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Abstract Motivated by the standard form of the string-
theory amplitude, we calculate the field-theory amplitude to
complete the higher-derivative terms in type II supergrav-
ity theories in their conventional form. We derive explicitly
the O («”?) interactions for the RR (Ramond—Ramond) fields
with graviton, B-field and dilaton in the low-energy effective
action of type II superstrings. We check our results by com-
parison with previous work that has been done by the other
methods, and we find exact agreement.

1 Introduction

Higher-derivative corrections to string theories and M-theory
are importantly studied in various ways: string amplitude [1—
71, non-linear sigma model [8,9], superfield and noether’s
method [10-17], duality completion [18-21], and so on.
Each of these approaches has been employed in different
formalisms such as the RNS (Ramond-Neveu-Schwarz) [22—
24], GS (Green-Schwarz) [17,20,26,27] and pure-spinor
[28] formalisms to determine the higher-order terms.

For many purposes, it is enough to use only the lowest-
order terms in the theory, but there are some situations for
which one must go beyond the lowest-order supergravity
actions and higher-order corrections play an important role.
For example, the origin of induced Einstein—Hilbert terms
are traced to R* couplings in ten dimensions [29,30]. Fur-
thermore, in black-hole and black-brane physics, considering
higher-derivative terms leads to modifications of the thermo-
dynamics [31-33]. Another important set of such applica-
tions can be found in the context of the gauge/gravity duality
[34-36]. There are a vast number of applications of higher-
derivative terms, but the mentioned examples are sufficient
to illustrate the importance of having a good understanding
of higher-derivative terms [22].
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It is well known that the low-energy effective action of
superstring theory is given by supergravity describing only
the interactions of massless modes in the string-theory spec-
trum. This can be shown explicitly by calculating the field-
theory amplitudes of massless states [25]. One must go
beyond this low-energy limit to capture truly stringy behav-
ior. Significant information as regards string and M-theory
can be extracted from the corresponding low-energy effective
actions, in particular once one considers corrections that go
beyond the leading order. Subleading terms in type II effec-
tive actions start at order o’ or eight-derivative level. In order
to determine the structure of the higher-derivative terms, we
will calculate the scattering amplitude of the massless states.

Asmentioned above, the scattering amplitudes of massless
states in superstring theory include corrections to their cor-
responding low-energy effective actions. These terms con-
tain &’ corrections to the supergravity which arise due to the
length of the fundamental string ¢, and string coupling con-
stant g; which correspond to string quantum corrections in
spacetime. In type IIA superstring theory, one of those cor-
rections first obtained at the tree level from the four-graviton
scattering amplitude as well as from the o-model beta func-
tion approach can be written

—2¢ 46
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Here 27, = (2m)"¢8¢2, 13 is a product of four Kronecker
deltas, and rgrg R* denotes an abbreviation of a product of
two fg tensors and four Riemann curvature tensors.

The contents of this paper is as follows: In Sect. 2, we
briefly review type II supergravity theories and fix our con-
ventions and notations. In Sect. 3, we establish the formal-
ism and explain the procedure needed to find the necessary
Feynman rules for the processes we want to compute. By
employing these rules we then calculate the tree-level four-
point amplitude for two RR—two NSNS scattering to find
higher-derivative corrections to type II supergravities in their
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conventional form up to the R* terms. We restrict our atten-
tion to different external NSNS states, namely the metric,
antisymmetric tensor and dilaton. Finally, we compare our
results with previous work and find exact agreement.

2 Brief review of type II supergravity

We begin by reviewing the low-energy effective actions of
both type II superstring theories [37]. These are supergravity
theories that describe interactions of the massless fields in
the string-theory spectrum. The action in the Einstein frame
for the type IIA supergravity is given by

1

1
Sia = — [ d'°xv=G | R — =9, 9" ®
2k2 2

—le_‘D|H|2 1 Z 65%”<1>|F(n)|2
2 2
n=2,4

1
—/ B AdC® AdCc?,

~13 2.1)

where R is the scalar curvature, ® is the dilaton field and
H is the B-field strength H = dB. The RR field strengths
are defined in terms of RR potentials as F® = dC) and
F® = dc® — H A ¢, The above action is the reduc-
tion of 11-dimensional supergravity on manifold R'% x S'.
By a Weyl rescaling of the metric, this action can be trans-
formed to the Einstein frame in which the Einstein term has
the conventional form!. It is also contains three distinct types
of terms. The first three terms in the first line involve NSNS
fields, which are common to both type II superstring theories.
The last term contains RR fields and as a whole are named
kinetic terms. The second line is called the Chern—Simons
term.

