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Abstract In this paper, we use Born–Infeld black holes
to test two recent holographic conjectures of complexity, the
“Complexity = Action” (CA) duality and “Complexity = Vol-
ume 2.0” (CV) duality. The complexity of a boundary state is
identified with the action of the Wheeler–deWitt patch in CA
duality, while this complexity is identified with the spacetime
volume of the WdW patch in CV duality. In particular, we
check whether the Born–Infeld black holes violate the gener-
alized Lloyd bound: Ċ ≤ 2

π h̄

[
(M − Q�) − (M − Q�)gs

]
,

where gs stands for the ground state for a given electro-
static potential. We find that the ground states are either some
extremal black hole or regular spacetime with nonvanishing
charges. For Born–Infeld black holes, we compute the action
growth rate at the late-time limit and obtain the complexities
in CA and CV dualities. Near extremality, the generalized
Lloyd bound is violated in both dualities. Near the charged
regular spacetime, this bound is satisfied in CV duality but
violated in CA duality. When moving away from the ground
state on a constant potential curve, the generalized Lloyd
bound tends to be saturated from below in CA duality.
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1 Introduction

Through gauge/gravity duality, concepts from quantum
information theory have driven major advances in our under-
standing of quantum field theory and quantum gravity. For
example, the holographic entanglement entropy [1,2] is cur-
rently receiving considerable attention in ongoing research.
Recently, inspired by the observation that the size of the
Einstein–Rosen bridge (ERB) grows linearly at late times, it
was conjectured [3–6] that quantum complexity of a bound-
ary state is dual to the volume of the maximal spatial slice
crossing the ERB anchored at the boundary state. Roughly
speaking, the complexity C of a state is the minimum number
of quantum gates to prepare this state from a reference state
[7–9]. However, one of the unappealing features of this pro-
posal is that there is an ambiguity in choosing a length scale
in the bulk geometry, which provides some motivations to
introduce the “Complexity = Action” (CA) duality [10,11].

In CA duality, the complexity of a boundary state is iden-
tified with the action of the Wheeler–deWitt (WdW) patch in
the bulk:

C = SWdW

π h̄
, (1)

where the WdW patch can be defined as the domain of depen-
dence of any Cauchy surface anchored at the boundary state.
After the original calculations of SWdW in [11], a detailed
analysis was carried out in [12], of the contributions to the
action of some subregion from a null segment and a joint
at which a null segment is joined to another segment. It is
interesting to note that although the two approaches used in
[11,12] are different, the results for dSWdW/dt at late times of
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the AdS Schwarzschild and Reissner–Nordstrom (RN) AdS
black holes turn out to be the same. A possible explanation
was given in [12].

Similar to the holographic entanglement entropy, the holo-
graphic complexity in CA duality is divergent, which is
related to the infinite volume near the boundary of AdS space.
The divergent terms were considered in [13–15], which
showed that these terms could be written as local integrals of
boundary geometry. This implies that the divergence comes
from the UV degrees of freedom in the field theory. On the
other hand, there are two finite quantities associated with the
complexity, which can be calculated without first obtaining
these divergent terms. The first one is the “complexity of
formation” [16], which is the difference of the complexity
between a particular black hole and a vacuum AdS space-
time. The second one is the rate of complexity at late times,
Ċ. If CA duality is correct, Ċ should saturate the Lloyd bound
[17]. The Lloyd bound is the conjectured complexity growth
bound, which states that Ċ should be bounded by the energy
[11]:

Ċ ≤ 2E

π h̄
. (2)

For a black hole, E is its mass M , and the Lloyd bound then
reads

Ċ ≤ 2M

π h̄
. (3)

As noted in [11], the rate of the complexity of a neutral black
hole is faster than that of a charged black hole since the
existence of conserved charges could put constraints on the
system. That implies that the Lloyd bound can be generalized
for a charged black hole with the charge Q and potential at
the horizon �:

Ċ ≤ 2

π h̄

[
(M − Q�) − (M − Q�)gs

]
, (4)

where (M − Q�)gs is M − Q� calculated in the ground
state. A similar bound can also be given for rotating black
holes [11]. To distinguish the two bounds given in Eqs. (3)
and (4), we shall call the bound in Eq. (3) “the Lloyd bound”
and that in Eq. (4) “the generalized Lloyd’s bound” in this
paper. It showed in [18] that under some general conditions,
static vacuum black holes saturated the Lloyd bound in CA
duality.

The rate of complexity at the late-time limit in CA duality
has been considered in several examples. In [11], it showed
that neutral black holes, rotating BTZ black holes, and small
RN AdS black holes saturated the corresponding generalized
Lloyd bounds, while intermediate and large RN AdS black
holes violated the bound (4). Later, it was pointed out [19,20]
that even the small RN AdS black holes also violated the

generalized bound. The WdW patch action growth of RN
AdS black holes, (charged) rotating BTZ black holes, AdS
Kerr black holes, and (charged) Gauss–Bonnet black holes
were calculated in [19]. The action growth was also discussed
in the case of massive gravities [21] and higher derivative
gravities [22]. A general case was considered in [23], and it
was proved that the action growth rate equals the difference
of the generalized enthalpy at the outer and inner horizons.
While this paper is in preparation, a preprint [24] appeared,
calculating the action growth of Born–Infeld black holes,
charged dilaton black holes, and charged black holes with
phantom Maxwell field in AdS space. It also showed there
that a Born–Infeld AdS black hole with a single horizon and
a charged dilaton AdS black hole satisfied the Lloyd bound,
while for the charged black hole with a phantom Maxwell
field, this bound was violated.

