1 cos φ] fg/p(x, k2⊥)δ2(k⊥ − PhT ),

(14)

is obtained, with correction O
(

k2⊥
(M2+Q2)2

)
. The azimuthal

angle of the initial gluon transverse momentum is denoted
with φ. For obtaining Eq. (14), φ = φh is understood where
φh is the azimuthal angle of the J/ψ . In Eq. (14) only the
unpolarized gluon contribution is taken into consideration.
The effect of the linearly polarized gluon contribution will
be discussed in Sect. 4. We define A0 and A1 by

A0 =
[
1 + (1 − y)2

] N Q2

y2M

{
〈0|OJ/ψ

8 (1S0)|0〉

+ 4

3M2

(3M2 + Q2)2

(M2 + Q2)2 〈0|OJ/ψ
8 (3P0)|0〉

+ 8Q2

3M2(M2 + Q2)2

(
4M2(1 − y)

1 + (1 − y)2

+Q2
)

〈0|OJ/ψ
8 (3P1)|0〉

+ 8

15M2
(
M2 + Q2

)2

(
6M4 + Q4

+12M2Q2 1 − y

1 + (1 − y)2

)
〈0|OJ/ψ

8 (3P2)|0〉
}
, (15)

A1 = (2 − y)
√

1 − y
4N Q3

y2M

{
− 〈0|OJ/ψ

8 (1S0)|0〉

− 2

3M2Q2

(3M2 + Q2)2

M2 + Q2 〈0|OJ/ψ
8 (3P0)|0〉

− 8Q2

3M2(M2 + Q2)
〈0|OJ/ψ

8 (3P1)|0〉

− 4

15M2

7M2 + Q2

M2 + Q2 〈0|OJ/ψ
8 (3P2)|0〉

}
k⊥

M2 + Q2 ,

(16)

with N = 2(4π)2αsαe2
c . A1 does not contribute to the

Sivers asymmetry. The numerical values of the different
states LDME are taken from Ref. [46], Set-I in Table I. Fol-
lowing Ref. [65], the numerator term of the Sivers asymmetry
is given now when the target proton is transversely polarized,

dσ↑

dydxBd2PhT
− dσ↓

dydxBd2PhT

= α

8sxQ4 [A0 + A1 cos φh] N fg/p↑(x,PhT ). (17)

The gluon Sivers function as per Trento convention is given
by [66]

N fg/p↑ (x,PhT , Q f ) = −2 f ⊥g
1T (x,PhT , Q f )

(P̂ × PhT ) · S
Mp

.

(18)

The scale dependency in the definition of the TMD is sup-
pressed in this section. The denominator term is given by

dσ↑

dydxBd2PhT
+ dσ↓

dydxBd2PhT

= 2α

8sxQ4 [A0 + A1 cos φh] fg/p(x,P2
hT ), (19)

where the GSF N f describes the probability of finding
an unpolarized gluon inside a transversely polarized proton,
which is defined by

N fg/p↑(x,PhT ) = fg/p↑(x,PhT ) − fg/p↓(x,PhT )

= N fg/p↑(x, PhT ) S.(P̂ × P̂hT ). (20)

3 Evolution of TMDs

In this section the evolution of TMDs is studied. It is gen-
erally assumed that the unpolarized gluon TMDs obey the
Gaussian distribution. The Gaussian parameterization of an
unpolarized TMD is given by

fg/p(x, k2⊥) = fg/p(x, μ)
1

π〈k2⊥〉e
−k2⊥/〈k2⊥〉. (21)

Here, the x and k⊥ dependencies of the TMD are factor-
ized. fg/p(x, μ) is the collinear PDF, which is measured at
the scale μ = M (mass of J/ψ). The collinear PDF obeys
the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP)
scale evolution. A frame is chosen where the polarized proton
is moving along the −z axis with momentum P and is trans-
versely polarized with S = ST (cos φs, sin φs, 0). The trans-
verse momentum of the J/ψ isPhT = PhT (cos φh, sin φh, 0)

S · (P̂ × P̂hT ) = sin(φh − φs), (22)
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where φs and φh are the azimuthal angles, which are defined
in Fig. 1. The parameterization of GSF is given by [49,67]

N fg/p↑(x, k⊥) = 2Ng(x) fg/p(x, μ)h(k⊥)
e−k2⊥/〈k2⊥〉

π〈k2⊥〉 ;
(23)

here

Ng(x) = Ngx
α(1 − x)β

(α + β)(α+β)

