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Abstract Motivated by the standard form of the string-
theory amplitude, we calculate the field-theory amplitude to
complete the higher-derivative terms in type II supergrav-
ity theories in their conventional form. We derive explicitly
the O(α′3) interactions for the RR (Ramond–Ramond) fields
with graviton, B-field and dilaton in the low-energy effective
action of type II superstrings. We check our results by com-
parison with previous work that has been done by the other
methods, and we find exact agreement.

1 Introduction

Higher-derivative corrections to string theories and M-theory
are importantly studied in various ways: string amplitude [1–
7], non-linear sigma model [8,9], superfield and noether’s
method [10–17], duality completion [18–21], and so on.
Each of these approaches has been employed in different
formalisms such as the RNS (Ramond-Neveu-Schwarz) [22–
24], GS (Green-Schwarz) [17,20,26,27] and pure-spinor
[28] formalisms to determine the higher-order terms.

For many purposes, it is enough to use only the lowest-
order terms in the theory, but there are some situations for
which one must go beyond the lowest-order supergravity
actions and higher-order corrections play an important role.
For example, the origin of induced Einstein–Hilbert terms
are traced to R4 couplings in ten dimensions [29,30]. Fur-
thermore, in black-hole and black-brane physics, considering
higher-derivative terms leads to modifications of the thermo-
dynamics [31–33]. Another important set of such applica-
tions can be found in the context of the gauge/gravity duality
[34–36]. There are a vast number of applications of higher-
derivative terms, but the mentioned examples are sufficient
to illustrate the importance of having a good understanding
of higher-derivative terms [22].
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It is well known that the low-energy effective action of
superstring theory is given by supergravity describing only
the interactions of massless modes in the string-theory spec-
trum. This can be shown explicitly by calculating the field-
theory amplitudes of massless states [25]. One must go
beyond this low-energy limit to capture truly stringy behav-
ior. Significant information as regards string and M-theory
can be extracted from the corresponding low-energy effective
actions, in particular once one considers corrections that go
beyond the leading order. Subleading terms in type II effec-
tive actions start at order α′3 or eight-derivative level. In order
to determine the structure of the higher-derivative terms, we
will calculate the scattering amplitude of the massless states.

As mentioned above, the scattering amplitudes of massless
states in superstring theory include corrections to their cor-
responding low-energy effective actions. These terms con-
tain α′ corrections to the supergravity which arise due to the
length of the fundamental string �s and string coupling con-
stant gs which correspond to string quantum corrections in
spacetime. In type IIA superstring theory, one of those cor-
rections first obtained at the tree level from the four-graviton
scattering amplitude as well as from the σ -model beta func-
tion approach can be written

LR4 = −e−2φ

2κ2
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�6
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28.4!ζ(3)

(
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4.2!ε10ε10R
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Here 2κ2
10 = (2π)7�8

s g
2
s , t8 is a product of four Kronecker

deltas, and t8t8R4 denotes an abbreviation of a product of
two t8 tensors and four Riemann curvature tensors.

The contents of this paper is as follows: In Sect. 2, we
briefly review type II supergravity theories and fix our con-
ventions and notations. In Sect. 3, we establish the formal-
ism and explain the procedure needed to find the necessary
Feynman rules for the processes we want to compute. By
employing these rules we then calculate the tree-level four-
point amplitude for two RR–two NSNS scattering to find
higher-derivative corrections to type II supergravities in their

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-017-5391-7&domain=pdf
http://orcid.org/0000-0001-7065-0082
mailto:bakhtiarizadeh@sirjantech.ac.ir


823 Page 2 of 12 Eur. Phys. J. C (2017) 77 :823

conventional form up to the R4 terms. We restrict our atten-
tion to different external NSNS states, namely the metric,
antisymmetric tensor and dilaton. Finally, we compare our
results with previous work and find exact agreement.

2 Brief review of type II supergravity

We begin by reviewing the low-energy effective actions of
both type II superstring theories [37]. These are supergravity
theories that describe interactions of the massless fields in
the string-theory spectrum. The action in the Einstein frame
for the type IIA supergravity is given by

SIIA = 1

2κ2

∫
d10x

√−G

⎛
⎝R − 1

2
∂μ�∂μ�

−1

2
e−�|H |2 − 1

2

∑
n=2,4

e
5−n

2 �|F̃ (n)|2
⎞
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− 1

4κ2

∫
B ∧ dC (3) ∧ dC (3), (2.1)

where R is the scalar curvature, � is the dilaton field and
H is the B-field strength H = dB. The RR field strengths
are defined in terms of RR potentials as F̃ (2) = dC (1) and
F̃ (4) = dC (3) − H ∧ C (1). The above action is the reduc-
tion of 11-dimensional supergravity on manifold R1,9 × S1.
By a Weyl rescaling of the metric, this action can be trans-
formed to the Einstein frame in which the Einstein term has
the conventional form1. It is also contains three distinct types
of terms. The first three terms in the first line involve NSNS
fields, which are common to both type II superstring theories.
The last term contains RR fields and as a whole are named
kinetic terms. The second line is called the Chern–Simons
term.

In the type IIB supergravity, the presence of the self-dual
five-form introduces a significant complication for writing
down a classical action for type IIB supergravity. In other
words, it is hard to formulate the action in a manifestly
covariant form. There are several different ways of dealing
with this problem. One of them is to find an action which
reproduces the super-symmetric equations of motion when
the self-duality condition is imposed by hand. The type IIB
supergravity action in the Einstein frame is given as

SIIB = 1

2κ2
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4κ2

∫
H ∧ dC (2) ∧ C (4), (2.2)

1 The Einstein frame is related to a string frame by gE
μν = e−�/2gμν .

where α = 1 for n = 1, 3 and α = 2 for n = 5. The RR
field strengths here are defined as F̃ (1) = dC (0), F̃ (3) =
dC (2) − HC (0) and

F̃ (5) = dC (4) − 1

2
C (2) ∧ H + 1

2
B ∧ dC (2), (2.3)

respectively. The self-duality condition, which must be
imposed in the equations of motion by hand, is given by

F̃ (5) = F̃ (5). (2.4)

This condition has to be imposed as an extra constraint, man-
ually. Without that, one cannot find any consistency between
the field-theory and string-theory S-matrix elements.