Noting that the thermodynamic volume was related to
the linear growth of the WdW patch at late times, Couch
et al. proposed “Complexity = Volume 2.0” duality in [20].
In “Complexity = Volume 2.0” (CV) duality, the complexity
is identified with the spacetime volume of the WdW patch.
It was found that the generalized Lloyd bound was violated
in both CA and CV dualities for RN AdS black holes near
extremality. However, if the ground state was an empty AdS
space, this bound was violated in CA duality but satisfied in
CV duality. In what follows, letCA/CV denote the complexity
calculated in CA/CV duality.

In this paper, we will check whether the generalized Lloyd
bound is violated for the Born–Infeld AdS black holes in CA
and CV dualities. The remainder of our paper is organized
as follows. In Sect. 2, we discuss some properties of Born–
Infeld AdS black holes, which could have a naked singularity,
a single horizon, or two horizons depending on their param-
eters. The phase diagrams for these black holes are obtained.
In Sect. 3, we consider the generalized Lloyd bound for the
Born–Infeld AdS black holes in CA/CV dualities. In Sect. 4,
we conclude with a brief discussion of our results. In the
appendix, we employ the approach in [12] to calculate action
growth at the late-time limit for (d + 1)-dimensional Born–
Infeld AdS black holes with hyperbolic, planar, and spherical
horizons.

2 Born–Infeld AdS black holes

In this section, we will consider the black hole solutions of
Einstein–Born–Infeld action in (d + 1) dimension (d ≥ 3)

with a negative cosmological constant � = − d(d−1)

L2 . The
action of Einstein gravity and the Born–Infeld field reads

S =
∫

M
dd+1x

√−g

(
R + d (d − 1)

L2

)

+
∫

M
dd+1x

√−gL (F) , (5)
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where we take 16πG = 1 for simplicity, L (F) is given by

L (F) = 4β2

(

1 −
√

1 + FμνFμν

2β2

)

, (6)

and β is the Born–Infeld parameter. When β → ∞, the
Lagrangian of Born–Infeld field L (F) becomes that of stan-
dard Maxwell field, L (F) = −FμνFμν. The static black
hole solution was obtained in [25,26]:

ds2 = − f (r) dt2 + dr2

f (r)
+ r2d�2

k,d−1,

Frt =
√

(d − 1) (d − 2)βq
√

2β2r2d−2 + (d − 1) (d − 2) q2
, (7)

where

f (r) = k − m

rd−2 +
[

4β2

d (d − 1)
+ 1

L2

]
r2

− 2
√

2β

d (d − 1) rd−3

√
2β2r2d−2 + (d − 1) (d − 2) q2

+ 2 (d − 1) q2

dr2d−4 2
F1

[
d − 2

2d − 2
,

1

2
,

3d − 4

2d − 2
,

− (d − 1) (d − 2) q2

2β2r2d−2

]
, (8)

and d�2
k,d−1 is the line element of the (d − 1)-dimensional

hypersurface with constant scalar curvature (d − 1) (d − 2) k
with k = {−1, 0, 1}. Note that the black holes with k =
{−1, 0, 1} have hyperbolic, planar, and spherical horizons.
The mass M and charge Q of the Born–Infeld black hole are
given by, respectively,

M = (d − 1) �k,d−1m,

Q =
√

(d − 1) (d − 2)�k,d−1

4π
√

2
q, (9)

where �k,d−1 denotes the dimensionless volume of d�2
k,d−1.

For k = 0 and −1, one needs to introduce an infrared regu-
lator to produce a finite value of �k,d−1.

For the sake of calculating the action growth and thermo-
dynamic volume of the Born–Infeld black holes, we need to
determine the number of their horizons. Depending on the
values of the parameters q and m, the black holes could pos-
sess a naked singularity at r = 0, one, or two horizons. In
fact, we could define a q-dependent function

b (r, q) = rd−2 f (r) + m, (10)

which does not depend on the parameter m. For a given value
of m, one could solve b (r, q) = m for the position of the
horizon. The derivative of b (r, q) with respect to r is

db (r, q)

dr
= (d − 2) rd−3

⎡

⎢
⎣k + dr2

(d − 2) L2

− 2q2

rd−3
(
rd−1 +

√
r2d−2 + (d−1)(d−2)q2

2β2

)

⎤

⎥
⎦ ,

(11)

which is a strictly increasing function. When r → ∞,
db (r, q) /dr goes to ∞. In the limit r → 0, we find that

db (r, q)

dr
|r=0 = −2

√
2βq

(d − 1)

√
(d − 1) (d − 2), for d > 3,

db (r, q)

dr
|r=0 = k − 2βq, for d = 3, (12)

which shows that db (r, q) /dr |r=0 ≥ 0 in the k = 1,
d = 3, and βq ≤ 1/2 case, and db (r, q) /dr |r=0 < 0
in the other cases. When db(r,q)

dr |r=0 < 0, the equation
db (r, q) /dr = 0 has one and only solution re (q) > 0,
such that db (r, q) /dr |r=re(q) = 0. Thus, there is an extremal
black hole solution with the parameterm = b (re (q) , q) and
the horizon being at r = re (q). At r = re (q), we obtain

b (re (q) , q) = 2

d
krd−2

e + 2 (d − 1) q2

drd−2
e

×2F1

[
d − 2

2d − 2
,

1

2
,

3d − 4

2d − 2
,− (d − 1) (d − 2) q2

2β2r2d−2
e

]
. (13)

When k = 0 and 1, b (re (q) , q) is always positive. However,
for k = −1, b (re (q) , q) could be negative for some values
of q. It is noteworthy that b (re (q) , q) exists for q ≥ 1

2β
in

the k = 1, d = 3, and βq ≤ 1/2 case, while b (re (q) , q)

exists for all values of q in other cases. Moreover, one finds
that

b (0, q) = A (q) > 0, (14)

where

A (q) ≡ 2 (d − 1) q2

d

	
(

3d−4
2d−2

)
	

(
1

2(d−1)

)

√
π

×
[

2β2

(d − 1) (d − 2) q2

] d−2
2(d−1)

. (15)

Since db (r, q) /dr < 0 for 0 < r < re, one obtains
b (re (q) , q) < b (0, q) = A (q). In Fig. 1, we plot the func-
tion b (r, q) against r for different values of q, where we take
L = 1 and β = 10.