ααββ
. (24)

h(k⊥) is defined as follows:

h(k⊥) = √
2e

k⊥
M1

e−k2⊥/M2
1 . (25)

Therefore, the k⊥ dependent part of the Sivers function can
now be written

h(k⊥)
e−k2⊥/〈k2⊥〉

π〈k2⊥〉 =
√

2e

π

√
1 − ρ

ρ
k⊥

e−k2⊥/ρ〈k2⊥〉

〈k2⊥〉3/2
, (26)

where we defined

ρ = M2
1

〈k2⊥〉 + M2
1

. (27)

The GSF has been extracted for the first time in the pion
production at RHIC [68] by D’Alesio et al. [49]. In this anal-
ysis [49] the best fit parameter sets are denoted SIDIS1 and
SIDIS2. Recently, Anselmino et al. [67] have extracted the
quark and the anti-quark Sivers function from the latest SIDIS
data. However, GSF has not been extracted yet from the
SIDIS data. Therefore, in order to estimate the asymmetry,
the best fit parameters of the Sivers function corresponding to
u and d quark will be used in the following parameterizations
[69]:

(a) Ng(x) = (Nu(x) + Nd(x))/2,

(b) Ng(x) = Nd(x). (28)

We call the parameterization (a) and (b) BV-a and BV-b,
respectively. The best fit parameters are tabulated in Table 1.

We use the nonuniversality property of the Sivers func-
tion only for the SIDIS1 and SIDIS2 parameters, since these
parameters are extracted in the DY process [70],

N
DY fg/p↑(x, k⊥) = −N

SIDIS fg/p↑(x, k⊥). (29)

Finally the final expressions of Eq. (1) can be written within
DGLAP evolution formalism. Using Eqs. (21)–(28), the
sin(φh − φs) weighted numerator part of Eq. (1) is given
by

dσ↑

dydxBd2PhT
− dσ↓

dydxBd2PhT

= α

8sxQ4 [A0 + A1 cos φh] 2Ng(x)

√
2e

π

√
1 − ρ

ρ
PhT

×e−P2
hT /ρ〈P2

hT 〉

〈P2
hT 〉3/2

fg/p(x) sin2(φh − φs), (30)

and the denominator term as follows:

dσ↑

dydxBd2PhT
+ dσ↓

dydxBd2PhT

= 2α

8sxQ4 [A0 + A1 cos φh]
e−P2

hT /〈P2
hT 〉

π〈P2
hT 〉 fg/p(x). (31)

Now, the framework implemented in Ref. [70] to study the
TMD evolution can be adopted. In general, TMDs are defined
in an impact parameter (b⊥)-space

f (x, b⊥, μ) =
∫

d2k⊥e−ib⊥·k⊥ f (x, k⊥, μ) (32)

and the inverse Fourier transformation is

f (x, k⊥, μ) = 1

(2π)2

∫
d2b⊥eib⊥.k⊥ f (x, b⊥, μ). (33)

Generally TMDs depend on both a renormalization scale (μ)
and an auxiliary scale (ζ ) which are introduced to regular-
ize the light-cone divergences in the TMD factorization for-
malism [6,51]. Taking the scale evolution in account with
respect to the μ and ζ , the renormalization group (RG) and
Collins–Soper (CS) equations are obtained. By solving these
equations one obtains the TMD–PDF expression which is
evolved from the initial scale Qi = c/b∗(b⊥) to the final
scale Q f = √

ζ = M [6,51,70,71],

f (x, b⊥, Q f , ζ ) = f (x, b⊥, Qi )Rpert
(
Q f , Qi , b∗

)
RN P

(
Q f , Qi , b⊥

)
. (34)

Here, Rpert is the perturbative part. The nonperturbative part
of the TMDs is denoted with RN P . The initial scale of the
TMDs is Qi = c/b∗(b⊥), where c = 2e−γε with γε ≈ 0.577.
The widely used b∗ prescription is adopted to avoid hitting
the Landau pole by freezing the scale b⊥. Here, b∗(b⊥) =

b⊥√
1+

(
b⊥
bmax

)2
≈ bmax when b⊥ → ∞ and b∗(b⊥) ≈ b⊥ when

b⊥ → 0. The perturbative evolution kernel is given by

Rpert
(
Q f , Qi , b∗

) = exp

{
−

∫ Q f

c/b∗

dμ

μ

(
A log

(
Q2

f

μ2

)
+ B

)}
,(35)

where the anomalous dimensions are denoted with A an B,
respectively. These have a perturbative expansion

A =
∞∑
n=1

(
αs(μ)

π

)n

An

and

B =
∞∑
n=1

(
αs(μ)

π

)n

Bn .