3 Field-theory amplitude

Having had the supergravity actions, one can easily read dif-
ferent vertices and propagators and accordingly calculate the
Feynman amplitude of two RR–two NSNS massless states.
To that end, suppose that the massless fields are small per-
turbations around the flat background, i.e.,

gμν = ημν + 2κhμν;
B(2) = 2κb(2) ;
� = φ0 + √

2κφ ;
C (n) = 2κc(n), (3.1)

where κ is the gravitational coupling constant. Substituting
these perturbation expansions into the supergravity actions
(2.1) and (2.2), and expanding them up to cubic and quartic
powers in κ , one obtains three-point and four-point inter-
actions, respectively. The amplitude of two RR–two NSNS
fields typically has the following form:

A = As + Au + At + Ac

= As

s
+ Au

u
+ At

t
+ Ac

= 1

sut
(tuAs + stAu + suAt + sutAc) , (3.2)

where As,Au and At are the amplitudes in s, u and t chan-
nels, respectively, and Ac is the contribution of contact terms
which must be added in order for the total scattering ampli-
tude to be gauge invariant. The Mandelstam variables are
defined by s = − 4α′k1·k2,u = − 4α′k1·k3, t = − 4α′k2·k3,
and they satisfy the identity s + t + u = 0.

What motivates us to write the field-theory amplitude in
the above form originates from the general form of string-
theory amplitude. The structure of the string-theory ampli-
tude consists of the well-known Gamma functions in terms
of Mandelstam variables multiplied by a kinematic factor
K [1,38]. To find the couplings which are reproduced by the
amplitude on the string-theory side, it is convenient to expand
the Gamma functions at low energy, i.e.,

123



Eur. Phys. J. C (2017) 77 :823 Page 3 of 12 823

�(−e−φ0/2s/8)�(−e−φ0/2t/8)�(−e−φ0/2u/8)

�(1 + e−φ0/2s/8)�(1 + e−φ0/2t/8)�(1 + e−φ0/2u/8)

∼ −29e3φ0/2

stu
− 2ζ(3) + · · · (3.3)

where the expansion parameter is α′, and φ0 is the constant
dilaton background. The right-hand side in the above expres-
sion gives the low-energy limit of the amplitude. The first
term on that side just corresponds to amplitudes of exchang-
ing two RR–two NSNS massless fields in the s, t and u chan-
nels as well as contact terms in type II supergravity [25]. The
second term contains a Riemann zeta function ζ(3), which is
irrational and contributes as a stringy correction to the super-
gravity. In this way, it is basically possible to derive higher-
derivative corrections from string scattering amplitudes.

By comparing the amplitude (3.2) with the leading term
of string-theory amplitude, one finds the following relation
between the field-theory amplitude and the string-theory
kinematic factor:

K = −2−9e−3φ0/2 (tuAs + stAu + suAt + sutAc) . (3.4)

Multiplying this factor by −2ζ(3) and transforming it to
the spacetime, one then finds the couplings of two RR–two
NSNS fields at order α′3.

4 (∂F(n))2R2 couplings

After explaining our strategy in the previous section, we are
now in a position to find various couplings. For the first one,
we are going to find the couplings containing two RR n-
form field strengths with n = 1, 2, 3, 4, 5 and two Riemann
curvatures. To this end, we consider the elastic scattering
process of two RR fields into two gravitons. When the two RR
forms have the same rank, the supergravity actions (2.1) and
(2.2) dictate that the massless poles in the s and u channels
and the contact terms are given by the following expressions:

As =
(
Ṽ
F (n)

1 F (n)
2 h

)μν (
G̃h

)
μν,λρ

(
Ṽhh3h4

)λρ

,

Au =
(
Ṽ
F (n)

1 h3C(n−1)

)μ1···μn−1
(
G̃C(n−1)

)
μ1···μn−1

ν1···νn−1

×
(
Ṽ
C(n−1)F (n)

2 h4

)
ν1···νn−1

,

Ac = Ṽ
F (n)

1 F (n)
2 h3h4

. (4.1)

The t channel amplitude At can now be obtained from Au

by permuting the particles lines 3 and 4.
For the process we want to calculate, we need the two

RRs–one graviton, three gravitons, one RR–one graviton–
one RR and two RRs–two gravitons vertex functions. These
vertices can be obtained from the supergravity actions (2.1)
and (2.2) by expanding to cubic and quartic powers in κ ,
respectively. Fortunately, these vertex functions as well as

the graviton and RR propagators (in Feynman-like gauge)
have been derived previously in the literature [23–25,39,40]
up to an overall factor:
(
Ṽ
F (n)

1 F (n)
2 h

)μν = iκ

n!
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2

)
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)
,

(4.3)
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n(n − 1)F1μλμ3···μn F2νρ

μ3···μn hμν
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4

+F1
μμ2μ3···μn F2
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μ2μ3···μn h3μ

λh4νλ

]

+(3 ↔ 4). (4.7)

Our notation is such that Tr(h1.h2) = hμν
1 h2νμ, k1.hλ

2 =
k1ρh

ρλ
2 and hρ

1 .k2 = hρλ
1 k2λ. The bracket (parenthesis) nota-

tion over indices means antisymmetrization (symmetriza-
tion) with a factor 1/2. kν in (4.5) denotes the momentum of
internal leg i.e., kν = k1ν + k2ν .

The next step is to write the amplitude in terms of indepen-
dent variables. This imposes all symmetries including mono-
term symmetries (antisymmetry property of RR potentials
and symmetry property of graviton polarizations) as well as
multi-term symmetries (the Bianchi identities governing on
the RR field strengths and Riemann tensors). In doing so, we
have first written the RR field strengths and Riemann tensors
in terms of RR potentials and graviton polarizations, respec-
tively. Then we have manipulated with some of the terms.
For instance, momentum conservation �4

i=1ki = 0 as well
as the mass-shell and on-shell relations for momenta, k2

i = 0
and ki .εi = 0, are imposed. We have also rewritten some
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terms using the relation s + t + u = 0. Furthermore, we
have applied the tracelessness property of external graviton
polarizations.