With the above results, we can discuss when the Born–
Infeld black hole solution (7) possesses a naked singularity,
a single horizon, or two horizons:
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Fig. 1 Plots of b (r, q) versus r for different values of q, where L = 1 and β = 10

• Single Horizon: m ≥ A (q). For example, {q = 0.04,

m = 0.15} in Fig. 1a.
• Two Horizons: b (re (q) , q) ≤ m < A (q). For example,

{q = 0.1, m = 0.23} in Fig. 1a.
• Naked Singularity: m < A (q) when k = 1, d = 3,

and βq ≤ 1/2; m < b (re (q) , q) in the other cases. For
example, {q = 0.1, m = 0.15} in Fig. 1a.

The phase diagrams for Born–Infeld AdS black holes are
plotted in Fig. 2, for the cases with {d = 3, k = ±1, 0} and
{d = 4, k = 1}. We also take L = 1 and β = 10 in Fig. 2.
The blue lines in Fig. 2 are extremal lines, which are given by
m = b (re (q) , q). The boundaries between the black holes
with one horizon and these with two horizons are depicted as
the black dashed lines, which are given by m = A (q). The
colored lines (red and blue) are the boundaries between black
holes and naked singularities. In Fig. 2a, the red line divides
the black holes with a single horizon and the spacetime with
a naked singularity, and it meets the blue extremal line at the
red dot, whose q coordinate is 1

2β
= 0.05.

To discuss the generalized Lloyd bounds, we need to spec-
ify the electrostatic potential of the ground states, which are
the colored lines in the inset subfigures of Fig. 2. The electro-
static potential at the black hole horizon, which is conjugate
to the electric charge Q, is [25,26]

� =
√

d − 1

2 (d − 2)

16πq

rd−2
h

2F1

[
d − 2

2d − 2
,

1

2
,

3d − 4

2d − 2
,

− (d − 1) (d − 2) q2

2β2r2d−2
h

]

, (16)

where rh is the horizon’s radius. The blue lines in the inset
subfigures of Fig. 2 are the potential of the extremal black
holes, which are obtained by plugging the extremal radius
re (q) into Eq. (16). In Fig. 2a, the black holes on the red
line possess a single horizon, whose radius rh is zero. The
red line in the inset subfigure of Fig. 2a is the potential of
these black holes, which is the limit value of Eq. (16) at
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Fig. 2 The phase diagrams for Born–Infeld AdS black holes where L = 1 and β = 10. The blue lines are extremal black holes, while the red one
is some regular spacetime with nonvanishing charges. Small figures are the plots of the potential along the boundary lines

rh = 0. When β → ∞, the Born–Infeld AdS black holes
become the RN AdS black holes. When k = 1 and d =
3, it was found [11] that the boundary of RN AdS black
holes in the phase diagram was the extremal line, and the
potential � approached 16π as (q,m) → (0, 0) along the
extremal line. Thus, for a RN AdS black hole, the ground
state of the geometry with the same electrostatic potential as
this black hole is pure AdS spacetime for �

16π
≤ 1, but for

�
16π

> 1 it is some extremal black hole. Now we compute
the asymptotic behavior of � as (q,m) → (0, 0) along the
boundaries:

• k = 0: The boundary is the extremal line, on which re ∼
q

1
d−1 given by db (r, q) /dr |r=re = 0. Since q2

r2d−2
e

∼ 1 as

q → 0, we find

� ∼ q

rd−2
e

∼ q
1

d−1 → 0 as q → 0. (17)

• k = −1 : The boundary is the extremal line, on which
re ∼ L as q → 0. One then finds

� ∼ q

rd−2
e

∼ q → 0 as q → 0. (18)
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It is interesting to note that

m → 2

d

(
d − 2

d

) d−2
2

Ld−2 as q → 0. (19)

• k = 1: If d > 3, the extremal line could go to (0, 0)

as q → 0. On the extremal line, db (r, q) /dr |r=re = 0

shows that re ∼ q
1

d−3 and q2

r2d−2
e

→ ∞ as q → 0. Using

Eq. (16), we also find

� ∼ q
1

d−1 → 0. (20)

If d = 3, the boundary line around (0, 0) is the red line
in Fig. 2a, on which r+ = 0. Again, we have

� ∝ q
1

d−1 → 0. (21)

Unlike the k = 1 and d = 3 RN AdS black holes, the
potential � → 0 as (q,m) → (0, 0) along the boundary
lines for the Born–Infeld AdS black holes. Thus, for a Born–
Infeld AdS black hole with � > 0, the ground state of the
geometry with the same � is either some extremal black hole
(blue lines) or some regular spacetime with nonvanishing
charges (red lines). In the cases with {d = 3, k = ±1, 0} and
{d = 4, k = 1}, the potential along the boundary lines are
plotted in Fig. 2, where �̃ = �

16π
, L = 1, and β = 10.

3 Holographic conjectures of complexity

In this section, we will discuss CA/CV dualities for the Born–
Infeld AdS black holes. In our appendix, the action growth
of the Born–Infeld AdS black holes within the WdW patch
at late-time approximation is calculated by following the
approach in [12]. The action growth at the late-time limit
in the case with k = 1 and d = 3 was first calculated in [19].
The growth rate of the action dS/dt depends on the number
of the horizons. In fact, we find that

dS

dt
= 2M − Q�+ − (d − 2) A (q) �k,d−1

in the case of one horizon,

dS

dt
= Q�− − Q�+ in the case of two horizons, (22)

where � is the potential at the horizon given by Eq. (16),
�± are � calculated at r = r±, and r± is the radius of the
outer
inner horizon. Furthermore, CA duality indicates that, in the
late-time regime,

ĊA = 1

π h̄

dS

dt
. (23)

On the other hand, CV duality gives [20] that, in the late-time
regime,

ĊV = PV

h̄
, (24)

where P = d (d − 1) /L2 is the pressure, and V is the vol-
ume of the WdW patch. For Born–Infeld AdS black holes,
the rate of the complexity at late times is then given by

ĊV = (d − 1) �k,d−1rd+
L2h̄

in the case of one horizon,

ĊV = (d − 1) �k,d−1
(
rd+ − rd−

)

L2h̄
in the case of two horizons.