Here the anomalous dimension coefficients A1 = CA, A2 =
1
2CF

(
CA

(
67
18 − π2

6

)
− 5

9CAN f

)
and B1 = − 1

2 ( 11
3 CA −
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Table 1 The best fit parameters
of the Sivers function

Best fit parameters

Evolution a Na α β ρ M2
1 GeV2 〈k2⊥〉 GeV2 Notation

DGLAP g [49] 0.65 2.8 2.8 0.687 0.25 SIDIS1

g [49] 0.05 0.8 1.4 0.576 0.25 SIDIS2

u [67] 0.18 1.0 6.6 0.8 0.57 BV-a

d [67] − 0.52 1.9 10.0 0.8 0.57 BV-b

TMD u [70] 0.106 1.051 4.857 0.38 TMD-a

d [70] − 0.163 1.552 4.857 0.38 TMD-b

2
3 N f ). These coefficients are derived up to 3-loop level in
Ref. [72]. The nonperturbative part is given by

RN P = exp

{
−

[
gTMD

1 + g2

2
log

Q f

Q0

]
b2⊥

}
. (36)

It is well known [51] that the derivative of the Sivers func-
tion, f ′⊥(x, b⊥, Q f ), follows the same evolution as that of
the unpolarized TMD. The TMD evolution equation of the
unpolarized gluon TMD–PDF is

fg/p(x, b⊥, Q f ) = f g1 (x, b⊥, Qi )

× exp

{
−

∫ Q f

c/b∗

dμ

μ

(
A log

(
Q2

f

μ2

)
+ B

)}

× exp

{
−

[
gpdf

1 + g2

2
log

Q f

Q0

]
b2⊥

}
(37)

and the derivative of the gluon Sivers function is

f ′⊥g
1T (x, b⊥, Q f ) = f ′⊥g

1T (x, b⊥, Qi )

× exp

{
−

∫ Q f

c/b∗

dμ

μ

(
A log

(
Q2

f

μ2

)
+ B

) }

× exp

{
−

[
gSivers

1 + g2

2
log

Q f

Q0

]
b2⊥

}
. (38)

The TMD density function at the initial scale, f g1 (x, b⊥, Qi ),
can be written as the convolution of the coefficient function
times the regular collinear PDF [51]

f g1 (x, b⊥, Qi ) =
∑
i=g,q

∫ 1

x

dx̂

x̂
Ci/g(x/x̂, b⊥, αs , Qi ) fi/p(x̂, c/b∗)

+O(b⊥ΛQCD), (39)

where Ci/g is the perturbatively calculated coefficient func-
tion which is process independent. Ci/g is different for each
type of TMD–PDF. The collinear PDF is probed at the scale
c/b∗ rather than at the scale μ in contrast to the DGLAP evo-
lution. The unpolarized and Sivers function TMDs in terms
of collinear PDF at leading order in αs are given by [51,70]

f g1 (x, b⊥, Qi ) = fg/p(x, c/b∗) + O(αs), (40)

f ′⊥g
1T (x, b⊥, Qi )  Mpb⊥

2
Tg,F (x, x, Qi ), (41)

where Tg,F (x, x, Qi ) is the Qiu–Sterman function propor-
tional to the collinear PDF [21]

Tg,F (x, x, Qi ) = Ng(x) fg/p(x, Qi ), (42)

where the Ng(x) definition is given in Eq. (24). The numeri-
cal values of the free parameters are estimated [70] by a global
fit of SSA in the SIDIS process from the pion, kaons and
charged hadrons production at Jlab, HERMES and COM-
PASS, which are tabulated in Table 1. However, only the u
and d quark’s free parameters are extracted and gluon param-
eters are not known yet. To estimate the SSA we use two
parameterizations, given in Eq. (28). We call the parameter-
izations (a) and (b) TMD-a and TMD-b, respectively. The
numerical values of the best fit parameters are estimated [70]
Q0 = √