After doing the above steps to canonicalize the ampli-
tude, the final result is simplified in terms of some Mandel-
stam variables, momenta, two RR potentials and two graviton
polarizations. When n = 1, the result is simplified as

1

2

(
s2u2 hαβ

3 h4αβ + 2su3 hαβ
3 h4αβ + u4 hαβ

3 h4αβ

+16su2 h3β
γ h4αγ k

α
1 k

β
2 + 16u3 h3β

γ h4αγ k
α
1 k

β
2

−16s2u h3α
γ h4βγ k

α
1 k

β
2 − 32su2 h3α

γ h4βγ k
α
1 k

β
2

−16u3 h3α
γ h4βγ k

α
1 k

β
2 + 64u2 h3γ δh4αβk

α
1 k

β
1 k

γ
2 k

δ
2

−128su h3αγ h4βδk
α
1 k

β
1 k

γ
2 k

δ
2 − 128u2 h3αγ h4βδk

α
1 k

β
1 k

γ
2 k

δ
2

+64s2 h3αβh4γ δk
α
1 k

β
1 k

γ
2 k

δ
2 + 128su h3αβh4γ δk

α
1 k

β
1 k

γ
2 k

δ
2

+ 64u2 h3αβh4γ δk
α
1 k

β
1 k

γ
2 k

δ
2

)
, (4.8)

where the RR polarizations have been written in terms of
momenta. To rewrite the amplitude (4.8) in terms of RR field
strengths and Riemann tensors, we consider all possible con-
tractions between two RR 1-form field strengths with a partial
derivative acting on each one and two Riemann tensors. Then
we make an ansatz of all these contractions by multiplying
them by unknown constant coefficients:

C1F
a,bFc,d Rac

e f Rbde f + C2F
a,bFc,d Rac

e f Rbed f

+C3F
a,bFc,d Ra

e
c
f Rbed f + C4F

a,bFc,d Ra
e
c
f Rbf de

+C5Fa
,cFa,bRb

de f Rcde f + C6F
a,bFc,d Ra

e
b
f Rced f

+C7Fa
,cFa,bRb

de f Rced f + C8Fa,bF
a,bRcde f R

cde f

+C9Fa,bF
a,bRced f R

cde f . (4.9)

By comparing Eq. (4.8) with the result obtained from writ-
ing (4.9) in terms of independent variables with the same
steps as mentioned above, one obtains some algebraic equa-
tions among unknown constant coefficients:

{2C5 + C6 + C7 + 8C8 + 4C9 = 0,

2C5 + 2C6 + C7 = 0,

−512 + 2C1 + C2 + C3 + 2C6 = 0,

2C1 + C2 − C4 + 2C5 + 3C6 + C7 = 0,

2C1 + C2 − C4 + C6 = 0,

2C1 + C2 − C4 + 2C5 + C6 + C7 + 16C8 + 8C9 = 0,

512 + 4C1 + 2C2 − C3 − 3C4 + C6 = 0,

2C1 + C2 − C4 + 8C8 + 4C9 = 0,

−1024 + 2C1 + C2 + 2C3 + C4 + 2C5 + 5C6

+C7 = 0,−512 + C3 + C4 + C6 = 0,

−1024 + 4C1 + 2C2 + 2C3 − 2C5 + C6 − C7

+8C8 + 4C9 = 0,

6C1 + 3C2 − 3C4 − 2C5 + C6 − C7 = 0,

−512 + C3 + C4 + 2C5 + 3C6 + C7 = 0,

−4096 + 16C1 + 8C2 + 8C3 − 8C5 + 8C6 − 4C7 = 0,

512 + 2C1 + C2 − C3 − 2C4 = 0,

2048 + 2C1 + C2 − 4C3 − 5C4 + 2C5 − C6 + C7 = 0}.
(4.10)

After solving the above 18 equations, simultaneously, one
finds the unknown constant coefficient C3 to be 512. The
other coefficients are free parameters which can be set to
zero.

Having available the unknown coefficients and substitut-
ing them into Eq. (4.9), we can obtain the couplings between
two RR 1-form field strengths and two Riemann tensors2.
The effective action, which reproduces the corresponding
amplitude, takes the following form in the string frame:

S(∂F (1))2R2 = γ

3.24κ2

×
∫

d10x e2φ0
√−G Fa,bFc,d Ra

e
c
f Rbed f ,

(4.11)

where γ = α′3ζ(3)/25, and comma refers to a partial deriva-
tive with respect to the index afterwards. Note that, to acquire
the standard sphere-level dilaton factor e−2φ0 in the string
frame, it is convenient to normalize the RR potentials and
graviton polarizations with a factor eφ0 . The normalization
of RR fields in the above action is consistent with the super-
gravities (2.1) and (2.2). Moreover, the couplings of two RR
2-form field strengths and two Riemann curvatures appear in
the following effective action:

S(∂F (2))2R2 = γ

3.25κ2

×
∫

d10x e2φ0
√−G

(
2Fa

d,eFab,c Rb
f
d
g Rcf eg

+Fab,cFc
d,e Rad

f g Rbe f g

+2Fab,cFde, f Rac f
g Rbdeg

+2Fab,cFde, f Ra f d
g Rbgce

)
. (4.12)

Hence, there is no unique way of writing down the expres-
sions (4.11) and (4.12) because of different presentations of
tensor polynomials using the symmetries of the individual
tensors, but we believe the above forms are the most econom-
ical one. The number of terms has been reduced as much as
possible using the algorithm introduced in [24]. We also find
the couplings between two RR 3-form field strengths and two
Riemann curvatures:

2 The calculations in this study have been carried out by the Mathemat-
ica package xAct [41].
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S(∂F (3))2R2 = γ

32.27κ2

×
∫

d10x e2φ0
√−G

(
8Fabc

,eFabc,d Rd
f gh Ref gh

−3Fabd,cF
abc,d Ref gh R

ef gh

+12Fab
e, f Fabc,d Rcf

gh Rdehg

−12Fab
e, f Fabc,d Rce

gh Rd f gh

+24Fab
e, f Fabc,d Rcd

gh Ref gh

−12Fab
e, f Fabc,d Rcd

gh Ref hg

+24Fad
e
,bF

abc,d Rc
f gh Ref gh

−24Fa
ef,gFabc,d Rbde

h Rcf hg

+48Fa
ef,gFabc,d Rbce

h Rd f gh

+24Fa
ef,gFabc,d Rbce

h Rd f hg

−24Fa
ef,gFabc,d Rbcd

h Ref gh

−12Fabc,d Fd
e f

,a Rbe
gh Rcf hg

+12Fabc,d Fd
e f

,a Rbc
gh Ref gh

)
. (4.13)

Furthermore, our calculations show that the couplings
which include two RR 4-form field strengths and two Rie-
mann curvatures have the following form:

S(∂F (4))2R2 = − γ

32.26κ2

×
∫

d10x e2φ0
√−G

(
3Fabef

,i Fcdgi,h R
abcd Ref gh

−9Fabe
i
, f Fcdgi,h R

abcd Ref gh

−9Fabe
i
,gFcdhi, f R

abcd Ref gh

+6Fbe
gh,i Fd f gi,h Ra

e
c
f Rabcd

+3Fce
gh,i Fd f gi,h Rab

e f Rabcd

+6Fbe
hi

,cFd f hi,g Ra
e f g Rabcd

−6Fcf
hi

,bFdghi,e Ra
e f g Rabcd

−2Fb
ghi

,eFdghi, f Ra
e
c
f Rabcd

+3Fce
gh,i Fdghi, f Rab

e f Rabcd

−24Fbce
h,i F f ghi,d Ra

e f g Rabcd

−6Fbc
hi

,eF f ghi,d Ra
e f g Rabcd

+9Fbe
hi

,cF f ghi,d Ra
e f g Rabcd

)
. (4.14)

We are now going to find the couplings containing two RR 5-
form field strengths and two Riemann tensors. The amplitude
in this case is somewhat different, because of the presence
of the 5-form field strength F (5), which is self-dual. This
condition should be imposed manually as an extra condition
in physical quantities like the equations of motion as well as
S-matrix.