(25)

The generalized Lloyd bound for a charged black hole is

Ċ ≤ 2

π h̄

[
(M − Q�) − (M − Q�)gs

]
, (26)

where (M − Q�)gs is M − Q� calculated in the ground
state. The ground state is on the boundary between black hole
region and no black hole region (colored lines in Fig. 2). If the
system is treated as a grand canonical ensemble, the ground
state has the same potential � as the black hole under consid-
eration. Now we will calculate the rate of the complexity in
the CA and CV dualities and check whether the generalized
Lloyd bound (26) is violated.

3.1 A. Around extremal line

We first consider a general static charged black hole with the
line element

ds2 = − f (r) dt2 + dr2

f (r)
+ r2d�2

k,d−1, (27)

where the radii of the outer and inner horizon are r+ and
r−, respectively. The first law of black hole thermodynamics
reads

dM = T dS + �dQ. (28)

Since the entropy S is a function of r+, one finds

∂M (r+, Q)

∂Q
= �,

∂M (r+, Q)

∂r+
= T

dS

dr+
. (29)

At extremality where T = 0, we have

∂M (r+, Qe)

∂r+
|r+=re = 0, (30)
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where re and Qe are the radius and charge, respectively, of
the black hole at extremality. For a fixed value of �, r+ can
be determined by Q : r+ = r+ (Q). Thus on the constant �

curve near extremality, we find

M (r+ (Qe + δQ) , Qe + δQ) − (Qe + δQ) �

− [
M (r+ (Qe) , Qe) − Qe�

]

=
[(

∂M (r+, Q)

∂r+
dr+ (Q)

dQ

)
|Q=QeδQ

+∂M (r+, Q)

∂Q
|Q=QeδQ − �δQ

]

+ O
(
δQ2

)
∼ O

(
δQ2

)
. (31)

The generalized Lloyd bound then becomes

2

π h̄

[
(M − Q�) − (M − Q�)gs

] ∼ O
(
δQ2

)
. (32)

Expanding r± near extremality, we find that

r± ≈ re + c±
1 δQ, (33)

where

c+
1 = − ∂Q�(re, Qe)

∂r+�(re, Qe)
,

c−
1 = ∂Q�(re, Qe)

∂r+�(re, Qe)
− 2∂r�(re, Qe)

∂2
r+M (re, Qe)

. (34)

From these results we can expand Ċ near extremality as

ĊA ∼ Qe∂r+�(re, Qe)

π h̄

(
c+

1 − c−
1

)
δQ,

ĊV ∼ d (d − 1) �k,d−1rd−1
e

L2h̄

(
c+

1 − c−
1

)
δQ. (35)

If c+
1 �= c−

1 , the generalized Lloyd bounds are violated near
extremality under the two proposals. For the Born–Infeld
AdS black holes with d = 3, we find that

c+
1 − c−

1 = k − �̃2

�̃2
(
k − 2�̃2

)

−
3
(
k2 − 8k�̃2 + 6�̃4

)

10β2L2
(
k − 2�̃2

)2 (
k − �̃2

) + O
(
β−4

)
,

(36)

where �̃ = �
16π

.

3.2 B. Around regular charged spacetime

Shown in Fig. 2a is a red boundary, which is m = A (q)

for q ≤ 1
2β

, in the case with d = 3 and k = 1. Above this
boundary, one has a black hole with a single horizon, whose
radius goes to zero on approaching the boundary. When r �
1, we find

f (r) = (1 − 2qβ) − m − A (q)

r
+ O

(
r2

)
, (37)

which means that the metric is regular at r = 0 for
m = A (q). Therefore, one has some regular spacetime with
nonvanishing charges on the red boundary. The potential

�
(
= 16π�̃

)
of the ground states on the boundary can be

obtained from finding the limit of Eq. (16) as r+ → 0:

�̃ = �̃c
√

2qβ ≤ �̃c, (38)

where

�̃c = 1√
2π

	

(
5

4

)
	

(
1

4

)
. (39)

A little bit above the boundary, the radius of a black hole
with the potential � is given by

r+ ≈ �̃2
c

�̃2 + �̃2
c

δm, (40)

where δm = m−m0, andm0 is them parameter of the ground
state with the same potential �. Since r+ � 1 implied by
Eq. (40), Eq. (37) shows that the temperature of the black
hole is

T ∝ m − A (q) , (41)

which goes to zero on approaching the ground state. For this
black hole, we find that the generalized Lloyd bound is

2

π h̄

[
(M − Q�) − (M − Q�)gs

]

≈ 16

h̄

(

1 − 2�̃2

�̃2 + �̃2
c

)

δm. (42)

On the other hand, we can expand Ċ as

ĊA ≈ 16

h̄

(

1 − 3

2

�̃2

�̃2 + �̃2
c

)

δm,

ĊV ∼ O
(
r3+

)
∼ O

(
δm3

)
. (43)

It appears that the bound is satisfied in CV duality although
far from saturated near the boundary. However, the bound is
violated in CA duality.
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3.3 C. Large q on constant � curve