2.4 GeV, bmax = 1.5 GeV−1, g2 = 0.16 GeV2

and 〈k2
s⊥〉 = 0.282 GeV2 with gpdf

1 = 〈k2⊥〉/4 and gsivers
1 =

〈k2
s⊥〉/4. The gluon Sivers function f ⊥g

1T (x,PhT , Q f ) and its
derivative are related by the Fourier transformation [51]

f ⊥g
1T (x,PhT , Q f ) = − 1

2π PhT

∫ ∞

0
db⊥b⊥

J1(PhT b⊥) f ′⊥g
1T (x, b⊥, Q f ), (43)

and the unpolarized gluon TMD is given by

fg/p(x, PhT , Q f ) = 1

2π

∫ ∞

0
db⊥b⊥

J0(PhT b⊥) fg/p(x, b⊥, Q f ). (44)

Using the above expressions, Eq. (17), including the weight
factors sin(φh − φs) and (19) in the TMD evolution frame-
work can be written as follows:

dσ↑

dydxBd2PhT
− dσ↓

dydxBd2PhT

= α

8πsxQ4Mp

∫ ∞

0
db⊥b⊥ J1(PhT b⊥) f ′⊥g

1T (x, b⊥, Q f )

× sin2(φh − φs) [A0 + A1 cos φh] , (45)

dσ↑

dydxBd2PhT
+ dσ↓

dydxBd2PhT

= α

8πsxQ4

∫ ∞

0
db⊥b⊥ J0(PhT b⊥) fg/p(x, b⊥, Q f )
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× [A0 + A1 cos φh] . (46)

4 cos 2φ azimuthal asymmetry

Now, the unpolarized process, i.e. e(l) + p(P) → e(l ′) +
J/ψ(Ph)+X , is considered. Taking into account the linearly
polarized gluons along with the unpolarized gluons in the
gluon correlator, Eq. (14) can be written

dσ

dydxBd2PhT
= α

8sxQ4

∫
d2k⊥

{
[A0 + A1 cos φ] fg/p(x, k2⊥)

+ k2⊥ [B0 cos 2φ + B1 cos φ] h⊥g
1 (x, k2⊥)

}
δ2(k⊥ − PhT ),

(47)

with correction O
(

k2⊥
(M2+Q2)2

)
. The definitions of A0 and

A1 are given in Eqs. (15) and (16), respectively. B0 and B1

are defined by

B0 = (1 − y)
N Q2

y2M

{
− 〈0|OJ/ψ

8 (1S0)|0〉

+ 4

3M2

(
3M2 + Q2

)2

(
M2 + Q2

)2 〈0|OJ/ψ
8 (3P0)|0〉

− 8Q4

3M2(M2 + Q2)2 〈0|OJ/ψ
8 (3P1)|0〉

+ 8Q4

15M2
(
M2 + Q2

)2 〈0|OJ/ψ
8 (3P2)|0〉

}
, (48)

B1 = (2 − y)
√

1 − y
2N Q

y2M

{
Q2〈0|OJ/ψ

8 (1S0)|0〉

− 2

3M2

(
3M2 + Q2

)2

M2 + Q2 〈0|OJ/ψ
8 (3P0)|0〉

+ 8Q4

3M2(M2 + Q2)
〈0|OJ/ψ

8 (3P1)|0〉

− 4Q2

15M2

Q2 − 5M2

M2 + Q2 〈0|OJ/ψ
8 (3P2)|0〉

}
k⊥

M2 + Q2 .

(49)

The dependence of the cross section on the azimuthal angle
vanishes when the intrinsic parton transverse momentum
k⊥ = 0. The cos 2φ asymmetry is defined [58,59] by

< cos 2φ >=
∫

dφh cos(2φh)dσ∫
dφhdσ

. (50)

To estimate the cos 2φ asymmetry the parameterization of
TMDs is needed. For the unpolarized TMD the Gaussian
parameterization as defined in Eq. (21) is used. The widely
used Gaussian parameterization for a linearly polarized gluon
distribution function is given by [73]

h⊥g
1 (x,k2⊥) = M2

p f
g
1 (x, Q2)

π〈k2⊥〉2

2(1 − r)

r
e

1−k2⊥
1

r〈k2⊥〉 , (51)

where r (0 < r < 1) is the parameter. The upper bound on
h⊥g

1 is given by [74]

k2⊥
2M2

p
|h⊥

1 (x,k2⊥)| ≤ f g1 (x,k2⊥). (52)

We consider 〈k2⊥〉 = 0.25 GeV2 [73] and r = 1
3 and 2

3 [73]
for numerical estimations.