We expect that imposing the self-duality condition F (5) →(
F (5) + F (5)

)
/2, which is equivalent to (2.4), in the cou-

plings with structure (∂F (5))2R2 not only gives the correct
overall factor but also results into another coupling with

structure ε10(∂F (5))2R2. This coupling is not calculated here,
because the number of indices is too large, which makes it
difficult to calculate all possible contractions for this struc-
ture. However, the result for the couplings between two RR
5-form field strengths and two Riemann curvatures is

S(∂F (5))2R2 = γ

32.28κ2

×
∫

d10x e2φ0
√−G

(
18Fabe

i j
,gFcd f i j,h R

abcd Ref gh

−3Fabef
i, j Fcdghi, j R

abcd Ref gh

−12Fbe
ghi, j Fd f gh j,i Ra

e
c
f Rabcd

−6Fce
ghi, j Fd f gh j,i Rab

e f Rabcd

−8Fbe
hi j

,cFd f hi j,g Ra
e f g Rabcd

+8Fcf
hi j

,bFdghi j,e Ra
e f g Rabcd

+2Fb
ghi j

,eFdghi j, f Ra
e
c
f Rabcd

+4Fce
ghi, j Fdghi j, f Rab

e f Rabcd

−48Fbce
hi, j F f ghi j,d Ra

e f g Rabcd

+8Fbc
hi j

,eF f ghi j,d Ra
e f g Rabcd

−12Fbe
hi j

,cF f ghi j,d Ra
e f g Rabcd

)
, (4.15)

where the product of two Levi-Civita tensors implicitly has
been replaced by the generalized Kronecker delta according
to: εm1···md εn1···nd = −δ[n1

m1 · · · δnd ]md .

In the next sections we follow a similar approach to obtain-
ing the other couplings. The details of the calculations are
omitted for the sake of brevity.

5 (∂F(n))2(∂φ)2 couplings

In this section, the couplings with structure (∂F (n))2(∂φ)2

will be calculated. Similar to the previous section, there are
also five types of couplings here, i.e., with n = 1, 2, 3, 4, 5.
When we have two RR field strengths, in which the RR forms
have the same rank, and two dilatons, the actions (2.1) and
(2.2) indicate that the amplitudes in the s and u channels and
the contact terms become

As =
(
Ṽ
F (n)

1 F (n)
2 h

)μν (
G̃h

)
μν,λρ

(
Ṽhφ3φ4

)λρ

,

Au =
(
Ṽ
F (n)

1 φ3C(n−1)

)μ1···μn−1

×
(
G̃C(n−1)

)
μ1···μn−1

ν1···νn−1

×
(
Ṽ
C(n−1)F (n)

2 φ4

)
ν1···νn−1

,

Ac = Ṽ
F (n)

1 F (n)
2 φ3φ4

, (5.1)

respectively. Here also the amplitude in the t channel is the
same as Au in which the particle labels of the RR fields are
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interchanged, i.e., At = Au(3 ↔ 4). The required three- and
four-point interactions are given by

(
Ṽφ1φ2h

)μν = −2iκ

(
k(μ

1 kν)
2 − 1

2
k1.k2η

μν

)
, (5.2)

(
Ṽ
F (n)

1 φ2C(n−1)

)
ν1···νn−1

= iκ
1√

2(n − 1)! (5 − n) F1μν1···νn−1k
μ,

(5.3)

Ṽ
F (n)

1 F (n)
2 φ3φ4

= −2iκ2 1

n!
(

5 − n

2

)2

F1μ1···μn F
μ1···μn
2 . (5.4)

The graviton and RR propagators are given by Eqs. (4.3) and
(4.6), respectively. Substituting these expressions into the
amplitude (5.1), one finds the couplings consisting of two
RR 1-form field strengths and two dilatons as follows:

S(∂F (1))2(∂φ)2 = γ

3.25κ2

×
∫

d10x e2φ0
√−G

(
2Fa,bFc,dφa,bφc,d

−Fa,bF
a,bφc,dφ

c,d
)

. (5.5)

One can also write down the couplings between two RR
2-form field strengths and two dilatons as

S(∂F (2))2(∂φ)2 = γ

3.28κ2

×
∫

d10x e2φ0
√−G

(
16Fa

d,eFab,cφb,dφc,e

+18Fa
d
,cF

ab,cφb
,eφd,e

−9Fac,bF
ab,cφd,eφ

d,e
)

. (5.6)

In the same way, the couplings of two RR 3-form field
strengths and two dilatons can be written as

S(∂F (3))2(∂φ)2 = − γ

32.26κ2

×
∫

d10x e2φ0
√−G

(
Fdef,cF

de f
,bφa

,cφa,b

−3Fa
e, f

,bFce f,dφ
a,bφc,d

−3Fa
ef

,cFde f,bφ
a,bφc,d

)
. (5.7)

Furthermore, the couplings of two RR 4-form field strengths
and two dilatons can be introduced as

S(∂F (4))2(∂φ)2 = − γ

32.29κ2

×
∫

d10x e2φ0
√−G

(
Fcdeg, f F

cde f,gφa,bφ
a,b

−2Fb
de f,g Fcde f,gφa

,cφa,b

−16Fa
ef g

,cFbe f g,dφ
a,bφc,d

)
. (5.8)

Finally, for n = 5 case only the contribution of the s channel
exists and is given by the first line in (5.1). The amplitudes
in the t and u channels and the contact terms here are zero.
Once more, using the self-duality condition, one can easily

find the following coupling for two RR 5-form field strengths
and two dilatons with correct overall factor:

S(∂F (5))2(∂φ)2 = γ

32.27κ2

×
∫

d10x e2φ0
√−G Fa

ef gh
,cFbe f gh,dφ

a,bφc,d .

(5.9)

Note that imposing the self-duality condition also leads to a
new coupling of the form ε10(∂F (5))2(∂φ)2, but we ignore
it for the reasons already mentioned. We use the algorithm
introduced in [24] to reduce the tensor polynomials and
rewrite the couplings of this section in the minimal-term
form.