Consider Born–Infeld AdS black holes with fixed potential
�. When q → ∞ along the constant � curve, one could have

there possibilities for q2

r2d−2+
: q2

r2d−2+
→ 0, q2

r2d−2+
→ C where

0 < C < ∞, and q2

r2d−2+
→ ∞. If q2

r2d−2+
→ ∞, Eq. (16)

gives that � ∼ q
1

d−1 , which cannot be a constant. Similarly

for q2

r2d−2+
→ C , one has that � ∼ r+ ∼ q

1
d−1 . Therefore, we

could only have

q2

r2d−2+
→ 0 as q → ∞ along the constant � curve. (44)

Expanding Eq. (16) in terms of q
rd−1+

and solving for q, one

has

q ∼
√

2 (d − 2)

d − 1
�̃rd−2+

(

1 + (d − 2)3

2 (3d − 4)

�̃2

β2r2+

)

. (45)

Since Eq. (44) implies that r+ 
 1 when q 
 1, the param-
eter m is

m = rd+
L2

[
1 + O

(
r−2+

)]
. (46)

The generalized Lloyd bound for q 
 1 (r+ 
 1) is then
given by

2

π h̄

[
(M − Q�) − (M − Q�)gs

]

= 2 (d − 1) �k,d−1

π h̄

rd+
L2

[
1 + O

(
r−2+

)]
. (47)

From Eqs. (45) and (46), it follows that

m ∼ q
d

d−2 for q 
 1. (48)

Since A (q) ∼ q
d

d−1 , the Born–Infeld AdS black holes with
fixed potential � always lie above the m = A (q) line for
large enough q, which means that these black holes always
possess a single horizon for q 
 1 with fixed �. Therefore,
Eqs. (22) and (25) give

ĊA = 2 (d − 1) �k,d−1

π h̄

rd+
L2

[

1 − Cd L2�̃
d

d−1 β
d−2
d−1

2 (d − 1) �k,d−1
r

−d
d−1+

+O
(
r−2+

)
]

,

ĊV = (d − 1) �k,d−1rd+
L2h̄

, (49)

0.5 1.0 1.5 2.0 2.5 3.0 3.5
q

5

10

15

20

25

m

1

1.5

Fig. 3 Curves of constant potential �̃ = 1 and 1.5 in the case with
d = 3, k = 1, L = 1 and β = 1

where

Cd = 2 (d − 1)

d

	
(

3d−4
2d−2

)
	

(
1

2(d−1)

)

√
π

×
(

2

d − 1

) d−2
d−1

[
2 (d − 2)

d − 1

] 1
d−1

. (50)

We see immediately that the generalized Lloyd bound is sat-
isfied in CA duality for sufficiently large q and tends to be
saturated as q → ∞. However, in CV duality, Ċ is π/2 times
as large as the generalized Lloyd bound for q 
 1.

3.4 D. Numerical results

Here we consider two curves of constant potential, �̃ = 1
and �̃ = 1.5, in the case with d = 3 and k = 1. These
two constant potential curves are plotted in Fig. 3 for β = 1.
Note that the �̃ = 1 curve (green) starts from some regular
spacetime, while the �̃ = 1.5 curve (purple) starts from some
extremal black hole. Both curves enter the “Single Horizon”
region for large enough q, which is in agreement with the
argument below Eq. (48).

To check whether the generalized Lloyd bound is violated
on the curves, we define

RA = ĊA
2

π h̄

[
(M − Q�) − (M − Q�)gs

] ,

RV = ĊV
2

π h̄

[
(M − Q�) − (M − Q�)gs

] . (51)
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(c) Plot of RA versus q in CA-duality along the

Φ̃ = 1 curve starting from the red boundary.
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(d) Plot of RV versus q in CV-duality along the

Φ̃ = 1 curve starting from the red boundary.

˜˜

Fig. 4 The rate of the complexity in CA duality and CV duality divided by the generalized Lloyd bound, RA and RV respectively, along the �̃ = 1
and �̃ = 1.5 curves

In Fig. 4, we plot RA and RV along the �̃ = 1 and �̃ = 1.5
curves for β = 0.25 (black), β = 1 (red), β = 5 (green), β =
10 (blue), and β = 100 (orange). As shown in Fig. 4, the RA

curves approach RA = 1 asymptotically from below for large
q, while the RV curves approach RA = π/2 asymptotically,
which agrees with Eqs. (47) and (49). Near extremality, RA

and RV on the �̃ = 1.5 curve go to infinity as predicted
by Eqs. (32) and (35). When approaching the red boundary
along the �̃ = 1 curve, RA and RV go above RA = 1 and to
zero, respectively, which also agrees with Eqs. (42) and (43).

Along the �̃ = 1.5 curve, Fig. 4a shows that the general-
ized Lloyd bound is satisfied in CA duality for large enough
q, while Fig. 4b shows that the generalized Lloyd bound is
violated in CV duality. Note that the kinks in the RA curves
in Fig. 4a are where the �̃ = 1.5 curve enter the “Single

Horizon” region from the “Two Horizons” region. Along the
�̃ = 1 curve, Fig. 4d shows that the generalized Lloyd bound
is only satisfied in CV duality for small q. It is interesting to
see that the RA curves in Fig. 4c start to oscillate for small
q when β is large enough (β = 5, 10, and 100). Even for
β = 10 and 100, there is a range of q over which ĊA < 0.