5 Numerical results

We have estimated the Sivers and the cos 2φ asymmetries,
respectively, in the polarized and unpolarized SIDIS pro-
cesses, using the TMD factorization formalism at

√
s =

4.7 GeV (JLab),
√
s = 7.2 GeV (HERMES),

√
s =

17.33 GeV (COMPASS) and
√
s = 45.0 GeV (EIC). In this

work, the NRQCD color octet model (COM) is used for J/ψ
production. The color octet states 1S0, 3P0, 3P1 and 3P2 are
taken into account for the LO subprocess γ ∗g → cc̄ of
the charmonium production. M = 3.096 GeV and mc =
1.4 GeV are considered for J/ψ and charm quark mass,
respectively. MSTW2008 [75] is used for collinear PDFs.

The following experimental cuts are imposed on the
integration variables in Eq. (14). For COMPASS [76,77],
0.0001 < xB < 0.65, 0.1 < y < 0.9 and 0 < PhT <

1.0 GeV, for HERMES [26], 0.023 < xB < 0.40, 0.35 <

y < 0.95 and 0 < PhT < 1.0 GeV, for JLab [28], 0.0001 <

xB < 0.35, 0.7 < y < 0.9 and 0 < PhT < 0.64 GeV, and
for EIC, 0.0001 < xB < 0.9, 0.1 < y < 0.9 and 0 < PhT <

1.0 GeV. The sin(φh−φs) weighted Sivers asymmetry for the
kinematics of different experiments is shown in Figs. 2, 3, 4
and 5 as a function of PhT and xB. The SSA is estimated both
in the DGLAP and the Collins–Soper–Sterman (CSS) TMD
evolution approach, which is shown in Figs. 2, 3, 4 and 5. The
figure convention is as follows. “SIDIS1” and “SIDIS2” rep-
resent the SSA obtained in the DGLAP evolution approach
by considering two sets of the best fit parameters SIDIS1 and
SIDIS2 from Eqs. (30) and (31). Similarly, “BV-a” and “BV-
b” represent the Sivers asymmetry obtained by using Eq. (28)
in DGLAP evolution. The obtained SSA in the TMD evolu-
tion approach using two parameterizations from Eq. (28) is
denoted “TMD-a” and “TMD-b”.

Recently the extracted gluon Sivers function [49] from the
RHIC data and the quark’s Sivers function [67] from the lat-
est SIDIS data have been employed in the DGLAP evolution
approach. The SSA as a function of PhT is negative and is
decreasing as the center of the mass energy of the experiment
is increasing. This is maximum around 30% at JLab energy.
Moreover, the Sivers asymmetry as a function of the Bjorken
variable (xB) is negative and is maximum for SIDIS1 GSF
parameters. Echevarria et al. [70] have extracted the u and d
quarks’ Sivers function by fitting data from JLab, HERMES
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Fig. 2 Single spin asymmetry in e+ p↑ → e+ J/ψ + X process as function of a xB (left panel) and b PhT (right panel) at
√
s = 45.0 GeV (EIC)

using DGLAP (SIDIS1, SIDIS2, BV-a and BV-b) and TMD (TMD-a and TMD-b) evolution approaches. The integration ranges are 0 < PhT < 1.0
GeV, 0.1 < y < 0.9 and 0.0001 < xB < 0.9
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Fig. 3 Single spin asymmetry in e + p↑ → e + J/ψ + X process as function of a xB (left panel) and b PhT (right panel) at
√
s = 17.2 GeV

(COMPASS) using DGLAP (SIDIS1, SIDIS2, BV-a and BV-b) and TMD (TMD-a and TMD-b) evolution approaches. The integration ranges are
0 < PhT < 1.0 GeV, 0.1 < y < 0.9 and 0.0001 < xB < 0.65

and COMPASS within the TMD evolution formalism.The
best fit parameters for the gluon Sivers function as defined
in Eq. (28) in the CSS–TMD evolution approach are used.
The Sivers asymmetry with respect to PhT obtained from the
SIDIS1 parameters is higher at JLab and HERMES whereas
the SSA obtained from the BV-b set parameters is dominant at
COMPASS and EIC experiments. Basically, the SSA is pro-
portional to the gluon Sivers function, which is considered as
an average of the u and d quarks’ x-dependent normalization
N (x) in a TMD-a parameterization. The sign of the asymme-
try depends on the relative magnitude of Nu and Nd . These
have opposite signs, as can be observed in Table 1. Note that
our kinematics is different from previous work in [39–41],
which also affects the sign. The magnitude of Nu(x) is com-
parable but slightly dominant compared to Nd(x) at the EIC

√
s. Therefore, the estimated Sivers asymmetry as a function

of PhT using the TMD-a parameters for the EIC experiment
is almost zero and positive. For the JLab experiment the esti-
mated Sivers asymmetry by all the parameterizations except
the SIDIS1 is close to zero.