6 (∂F(n))2(∂φ)R couplings

Let us now consider the couplings with structure (∂F (n))2

(∂φ)R. At the first glance, it seems that there are five types of
couplings in this section, i.e., with n = 1, 2, 3, 4, 5, but the
contribution of ∂F (1)∂F (1)∂φR and ∂F (5)∂F (5)∂φR van-
ishes as can be seen from the action (2.2). When the two
RR forms have the same rank, from the type II supergravity
actions, it is concluded that the amplitudes in the s and u
channels and the contact terms are given by the following
expressions:

As = Ṽ
F (n)

1 F (n)
2 φ

G̃φ Ṽφφ3h4 ,

Au =
(
Ṽ
F (n)

1 φ3C(n−1)

)μ1···μn−1
(
G̃C(n−1)

)
μ1···μn−1

ν1···νn−1

×
(
Ṽ
C(n−1)F (n)

2 h4

)
ν1···νn−1

,

Ac = Ṽ
F (n)

1 F (n)
2 φ3h4

, (6.1)

respectively. The amplitude in the t channel is the same as
Au in which the particle labels of the RR fields are inter-
changed, i.e., At = Au(3 ↔ 4). Here, the dilaton propagator
and vertex operators which are needed in the calculation of
amplitude, are

Ṽ
F (n)

1 F (n)
2 φ

= −iκ
5 − n√

2n! F1μ1···μn F
μ1···μn
2 , (6.2)

G̃φ = − i

k2 , (6.3)

Ṽh1φ2φ = −2iκk2.h1.k, (6.4)(
Ṽ
F (n)

1 φ2C(n−1)

)μ1···μn−1 = −iκ
5 − n√

2(n − 1)! F1
λμ1···μn−1kλ,

(6.5)

Ṽ
F (n)

1 F (n)
2 φ3h4

= iκ2(5 − n)√
2n!

(
F1μ1···μn F

μ1···μn
2 h4μ

μ

−2nF1μμ2···μn F2ν
μ2···μn hμν

4

)
. (6.6)
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The RR propagator is given by Eq. (4.6) as well. After doing
some algebra, we have

S(∂F (2))2(∂φ)R = γ

2
11
2 κ2

×
∫

d10x e2φ0
√−G

(
2Fa

d,eFab,cφb
, f Rcde f

−2Fab,cFc
d,eφe

, f Radb f

−Fa
d
,cF

ab,cφe, f Rbed f

)
. (6.7)

Doing the same steps as above, one finds the couplings
with structure (∂F (2))2(∂φ)R in the type IIA theory. In the
string frame, they are

S(∂F (3))2(∂φ)R = − γ

3.2
9
2 κ2

×
∫

d10x e2φ0
√−G

(
2Fa

cd,eFce
f,gφa,b Rbf dg

−Fa
cd

,bFc
e f,gφa,b Rdge f

−2Fa
cd,eFc

f g
,bφ

a,b Rd f eg

+2Fc
f g

,bF
cde

,aφ
a,b

)
. (6.8)

Finally, we have found the following result for the cou-
plings containing two RR 4-form field strengths, one dilaton
and one Riemann curvature in the string frame:

S(∂F (4))2(∂φ)R = γ

32.2
13
2 κ2

×
∫

d10x e2φ0
√−G

(
2Fb

f gh
,d Fcf gh,eφ

a,b Ra
cde

−3Fbc
f g,h Fde f g,hφ

a,b Ra
cde

+Fc
ef g,h Fde f g,hφ

a,b Ra
c
b
d
)

. (6.9)

Here also the algorithm introduced in [24] has been used to
rewrite the couplings of this section in their minimal-term
form.

7 (∂F(n))2(∂H)2 couplings

Now, we consider the couplings with structure (∂F (n))2

(∂H)2. There are also five types of couplings in this sec-
tion, i.e., with n = 1, 2, 3, 4, 5. When n = 1, 2, 3, it can be
seen from the actions (2.1) and (2.2) that the s and u channel
amplitudes as well as the contact terms are given by

As =
(
Ṽ
F (n)

1 F (n)
2 h

)μν (
G̃h

)
μν,λρ

(
Ṽhb3b4

)λρ

+Ṽ
F (n)

1 F (n)
2 φ

G̃φ Ṽφb3b4 ,

Au =
(
Ṽ
F (n)

1 b3C(n+1)

)μ1···μn+1
(
G̃C(n+1)

)
μ1···μn+1

ν1···νn+1

×
(
Ṽ
C(n+1)F (n)

2 b4

)
ν1···νn+1

,

Ac = Ṽ
F (n)

1 F (n)
2 b3b4

, (7.1)

respectively. The t channel amplitude At can now be obtained
from Au by permuting the external B-fields lines 3 and 4.
The vertices, which have not been introduced in the previous
sections, are

(
Ṽb1b2h

)μν = −2iκ

[
1

2

(
k1.k2 ημν − kμ

1 kν
2

−kν
1 kμ

2

)
Tr(b1.b2) − k1.b2.b1.k2 ημν

+2 k(μ
1 b2

ν).b1.k2 + 2 k2
(μ b1

ν).b2.k1

+2k1.b2
(μ b1

ν).k2 − k1.k2 (bμ
1 .bν

2 + bμ
2 .bν

1)

]
, (7.2)

Ṽb1b2φ = −√
2iκ [2k1.b2.b1.k2 − k1.k2Tr(b1.b2)] , (7.3)

(
Ṽ
F (n)

1 b2C(n+1)

)
ν1···νn+1

= −2iκ
1

(n + 1)! k
μb2μ[ν1 F1ν2 ···νn+1], (7.4)

Ṽ
F (n)

1 F (n)
2 b3b4

= − 2iκ2(n + 2)(n + 1)

n! b3[μνF1μ1···μn ]b
μν
4 Fμ1 ···μn

2

+(3 ↔ 4). (7.5)

Putting theses contributions together, one finds the following
couplings between two RR 1-form field strengths and two B-
field strengths:

S(∂F (1))2(∂H)2 = γ

32.26κ2

×
∫

d10x e2φ0
√−G

(
12Fa,bFc,d Ha

ef
,cHbef,d

+6Fa
,cFa,bHb

de, f Hcde, f

−Fa,bF
a,bHcde, f H

cde, f
)

, (7.6)

which is written in its minimal-term form. In a similar way,
the couplings between two RR 2-form field strengths and two
B-field strengths have appeared in the action,