In summary, the generalized Lloyd bound is violated in
CA duality as we approach the ground states, but this bound
tend to be saturated as we go away from the ground states
with fixed potential. As noted in [11], the violations near the
ground states have something to do with hair. In CV duality,
the generalized Lloyd bound is violated everywhere along
the constant potential curves, except near the ground states
on the red line.
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Table 1 Check of whether the
generalized Lloyd bound is
violated or satisfied

Near extremal line Near red line Large q on constant � curve

CA duality Violated Violated Tend to be saturated

CV duality Violated Satisfied Violated

4 Discussion and conclusion

In this paper, we first obtained the phase diagram of Born–
Infeld AdS black holes and then checked whether the gen-
eralized Lloyd bound was violated in CA and CV dualities.
In Sect. 2, we showed that the Born–Infeld black hole solu-
tion could possess a naked singularity, a single horizon, or
two horizons, depending on the values of its parameters q
and m. Except the k = 1 and d = 3 case, the boundaries
between “Black Hole” region and “No Black Hole” region
were extremal lines (blue lines in Fig. 2). However, in the
k = 1 and d = 3 case, there was an additional boundary (red
line in Fig. 2a), on which was some regular spacetime with
nonvanishing charges. It is noteworthy that unlike a RN AdS
black hole, the ground state of a Born–Infeld AdS black hole
with potential � > 0 could not be the empty AdS spacetime.

In Sect. 3, we calculated the generalized Lloyd bound
and the rate of the complexity at late times in CA and CV
dualities near the boundaries and for largeq on the constant �
curves. The results of whether the generalized Lloyd bound
was violated are summarized in Table 1. We also found that,
for a general static charged AdS black hole with the charge
Q near extremality, the generalized Lloyd bound in Eq. (26)
was always O (

δQ2
)
, where δQ ≡ Q − Qe, and Qe was the

charge of the extremal black hole with the same potential.
If the difference between the outer and inner horizon radii
is O (δQ), which is the case for RN AdS and Born–Infeld
AdS black holes, then the generalized Lloyd bound is usually
violated near extremality.

In thed = 3 and k = 1 case, we plotted the rate of the com-
plexity in CA and CV dualities divided by the generalized
Lloyd bound along the �̃ = 1 and �̃ = 1.5 curves in Fig. 4. It
appears that the generalized Lloyd bound in CA duality was
violated near the ground states but tended to be saturated as
moving away from the ground states along the constant �

curves. On the other hand, the generalized Lloyd bound in
CV duality was violated along the constant � curves, except
near the ground states on the red line. Since the hair may play
a role in the violations near the ground states, it seems from
these observations that CA duality is slightly favored.

In this paper, we have focused on the generalized Lloyd
bound. However, the Lloyd bound in Eq. (3) is solider than the
generalized Lloyd bound in Eq. (4) in quantum information
theory, so the violation of the Lloyd bound is a more serious
problem for the holographic conjectures of complexity. So
we now check whether the Lloyd bound is satisfied for the

Born–Infeld AdS black holes. In CA duality, we check the
Lloyd bound in the following cases:

1. Single Horizon: It is easy to see from Eq. (22) that the
Lloyd bound is always satisfied in this case since Q�+
and A (q) are greater than zero.

2. Two Horizons: The results depend on the scalar curvature
of the horizon:

(a) k = 1 and 0: We believe that the Lloyd bound is
satisfied in these cases. However, it is difficulty to
prove it analytically. Instead, we check it numerically.
To do that, we define

R̃A = ĊA/
2M

π h̄
, (52)

and plot R̃A in Fig. 5a in the two cases of d = 3,
β = 10 and L = 1 for (q, k) = (0.3, 1) and
(q, k) = (0.7, 0). Figure 5a shows that the Lloyd
bound is satisfied in these two cases.

(b) k = −1: In this case, the Born–Infeld AdS black
holes could exist when m < 0. In Fig. 2b, we plot
the phase diagram for d = 3, β = 10, L = 1 and
k = −1. It shows that the case of two horizons could
have m < 0, which clearly violate the Lloyd bound
since ĊA ≥ 0. Therefore, the Lloyd bound is violated
in the region of m < 0 and its some neighborhood in
the phase diagram. In Fig. 5b, we plot R̃A for q = 0.3,
d = 3, β = 10, L = 1 and k = −1 to show this point.
On the other hand, the Lloyd bound is satisfied in the
region far enough from m = 0. We also plot R̃A for
q = 1, d = 3, β = 10, L = 1 and k = −1 in Fig. 5a.

In CV duality, we numerically check the Lloyd bound in the
following cases:

1. k = 1 and 0: We define

R̃V = ĊV /
2M

π h̄
, (53)

and plot R̃V in Fig. 6a in the cases of d = 3, β = 10
and L = 1 for (q, k) = (0.3, 1) and (q, k) = (0.7, 0).
It shows that, for large enough m, the Lloyd bound is
always violated.

2. k = −1: The function R̃V is plotted in Fig. 6a for q = 1,
d = 3, β = 10, L = 1 and k = −1. For fixed q, it shows
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Fig. 5 The rate of the complexity in CA duality divided by the Lloyd bound, R̃A. Here we take d = 3, L = 1 and β = 10

q 0.3, k 1, Two Horizons

q 0.3, k 1, Single Horizon

q 0.7, k 0, Two Horizons

q 0.7, k 0, Single Horizon

q 1, k 1, Two Horizons

q 1, k 1, Single Horizon
2 4 6 8 10 12

m

0.5

1.0

1.5

2.0

q 0.3, k 1, Two Horizons

q 0.3, k 1, Single Horizon

1 1 2 3 4 5 6
m

2

2

4

6

Extremal black holes have m > 0. Extremal black holes have m < 0.(a) (b)

Fig. 6 The rate of the complexity in CV duality divided by the Lloyd bound, R̃V . Here we take d = 3, L = 1 and β = 10

that if an extremal black hole hasm > 0, the Lloyd bound
is satisfied for the black holes with small enough m but
violated for these with large enough m. We plot R̃A for
q = 0.3, d = 3, β = 10, L = 1 and k = −1 in Fig. 6b.
If an extremal black hole has m < 0, the Lloyd bound is
violated for all or most of the black holes with the same
charge as that of the extremal black hole.