The delta function in Eq. (12) implies that z = 1 (LO).
In Fig. 6 the obtained Sivers asymmetry at z = 1 is com-
pared with the COMPASS data [77]. Interestingly, all the
parameter sets give a negative asymmetry. However, the esti-
mated SSA with the BV-b set of parameters is within the
error bar of the experiment. In Ref. [76] the negative gluon
Sivers asymmetry with more than two standard deviations,
ASiv

PGF = −0.23±0.08, is reported in the SIDIS process based
on the Monte Carlo simulation analysis. As stated before, it
is expected that the Sivers function has a different sign in the
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Fig. 4 Single spin asymmetry in e + p↑ → e + J/ψ + X process as function of a xB (left panel) and b PhT (right panel) at
√
s = 7.2 GeV

(HERMES) using DGLAP (SIDIS1, SIDIS2, BV-a and BV-b) and TMD (TMD-a and TMD-b) evolution approaches. The integration ranges are
0 < PhT < 1.0 GeV, 0.35 < y < 0.95 and 0.023 < xB < 0.40
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Fig. 5 Single spin asymmetry in e+ p↑ → e+ J/ψ + X process as function of a xB (left panel) and b PhT (right panel) at
√
s = 4.7 GeV (JLab)

using DGLAP (SIDIS1, SIDIS2, BV-a and BV-b) and TMD (TMD-a and TMD-b) evolution approaches. The integration ranges are 0 < PhT < 0.64
GeV, 0.7 < y < 0.9 and 0.0001 < xB < 0.35

DY and the SIDIS process which comes from the gauge link.
The Sivers function in SIDIS has been extracted by COM-
PASS [76,77], HERMES [26] and JLab [28] Collaborations.
However, information about the DY Sivers function has not
been explored, since the polarized DY process has never been
measured. Only very recently data became available in the
DY process pp↑ → W±/Z + X [78]. Anselmino et al. [67]
have for the first time attempted to study the nonuniversality
signature, i.e. the sign change of the Sivers function. How-
ever, they could not draw a definite conclusion about it, due
to poor data, although data for W− production seem to favor
the sign change.

The cos 2φ asymmetry is shown in Figs. 7, 8, 9 and 10
as a function of xB and PhT for r = 1/3 and r = 2/3.

To obtain the cos 2φ asymmetry the Gaussian parameteriza-
tions for the unpolarized and linearly polarized gluon dis-
tribution functions are used, as defined in Eqs. (21) and
(51). Until today experimental investigation to extract the
unknown Boer–Mulders function, h⊥g

1 , has not been done.

In Refs. [45,46] the effect of h⊥g
1 on the unpolarized differ-

ential cross section of the J/ψ production in the pp collision
is explored. The J/ψ production in the unpolarized ep col-
lision process is also a reliable channel to probe the h⊥g

1
by measuring the cos 2φ asymmetry. It is obvious from Eq.
(48) that the negative cos 2φ asymmetry as a function of xB

and PhT is obtained due to the dominant contribution of the
1S0 state compared to the other states (3P0, 3P1 and 3P2).
The cos 2φ asymmetry as a function of PhT is almost the
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Fig. 6 Single spin asymmetry in e+ p↑ → e+ J/ψ+X process at z =
1 with

√
s = 17.2 GeV (COMPASS) using DGLAP (SIDIS1, SIDIS2,

BV-a and BV-b) and TMD (TMD-a and TMD-b) evolution approaches.
The integration ranges are 0 < PhT < 1.0 GeV, 0.1 < y < 0.9 and
0.0001 < xB < 0.65. Data from [77]

same for all the experiments. However, the maximum value
of < cos 2φ > decreases with

√
s. The maximum of 26%

cos 2φ asymmetry as a function of xB is observed at the EIC
experiment.