S(∂F (2))2(∂H)2 = − γ

32.25κ2

×
∫

d10x e2φ0
√−G

(
3Fab,cFde

,cHad
f,gHbeg, f

+6Fab,cFde, f Hac
g
,bHd f g,e − 3Fa

d,eFab,cHb
f g

,cHd f g,e

+3Fab,cFc
d,eHd

f g
,aHef g,b + 3Fab,cFde, f Hab

g
,d Hef g,c

−3Fa
d,eFab,cHb

f g
,d Hef g,c − 3Fa

d,eFab,cHb
f g

,cHef g,d

+3Fa
d,eFab,cHc

f g
,bHef g,d + 2Fac

,d Fab,cHef g,d H
ef g

,b

−Fa
d
,cF

ab,cHef g,d H
ef g

,b

)
. (7.7)

It is also straightforward to find the couplings between
two RR 3-form field strengths and two B-field strengths as

S(∂F (3))2(∂H)2 = γ

33.26κ2

×
∫

d10x e2φ0
√−G

(
18Fabc,d Fef g,hHabd,hHce f,g

+27Fa
ef,gFabc,d Hbcg

,h Hdef,h

+36Fab
e, f Fabc,d Hcf

g,h Hdeg,h

−36Fa
ef,gFabc,d Hbg

h
,cHdeh, f

−9Fabc,d Fef g,h Habh,eHd f g,c
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−36Fa
ef,gFabc,d Hbc

h
,eHd f g,h

+36Fa
ef,gFabc,d Hbg

h
,eHd f h,c

+72Fabc,d Fef g,hHabe,cHd f h,g

−36Fa
ef,gFabc,d Hbc

h
,eHd f h,g

+54Fab
e, f Fabc,d Hcf

g,h Hdgh,e

−9Fab
e, f Fabcd Hc

gh
, f Hdgh,e

+216Fa
ef,gFabc,d Hbe

h
,cHdgh, f

+72Fab
e, f Fabc,d Hce

g,h Hdgh, f

+18Fab
e, f Fabc,d Hc

gh
,eHdgh, f

−Fabc,d Fef g,h Habc,d Hef g,h

+27Fa
ef,gFabc,d Hbcd

,h Hef g,h

−18Fabc,d Fd
ef

,aHbc
g,h Hef g,h

+108Fad
e, f Fabc,d Hb

gh
,cHef g,h

−72Fab
e, f Fabc,d Hcd

g,h Hef g,h

−9Fab
e
,d F

abc,d Hc
f g,h Hef g,h

+36Fad
e
,bF

abc,d Hc
f g,h Hef g,h

+9Fab
e, f Fabc,d Hd

gh
,cH f gh,e

)
. (7.8)

For n = 4, the contribution of the u channel in the ampli-
tude is replaced by

Au =
(
Ṽ
F (n)

1 b3C(n−3)

)μ1···μn−3
(
G̃C(n−3)

)
μ1···μn−3

ν1···νn−3

×
(
Ṽ
C(n−3)F (n)

2 b4

)
ν1···νn−3

+
(
Ṽ
F (n)

1 b3C(n+1)

)μ1···μn+1

×
(
G̃C(n+1)

)
μ1···μn+1

ν1···νn+1
(
Ṽ
C(n+1)F (n)

2 b4

)
ν1···νn+1

,

(7.9)

where(
Ṽ
F (n)

1 b2C(n−3)

)
ν1···νn−3

= −iκ
1

(n − 3)! F1μνρν1···νn−3b
μν
2 kρ.

(7.10)

Inserting this contribution into the amplitude, one finds the
following couplings between two RR 4-form field strengths
and two B-field strengths:

S(∂F (4))2(∂H)2 = − γ

32.28κ2

×
∫

d10x e2φ0
√−G

(
Ff ghi,eF

f ghi
,d Habc

,eHabc,d

−2Fef gi,h F
ef gh,i Habd,cH

abc,d

−8Fd
ghi

,cF f ghi,eHab
e, f Habc,d

+12Fbc
gh,i Fe f gi,h Ha

ef
,d H

abc,d

−8Fb
ghi

,cFeghi, f Ha
e f

,d H
abc,d

+48Fbd
hi

,eFcf hi,gHa
ef,gHabc,d

−48Fbg
hi

,cFdehi, f Ha
e f,gHabc,d

−24Fbc
hi

,eFd f hi,gHa
ef,gHabc,d

−48Fbe
hi

,cFd f hi,gHa
ef,gHabc,d

−48Fbe
hi

,cFdghi, f Ha
e f,gHabc,d

−24Fbcd
h,i Fe f gi,h Ha

ef,gHabc,d

−6Fbc
hi

,gFef hi,d Ha
ef,gHabc,d

+24Fbcd
h,i Fe f hi,gHa

ef,gHabc,d

+6Fbc
hi

,d Fef hi,gHa
ef,gHabc,d

−96Fbcd
h,i Feghi, f Ha

e f,gHabc,d
)

. (7.11)

For n = 5, in addition to the u channel amplitude, which
is given by (7.9), the s channel amplitude is also replaced by

As =
(
Ṽ
F (n)

1 F (n)
2 h

)μν (
G̃h

)
μν,λρ

(
Ṽhb3b4

)λρ

. (7.12)

Applying these changes to the amplitude along with impos-
ing the self-duality condition, after some simplifications, one
finds the following couplings between two RR 5-form field
strengths and two B-field strengths:

S(∂F (5))2(∂H)2 = − γ

5.32.29κ2

×
∫

d10x e2φ0
√−G

(
2Ff ghi j,eF

f ghi j
,d Habc

,eHabc,d

−5Fef gh j,i F
e f ghi, j Habd,cH

abc,d

−20Fd
ghi j

,cF f ghi j,eHab
e, f Habc,d

+60Fbc
ghi, j Fe f gh j,i Ha

e f
,d H

abc,d

−20Fb
ghi j

,cFeghi j, f Ha
e f

,d H
abc,d

+160Fbd
hi j

,eFcf hi j,gHa
ef,gHabc,d

−160Fbg
hi j

,cFdehi j, f Ha
e f,gHabc,d

−80Fbc
hi j

,eFd f hi j,gHa
ef,gHabc,d

−160Fbe
hi j

,cFd f hi j,gHa
ef,gHabc,d

−160Fbe
hi j

,cFdghi j, f Ha
e f,gHabc,d

−240Fbcd
hi, j Fe f gh j,i Ha

e f,gHabc,d

−20Fbc
hi j

,gFef hi j,d Ha
ef,gHabc,d

−120Fbcd
hi, j Fe f hi j,gHa

ef,gHabc,d

+20Fbc
hi j

,d Fef hi j,gHa
ef,gHabc,d

+480Fbcd
hi, j Feghi j, f Ha

e f,gHabc,d
)

. (7.13)

Imposing the self-duality constraint also leads to a new
coupling with structure ε10(∂F (5))2(∂H)2, which has been
neglected here.