On the quantum information theory side, researchers gen-
erally believe that the linear growth of the complexity at late
time and the (generalized) Lloyd bound are true but have
difficulty to prove them. The first conjecture has motivated
several proposals of a holographic dual to the complexity.
In these proposals, satisfying the (generalized) Lloyd bound
on the gravity side could provide strong evidence for these
dualities. However, it is not uncommon to encounter the vio-
lations of the (generalized) Lloyd bound, which might imply
that:

• Something is wrong with the holographic duality.
• Calculations on the gravity side cannot be trusted. For a

general static charged AdS black hole near extremality,
we found that the generalized Lloyd bound was always
badly violated. This violation can be explained by the
existence of the hair [11], which make the calculations
unreliable when its effect is important. When a black hole
is far away from the ground state, one expects that the hair
plays a much less important role, and hence the calcula-
tion can be trusted. We found that in CA duality, when
a Born–Infeld AdS black hole moved along a constant
potential curve far enough away from the ground state,
it always satisfied and tended to saturate the generalized
Lloyd bound. One the other hand, the generalized Lloyd
bound was always violated in CV duality in this case,
which requires something else to explain the violation.
We also found that, for a Born–Infeld AdS black hole
with m < 0, the Lloyd bound was always violated. In
this case, the black hole has negative ADM mass, and
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hence one should check whether this black hole solution
has any pathological properties, which is out of the scope
of this paper.

• One might need alter the bound by a pre-factor [20]. As
noted in [20], the (generalized) Lloyd bound should only
be trusted up to an overall factor. In this case, the (gen-
eralized) Lloyd bound can be changed to

Ċ ≤ α

π h̄
M and Ċ ≤ α

π h̄

[
(M − Q�) − (M − Q�)gs

]
,

(54)

respectively, where α is some number. In CV duality, we
found that, for a Born–Infeld AdS black hole on a con-
stant potential curve far enough away from the ground
state, Ċ was π/2 times as large as the generalized Lloyd
bound. Similarly, we also found that Ċ was π/2 times
as large as the Lloyd bound for a black hole with large
enough mass. It seems that α = π would place CV dual-
ity in a much better position.

Finally, we want to briefly discuss the differences between
our results and these of RN AdS black holes. The ground
state of a RN AdS black hole is either the empty AdS space
or some extremal black hole. However, the ground state of a
Born–Infeld AdS black hole is either some charged regular
spacetime or extremal black hole, but could not be the empty
AdS space as long as the potential is not zero. As shown
by Eq. (5.15) in [20] and Fig. 6 in [11], if the ground state
was the empty AdS space, ĊA for a RN AdS black hole with
d = 3 and k = 1 always violated the generalized Lloyd
bound along a constant potential curve, even when q → ∞.
However, for a Born–Infeld AdS black hole, our results show
that the generalized Lloyd bound in CA duality is satisfied for
large enough q along a constant potential curve. When q is
very large with fixed potential, we have obtained q

rd−1+
� 1,

and the metric in Eq. (7) is almost the same as that of a RN
AdS black hole outside the outer horizon. In this case, physics
over the region outside the outer horizon of the Born–Infeld
AdS black hole does not differ much from that of the RN
AdS black hole. A different behavior of ĊA for RN AdS and
Born–Infeld AdS black holes with large q on the constant
potential curves means that the complexity encodes physics
behind black hole horizons.

Acknowledgements We are grateful to Song He, Houwen Wu, and
Zheng Sun for useful discussions. This work is supported in part by
NSFC (Grant nos. 11005016, 11175039 and 11375121).

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

Appendix A: Rate of action of Born–Infeld AdS black
holes

In this appendix, we use the methods in [12] to calculate the
change of action, δS = S (t0 + δt) − S (t0), of the Wheeler–
deWitt patch at late times. The Penrose diagrams for two-
sided eternal Born–Infeld AdS black holes are illustrated in
Fig. 7, along with the Wheeler–deWitt patches at t = t0 and
t0 + δt . Here we fix the time on the right boundary and only
vary it on the left boundary. There is a divergence appearing
when calculating the action near the boundary r = ∞. So a
surface of constant r = rmax is defined to regulate the action.
In [24], the action was regulated by defining the boundaries
of the WdW patch originate slightly inside the AdS bound-
ary. It turns out that these two choices for the regulator yield
the same results. We also introduce a spacelike surface r = ε

near the future singularities and let ε → 0 at the end of calcu-
lations. Note that we have an affine parametrization for each
null surface, and these make no contribution to the action.
To calculate δS, we introduce the null coordinates u and v in
the metric (7):

u = t − r∗

v = t + r∗, (A1)

where

r∗ =
∫

f −1 (r) dr. (A2)

1. Single horizon case

We calculate δS for a Born–Infeld AdS black hole with a sin-
gle horizon, whose Penrose diagram is illustrated in Fig. 7a.
Due to time translation, the joint contributions from D and
D′ are identical, and they therefore make no contribution to
δS. Similarly, the joint and surface contributions from MN
cancel against those from M′N ′ on r = rmax in calculating
δS. Therefore, we have

δS = SV1 − SV2 + 2
∫

S
dd x

√|h|K

+2
∫

B′
dd−1x

√
σa − 2

∫

B
dd−1x

√
σa, (A3)

where we follow the conventions in [13].
Using the Born–Infeld AdS black hole solution (7), we

find that the volume contribution is

SV = �k,d−1

∫

V
dωF (r) , (A4)

where ω = {u, v}, and

F (r) = 2rd−2
(
k − m

rd−2 − f (r)
)

. (A5)
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Single Horizon Case Two Horizons Case(a) (b)

Fig. 7 Wheeler–deWitt patches of Born–Infeld AdS black holes at tL = t0 and tL = t0 + δt . The lines r = rmax and r = ε are cut-off surfaces

The region V1 is bounded by the null surfaces u = u0, u =
u0+ δt , v = v0+ δt , the spacelike surface r = ε, and the
timelike surface r = rmax. Using Eq. (A4), we have