6 Conclusion

We have calculated the Sivers and the cos 2φ asymmetries
in the production of the J/ψ in polarized and the unpolar-
ized ep collision, respectively. The J/ψ production process
gives direct access to the gluon Sivers function at leading
order through the channel γ ∗g → cc̄. The NRQCD-based
color octet model and a formalism based on the TMD factor-
ization have been used. A sizable negative Sivers asymmetry
is observed in the J/ψ production. The estimated SSA at
z = 1 is compared with the COMPASS data and is in con-
siderable agreement. Also the effect of the TMD evolution
on the Sivers asymmetry has been investigated. Moreover,
the sizable cos 2φ asymmetry is obtained in the unpolarized
SIDIS process which allows one to probe the Boer–Mulders
function, h⊥g

1 . Thus the asymmetries in the polarized and the
unpolarized SIDIS processes are important observables that
give valuable information on the gluon Sivers function and
the linearly polarized gluon TMD, respectively. Further work
would involve taking into account higher order corrections
to the asymmetry. In this case the charmonium production
mechanism is likely to play an important role.
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Fig. 7 cos 2φ asymmetry in e + p → e + J/ψ + X process as function of a xB (left panel) and b PhT (right panel) at
√
s = 45.0 GeV (EIC).

The integration ranges are 0 < PhT < 1.0 GeV, 0.1 < y < 0.9 and 0.0001 < xB < 0.9
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Fig. 8 cos 2φ asymmetry in e+ p → e+ J/ψ +X process as function of a xB (left panel) and b PhT (right panel) at
√
s = 17.2 GeV (COMPASS).

The integration ranges are 0 < PhT < 1.0 GeV, 0.1 < y < 0.9 and 0.0001 < xB < 0.65
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Fig. 9 cos 2φ asymmetry in e+ p → e+ J/ψ + X process as function of a xB (left panel) and b PhT (right panel) at
√
s = 7.2 GeV (HERMES).

The integration ranges are 0 < PhT < 1.0 GeV, 0.35 < y < 0.95 and 0.023 < xB < 0.40
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Fig. 10 cos 2φ asymmetry in e + p → e + J/ψ + X process as function of a xB (left panel) and b PhT (right panel) at
√
s = 4.7 GeV (JLab).

The integration ranges are 0 < PhT < 0.64 GeV, 0.7 < y < 0.9 and 0.0001 < xB < 0.35
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Appendix: LO amplitude of γ ∗g → J/ψ

From Refs. [73,79] the amplitude of the quarkonium bound
state can be written

Mμν
(
γ ∗g → QQ̄[2S+1L(1,8a)

J ]
)

=
∑
Lz Sz

∫
d3k′

(2π)3 �LLz (k
′)〈LLz; SSz |J Jz〉Tr[Oμν(q, k, Ph, k

′)

×PSSz (Ph, k
′)], (A.53)

where k′ is the relative momentum of the heavy quark in
the quarkonium rest frame. The eigenfunction of the orbital
angular momentum L is �LLz (k

′). A similar calculation as
reported in [73] is followed. Only the important steps are
presented here. For more details Ref. [73] is preferred. From
Fig. 11, the amplitude of the heavy quark pair is given by

Oμν(q, k, Ph, k
′) =

∑
i j

〈3i; 3̄ j |8a〉gs(eec)

×
{
γ ν /Ph/2 + /k′ − /q + mc

(Ph/2 + k′ − q)2 − m2
c
γ μ(T b) j i

+γ μ(T b) j i
/Ph/2 + /k′ − /k + mc

(Ph/2 + k′ − k)2 − m2
c
γ ν

}
. (A.54)

The sum over the SU(3) Clebsch–Gordan coefficients project
out the color state of the QQ̄ pair; either it is in a color sin-
glet or in a octet state, and they are defined by 〈3i; 3̄ j |1〉 =
δi j√
Nc

, 〈3i; 3̄ j |8a〉 = √
2(T a)i j for color singlet and color

octet states, respectively. T b is the SU(3) Gell-Mann matrix.
The charm quark and quarkonium bound state masses are
denoted mc and M = 2mc, respectively. The excluded exter-
nal legs in Eq. (A.54) are absorbed in the spin projection

Fig. 11 Feynman diagrams for γ ∗ + g → J/ψ process

operator, which is given by

PSSz (Ph, k
′) =

∑
s1s2

〈1

2
s1; 1

2
s2|SSz〉υ

(
Ph
2

−k′, s2
)
ū

(
Ph
2

+ k′, s1

)