8 ∂F(n)∂F(n−4)(∂H)2 couplings

Since the minimum rank of RR field strength is 1, there is
only one type of couplings in this section, i.e., with n = 5.
The effective action (2.2) shows that the amplitude in the
s channel and contact terms vanishes. It also produces the
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following u channel amplitude:

Au =
(
Ṽ
F (n)

1 b3C(n−3)

)μ1···μn−3
(
G̃C(n−3)

)
μ1···μn−3

ν1···νn−3

×
(
Ṽ
C(n−3)F (n−4)

2 b4

)
ν1···νn−3

, (8.1)

where the vertices and propagator are given in (7.10), (7.4)
and (4.6), respectively. The amplitude in the t channel is the
same as Au in which the particle labels of the external B-
fields are interchanged which means that At = Au(3 ↔ 4).
Gathering these two contributions, imposing the self-duality
constraint, one finds the coupling

S∂F (5)∂F (1)(∂H)2 = − γ

32.25κ2

×
∫

d10x e2φ0
√−G (3Fcde f g,h F

a,bHa
cd,eHb

f g,h

+3Fcd f gh,bF
a,bHa

cd,eHe
f g,h

−Fcde f g,h F
a,bHa

cd
,bH

ef g,h) (8.2)

plus a coupling of the form ε10∂F (5)∂F (1)(∂H)2, which we
drop here. The above coupling is written in its minimal-term
form.

9 ∂F(n)∂F(n−2)(∂H)R couplings

Here, we will calculate the couplings with structure ∂F (n)∂

F (n−2)(∂H)R. There are three possibilities in this case, with
n = 3, 4, 5. The supergravity actions (2.1) and (2.2) dictate
that the amplitudes in the s channel and contact terms are
given by

As =
(
Ṽ
F (n)

1 F (n−2)
2 b

)μν (
G̃b

)
μν,λρ

(
Ṽbb3h4

)λρ

,

Ac = Ṽ
F (n)

1 F (n−2)
2 b3h4

, (9.1)

where the vertex operators and B-field propagator are given
by

(
Ṽ
F (n)

1 F (n−2)
2 b

)μν = − iκ

(n − 2)! F
μν
1 ν1···νn−2 F

ν1···νn−2
2 , (9.2)

(
G̃b

)
μν,λρ

= − i

2k2

(
ημληνρ − ημρηνλ

)
, (9.3)

(
Ṽb1h2b

)μν = −2iκ
(
k2.b1.k2h

μν
2

+2k2.b
[μ
1 hν]

2 .k1 + 2k2.b1.h
[μ
2 kν]

2

+2k1.k2h
[μ
2 .bν]

1 + k[μ
2 bν]

1 .h2.k1

+k1.h2.b
[μ
1 kν]

2

)
, (9.4)

Ṽ
F (n)

1 F (n−2)
2 b3h4

= iκ2

n!
(
F1μ1···μn b

[μ1μ2
3 Fμ3···μn ]

2 h4λ
λ

−2nF1λμ2···μn b
[ρμ2
3 Fμ3···μn ]

2 h4
λ
ρ

)
. (9.5)

The amplitude in the u channel is the same as As in which
the particle labels of the RR (n − 2)-form field strength and
B-field are interchanged, i.e., Au = As(2 ↔ 3). We have

Au =
(
Ṽ
F (n)

1 b3C(n−3)

)μ1···μn−3
(
G̃C(n−3)

)
μ1···μn−3

ν1···νn−3

×
(
Ṽ
C(n−3)F (n−2)

2 h4

)
ν1···νn−3

. (9.6)

Similarly, the amplitude in the t channel is the same as
Au in which the particle labels of the external B-field and
graviton are interchanged, i.e., At = Au(3 ↔ 4). We have

At =
(
Ṽ
F (n)

1 h4C(n+1)

)μ1···μn+1
(
G̃C(n+1)

)
μ1···μn+1

ν1···νn+1

×
(
Ṽ
C(n+1)F (n−2)

2 b3

)
ν1···νn+1

. (9.7)

Replacing the vertices and propagators in the above ampli-
tudes and then summing them yields the following result for
the couplings of one RR 3-form field strength, one RR 1-form
field strength, one B-field strength and one Riemann tensor:

S∂F (3)∂F (1)(∂H)R = − γ

3.25κ2

×
∫

d10x e2φ0
√−G

(
2Fcde, f Fa,bHac

g
,bRd f eg

+4Fcde, f Fa,bHac
g
, f Rbdeg − 10Fcde, f Fa,bHa f

g
,c Rbdeg

−2Fa
cd,eFa,bHbc

f,g Rdge f + 2Fa
cd,eFa,bHcd

f,g Rbge f

−2Fcde
,a F

a,bHcd
f,g Rbge f − Fa

cd
,bF

a,bHc
e f,g Rdge f

+4Fcde, f Fa,bHcf
g
,a Rbdeg + 2Fcde, f Fa,bHcf

g
,d Raebg

+Fcde
,a F

a,bHc
f g

,b Rd f eg

)
. (9.8)

The couplings of one RR 4-form field strength, one RR
2-form field strength, one B-field strength and one Riemann
curvature can be written in the string frame as

S∂F (4)∂F (2)(∂H)R = − γ

32.25κ2

×
∫

d10x e2φ0
√−G

(
12Fd f gh,eF

ab,cHa
de, f Rbc

gh

−6Fbdeh,gF
ab,cHc

de, f Ra
g
f
h

−12Fbdgh,eF
ab,cHc

de, f Ra
g
f
h

+6Fbef h,gF
ab,cHdef

,c Ra
g
d
h

+12Fbegh, f F
ab,cHdef

,c Ra
g
d
h

+6Fef gh,bF
ab,cHdef

,c Ra
g
d
h

−12Fbcgh, f F
ab,cHdef,g Ra

h
de

−6Fbef h,cF
ab,cHdef,g Ra

h
dg

−12Fbegh, f F
ab,cHdef,g Ra

h
cd

−Fcdef,h F
ab,cHdef,g Rabg

h

+3Fcdeh, f F
ab,cHdef,g Rabg

h

−6Fcef h,bF
ab,cHdef,g Ragd

h

+12Fcef h,bF
ab,cHdef,g Ra

h
dg
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−2Fdef h,bF
ab,cHdef,g Ra

h
cg

)
. (9.9)

Finally, we find the couplings of one RR 5-form field
strength, one RR 3-form field strength, one B-field strength
and one Riemann curvature in the type IIB theory as