SV1 = �k,d−1

∫ u0+δt

u0

duF (r) |min{rmax,ρ(u)}
ε dr, (A6)

where r∗ (ρ (u)) = (v0 + δt − u) /2. Since limr→0 F (r) =
−2A (q), we find that

SV1 = �k,d−1

∫ u0+δt

u0

du
[
F (r) |r=min{rmax,ρ(u)} + 2A (q)

]
,

(A7)

where A (q) is given by Eq. (15). Similarly for V2, one has

SV2 = �k,d−1

∫ v0+δt

v0

dvF (r) |min{rmax,ρ0(v)}
ρ1(v) , (A8)

where r∗ (
ρ0/1 (v)

) = (
v − u0/1

)
/2. Performing the change

of variables u = u0 + v0 + δt − v, we have

∫ v0+δt

v0

dvF (r) |r=min{rmax,ρ0(v)}

=
∫ u0+δt

u0

duF (r) |r=min{rmax,ρ(u)}, (A9)

and hence

SV1 − SV2 = �k,d−1

[∫ v0+δt

v0

dvF (r) |r=ρ1(v)

+2A (q)

∫ u0+δt

u0

du

]
. (A10)

At late times, one has ρ1 (v) ≈ r+, and

SV1 − SV2 = �k,d−1 [F (rh) + 2A (q)] δt. (A11)

There is a timelike hypersurface at r = ε, with outward-
directed normal vectors from the region of interest. The nor-
mal vector is

nμdxμ = −1√− f (r)
dr . (A12)
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The trace of extrinsic curvature is

K = 1

rd−1 ∂r

(
rd−1

√− f (r)
)

. (A13)

Therefore, the surface contributions from r = ε is

2
∫

S
dd x

√|h|K

= 2 (m − A (q))�k,d−1
δt

rd/2−1 ∂r

(
rd/2

)
|r=ε

= [m − A (q)] d�k,d−1δt, (A14)

where we use
√|h| = √− f (r)rd−1d�k,d−1.

Following [13], the integrand a in the joint terms of
Eq. (A3) is

a = ε ln |k1 · k2/2| ,
ε = −sign (k1 · k2) sign

(
k̂ · k2

)
, (A15)

where for B and B′,

(k1)μ = −c1∂μ

(
t + r∗) ,

(k2)μ = c2∂μ

(
t − r∗) , (A16)

and the auxiliary null vectors k̂ is the null vector orthogonal
to the joint and pointing outward from the boundary region.
Therefore, we find that

2
∫

B′
dd−1x

√
σa − 2

∫

B
dd−1x

√
σa

= 2�k,d−1 [h (rB′) − h (rB)] , (A17)

where

h (r) = rd−1 ln

(
− f (r)

c1c2

)
. (A18)

At late times, we have rB ≈ r+ and

h (rB′) − h (rB) = f (r)

2

dh (r)

dr
|r=rB δt

= 1

2
rd−1 d f (r)

dr
|r=r+δt, (A19)

where we use dr = f (r) δt/2 on u = u1. Thus, this gives

2
∫

B′
dd−1x

√
σa − 2

∫

B
dd−1x

√
σa

= �k,d−1r
d−1+ f ′ (r+) δt. (A20)

Combining Eqs. (A10), (A14), and (A20), we arrive at

dS

dt
= 2M − Q�+ − (d − 2) A (q) �k,d−1 (A21)

where we use f (r+) = 0, and �+ is the potential � evalu-
ated at r = r+. When k = 1 and d = 3, Eq. (A21) becomes

dS

dt
= 2M − Q�+−16πβ1/2Q3/2 	 (1/4) 	 (5/4)

3	 (1/2)
, (A22)

where Q = q in the k = 1 and d = 3 case. Taking into
account that 16πG = 1 in our paper and G = 1 in [24], our
result ( A22) agrees with Eq. (3.26) in [24].

2. The case of two horizons

The Penrose diagram for a Born–Infeld AdS black hole with
two horizons is illustrated in Fig. 7b. Thus, we have

δS = SV1 − SV2 + 2
∫

B′
dd−1x

√
σa − 2

∫

B
dd−1x

√
σa

+2
∫

C′
dd−1x

√
σa − 2

∫

C
dd−1x

√
σa. (A23)

While the volume contribution SV2 is also given by Eq. (A8),
we find that, in this case,

SV1 = �k,d−1

∫ u0+δt

u0

duF (r) |min{rmax,ρ(u)}
ρ̃1(u)

dr, (A24)

where

r∗ (ρ̃1 (u)) = v1 − u

2
. (A25)

Hence the volume contribution to δS is

SV1 − SV2 = �k,d−1

[∫ v0+δt

v0

dvF (r) |r=ρ1(v)

−
∫ u0+δt

u0

duF (r) |r=ρ̃1(u)dr

]

= �k,d−1
[
F (r+) − F (r−)

]
δt, (A26)

where the portion of V1 below the future horizon cancels
against the portion of V2 above the past horizon. The joint
contributions from B and B′ are the same as in the case with
a single horizon. Analogously to calculating the joint contri-
butions from B and B′, we find that

2
∫

C′
dd−1x

√
σa − 2

∫

C
dd−1x

√
σa

= −�k,d−1r
d−1− f ′ (r−) δt, (A27)

where r− is the inner horizon radius. Summing up all the
contributions, we obtain

dS

dt
= Q�− − Q�+, (A28)

where �± is the potential � evaluated at r = r±. When
approaching the boundary between the “Single Horizon” and
“Two Horizons” regions, we have r− → 0 and Q�− →

123
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A (q) d�k,d−1. Sincem = A (q) on this boundary, Eq. (A28)
becomes

dS

dt
→ 2M − Q�+ − (d − 2) A (q) �k,d−1. (A29)

Comparing with Eq. (A21), we find that dS/dt is continuous
when crossing this boundary.
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