= 1

4M3/2 (− /Ph + 2/k′ + M)�SSz ( /Ph

+ 2/k′ + M) + O(k′2) (A.55)

with �SSz = γ 5 for the singlet (S = 0) state and �SSz =
/εsz (Ph) for the triplet (S = 1) state. Here the spin polarization

vector of the QQ̄ system is denoted εsz (Ph). The Taylor
expansion around k′ = 0 in Eq. (A.53) gives the S-wave
and P-wave amplitudes. The first term in the expansion is
the S-wave amplitude is

Mμν[1S(8a)
0 ] = 1

4
√

πM
R0(0)Tr[Oμν(0)(− /Ph + M)γ 5]

(A.56)

and we have

Mμν[3S(8a)
1 ] = 1

4
√

πM
R0(0)Tr[Oμν(0)(− /Ph + M)/εsz ].

(A.57)

The derivative term in the expansion of Eq. (A.53) is the
P-wave amplitude,

Mμν[3P(8a)
0 ] = − i√

4πM
R′

1(0)Tr
[
3Oμν(0)

+
(

γαO
μνα(0) + Phα

M
Oμνα(0)

)

×− /Ph + M

2

]
, (A.58)

Mμν[3P(8a)
1 ] = −

√
3

8πM
R′

1(0)ερσαβ

Pρ
h

M
εσ
Jz (Ph)Tr

×
[
γ αOμνβ(0)

− /Ph + M

2

−Oμν(0)
/Ph

M
γ αγ β

]
, (A.59)

and

Mμν[3P(8a)
2 ] = −i

√
3

4πM
R′

1(0)ε
αβ
Jz

(Ph)Tr

×
[
γβO

μν
α (0)

− /Ph + M

2

]
. (A.60)

The definitions of Oμν(0) and Oμνα(0) are obtained from
Eq. (A.54); they are given by

Oμν(0) =
√

2gs(eec)δab

2(q2 − M2)

{
γ ν

(
/Ph − 2/q + M

)
γ μ

123
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+γ μ ( /Ph − 2/k + M) γ ν
}
, (A.61)

Oμνα(0) = ∂

∂k′
α

O(q, k, Ph , k′)
∣∣∣
k′=0

=
√

2gs(eec)δab

(q2 − M2)

{
2kα

q2 − M2

[
γ μ ( /Ph − 2/k + M) γ ν

+γ ν ( /Ph − 2/k − M) γ μ
]

+γ μγ αγ ν + γ νγ αγ μ

}
. (A.62)

Here R0(0) and R′
1(0) are the radial wave function and its

derivative at the origin. They have the following relation with
LDME [80]:

〈0|OJ/ψ
8 (1SJ )|0〉 = 2

π
(2J + 1)|R0(0)|2, (A.63)

〈0|OJ/ψ
8 (3PJ )|0〉 = 2Nc

π
(2J + 1)|R′

1(0)|2. (A.64)

After taking the trace one obtains the following amplitude
expressions for the S-wave and the P-wave states:

Mμν
[

1S(8a)
0

]
= 2i

√
2gs(eec)δab√

πM(Q2 + M2)
R0(0)εμνρσ kρ Phσ , (A.65)

Mμν
[

3S(8a)
1

]
=

√
2gs(eec)δab√

πM(Q2 + M2)
R0(0)4Mgμν Pβ

h εszβ(Ph)

= 0, (A.66)

Mμν
[

3P(8a)
0

]
= 2i

√
2gs(eec)δab√

πM3
R′

1(0)
3M2 + Q2

M2 + Q2

[
gμν

−2
kν Pμ

h

M2 + Q2

]
, (A.67)

Mμν
[

3P(8a)
1

]
=

√
3

8πM

√
2gs(eec)δab

Q2 + M2 R′
1(0)ερσαβ

Pρ
h

M
εσ
Jz (Ph)

× 4

M

{
gμβ

(
(M2 − Q2)

×gνα + 2kαPν
h

)
+ gνβ

(
(M2 + Q2)gμα

−2kαPμ
h

) − 2gμαkβ Pν
h

− 2kβ

M2 + Q2

(
2M2gμνkα − 2M2gμαkν

+(M2 − Q2)gναPμ
h

) }
, (A.68)

Mμν
[

3P(8a)
2

]
= 2i

√
3

πM

√
2gs(eec)δabM

(Q2 + M2)
R′

1(0)εJzαβ(Ph)

×
[
gανgβμ + gαμgβν

− 4kα

Q2 + M2

(
kβgμν − kνgβμ + Pμ

h gβν
) ]

.

(A.69)
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