S∂F (5)∂F (3)(∂H)R = − γ

32.25κ2

×
∫

d10x e2φ0
√−G

(
3Fbce f i,h F

abc,d Hd
ef,g Ra

h
g
i

+6Fbcehi, f F
abc,d Hd

ef,g Ra
h
g
i

−12Fbcghi, f F
abc,d Hd

ef,g Ra
h
e
i

−12Fceghi, f F
abc,d Hd

ef,g Ra
h
b
i

−3Fbcf gi,h F
abc,d Hef g

,d Ra
h
e
i

−6Fbcf hi,gF
abc,d Hef g

,d Ra
h
e
i

−6Fbf ghi,cF
abc,d Hef g

,d Ra
h
e
i

−3Fbcf gi,d F
abc,d Hef g,h Raeh

i

+3Fbcf gi,d F
abc,d Hef g,h Rahe

i

+6Fbcf hi,gF
abc,d Hef g,h Ra

i
de

+12Fbd f gi,cF
abc,d Hef g,h Raeh

i

−6Fbd f gi,cF
abc,d Hef g,h Rahe

i

−2Fbef gi,cF
abc,d Hef g,h Rahd

i

+12Fbf ghi,cF
abc,d Hef g,h Ra

i
de

+4Fdef gi,cF
abc,d Hef g,h Rahb

i
)

. (9.10)

Similar to the previous cases, imposing the self-duality
constraint in the above action leads to a new coupling with
structure ε10∂F (5)∂F (3)(∂H)R. We also find that there is
another coupling with structure ε10∂F (n)∂F (n−2)(∂H)R,
which has not been considered here.

10 ∂F(n)∂F(n−2)∂φ∂H couplings

The last coupling that we aim to obtain is ∂F (n)∂F (n−2)∂φ∂H .
There are three types of couplings in this case and those are
with n = 3, 4, 5. When n = 3, 4, from the supergravity
actions (2.1) and (2.2), one can observe that the field-theory
amplitudes in the s channel and contact terms are given by

As =
(
Ṽ
F (n)

1 F (n−2)
2 b

)μν (
G̃b

)
μν,λρ

(
Ṽbφ3b4

)λρ

,

Ac = Ṽ
F (n)

1 F (n−2)
2 φ3b4

, (10.1)

respectively. Here, the vertices, which have not been previ-
ously introduced, are given by

(
Ṽφ1b2b

)μν = −√
2iκ

(
2k1.b

[ν
2 kμ]

2 − k1.k2b
μν
2

)
, (10.2)

Ṽ
F (n)

1 F (n−2)
2 φ3b4

=
√

2iκ2(5 − n)

n! F1μ1···μn b
[μ1μ2
4 Fμ3···μn ]

2 .

(10.3)

The u channel amplitude Au can now be obtained from As by
permuting the particles lines 2 and 3 Similarly, the t channel
amplitude At is obtained by permuting the external lines 3
and 4:

Au =
(
Ṽ
F (n)

1 φ3C(n−1)

)μ1···μn−1
(
G̃C(n−1)

)
μ1···μn−1

ν1···νn−1

×
(
Ṽ
C(n−1)F (n−2)

2 b4

)
ν1···νn−1

. (10.4)

Similarly, the t channel amplitude At is obtained by per-
muting the external lines 3 and 4:

At =
(
Ṽ
F (n)

1 b4C(n−3)

)μ1···μn−3
(
G̃C(n−3)

)
μ1···μn−3

ν1···νn−3

×
(
Ṽ
C(n−3)F (n−2)

2 φ3

)
ν1···νn−3

. (10.5)

The sum of the pole diagrams, after a simple calculation,
leads to the following couplings for one RR 3-form field
strength, one RR 1-form field strength, one dilaton and one
B-field strength in the type IIB supergravity:

S∂F (3)∂F (1)∂φ∂H = γ

3.2
9
2 κ2

×
∫

d10x e2φ0
√−G

(
Fcde, f Fa,bφa,bHcd f,e

−3Fdef
,bF

a,bφa
,cHcde, f − Fc

de, f Fa,bφa
,cHdef,b

+2Fa
ef

,bF
a,bφc,d Hcef,d − 2Fa

ef
,cF

a,bφc,d Hdef,b

)
.

(10.6)

The amplitude of one RR 4-form field strength, one RR
2-form field strength, one dilaton and one B-field strength
produces the couplings

S∂F (4)∂F (2)∂φ∂H = γ

32.2
13
2 κ2

×
∫

d10x e2φ0
√−G

(
12Fcef g,d F

ab,cφa
,d Hb

ef,g

+12Fdef g,cF
ab,cφa

,d Hb
ef,g − 12Fbdef,gF

ab,cφa
,d Hc

e f,g

+12Fbdeg, f F
ab,cφa

,d Hc
e f,g − 2Faef g,bF

ab,cφc
,d Hef g

,d

+12Fbd f g,eF
ab,cφd,eHc

f g
,a − 9Fabf g,eF

ab,cφd,eHd
f g

,c

+24Faef g,bF
ab,cφd,eHd

f g
,c

+6Facf g,bF
ab,cφd,eHd

f g
,e

)
(10.7)

in the string frame. In particular, when n = 5, as can be seen
from the type IIB supergravity action (2.2), the u channel
amplitude as well as contact terms vanishes. In other words,
the s and t channels are the only two diagrams that contribute
to the process. Putting these two contributions together, one
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can obtain the action which reproduces the corresponding
amplitude as

S∂F (5)∂F (3)∂φ∂H = γ

32.2
11
2 κ2

×
∫

d10x e2φ0
√−G

(
2Fcdegh,bF

cde, f φa,bHa f
g,h

+Fcdegh,bF
cde, f φa,bH f

gh
,a − 3Fadegh,bF

cde, f φa,bH f
gh

,c

+4Fbcf gh,d Fa
cd,eφa,bH f gh

,e

+Fcd f gh,bFa
cd,eφa,bH f gh

,e

)
. (10.8)

The number of terms in (10.6) and (10.8) has been reduced
as much as possible. Here also imposing the self-duality con-
dition yields a coupling with structure ε10∂F (5)∂F (3)∂φ∂H ,
which is not considered here because the number of indices
is too large to find all possible contractions of this structure.

We have compared the results of this paper with the cor-
responding couplings which have been obtained from string
amplitude calculations in the RNS [23] and pure-spinor for-
malisms [28] as well as the T-duality approach [18,23], and
we find exact agreement when we write both couplings in
terms of independent variables.

It is interesting to find the remaining couplings by improv-
ing the computer program. One can also apply the S- and
T-duality approaches to get these couplings.
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