In the type IIB supergravity, the presence of the self-dual
five-form introduces a significant complication for writing
down a classical action for type IIB supergravity. In other
words, it is hard to formulate the action in a manifestly
covariant form. There are several different ways of dealing
with this problem. One of them is to find an action which
reproduces the super-symmetric equations of motion when
the self-duality condition is imposed by hand. The type IIB
supergravity action in the Einstein frame is given as

1

1
_ 10
S = 72 d"xv—-G <R - ESMCI)E)“(I)

1_@ 2 1 Song o~
——e ®HP? - — ez P|Fm)?
Se IHP = - > |F™)

n=1,3,5

[ Hade® A @,

o 2.2)

! The Einstein frame is related to a string frame by gEV = e_q’/zg,w,
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where « = 1 forn = 1,3 and « = 2 for n = 5. The RR
field strengths here are defined as F(V = dc©, F® =
dc® — HC® and

. 1 1
FO —dc® — EC(z) AH + EB A dC(z), (2.3)

respectively. The self-duality condition, which must be
imposed in the equations of motion by hand, is given by

FO = «F®, 2.4

This condition has to be imposed as an extra constraint, man-
ually. Without that, one cannot find any consistency between
the field-theory and string-theory S-matrix elements.

3 Field-theory amplitude

Having had the supergravity actions, one can easily read dif-
ferent vertices and propagators and accordingly calculate the
Feynman amplitude of two RR—two NSNS massless states.
To that end, suppose that the massless fields are small per-
turbations around the flat background, i.e.,

guv = Nuv + 26chyy;
B@ =2kb?;
d = ¢o+V2¢;

C™ = 2kc™, 3.1

where « is the gravitational coupling constant. Substituting
these perturbation expansions into the supergravity actions
(2.1) and (2.2), and expanding them up to cubic and quartic
powers in k, one obtains three-point and four-point inter-
actions, respectively. The amplitude of two RR—two NSNS
fields typically has the following form:

A=A;+ A+ A + A,
A Ay A
=+ T A
N u t

1
= (tuAg + st Ay, + suA, + sutA.), (3.2)

where Ay, A, and A, are the amplitudes in s, u and ¢ chan-
nels, respectively, and A, is the contribution of contact terms
which must be added in order for the total scattering ampli-
tude to be gauge invariant. The Mandelstam variables are
definedby s = — 4o’k -ky,u = —4a’ky-k3,t = — da'ky k3,
and they satisfy the identity s + 7 + u = 0.

What motivates us to write the field-theory amplitude in
the above form originates from the general form of string-
theory amplitude. The structure of the string-theory ampli-
tude consists of the well-known Gamma functions in terms
of Mandelstam variables multiplied by a kinematic factor
KC [1,38]. To find the couplings which are reproduced by the
amplitude on the string-theory side, it is convenient to expand
the Gamma functions at low energy, i.e.,
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stu

where the expansion parameter is «’, and ¢y is the constant
dilaton background. The right-hand side in the above expres-
sion gives the low-energy limit of the amplitude. The first
term on that side just corresponds to amplitudes of exchang-
ing two RR—two NSNS massless fields in the s,  and u chan-
nels as well as contact terms in type II supergravity [25]. The
second term contains a Riemann zeta function ¢ (3), which is
irrational and contributes as a stringy correction to the super-
gravity. In this way, it is basically possible to derive higher-
derivative corrections from string scattering amplitudes.

By comparing the amplitude (3.2) with the leading term
of string-theory amplitude, one finds the following relation
between the field-theory amplitude and the string-theory
kinematic factor:

K =232 (tuA; + st A, + sud; + sutA,). (3.4)

Multiplying this factor by —2¢(3) and transforming it to
the spacetime, one then finds the couplings of two RR-two
NSNS fields at order 3.

4 (0F™)2R? couplings

After explaining our strategy in the previous section, we are
now in a position to find various couplings. For the first one,
we are going to find the couplings containing two RR n-
form field strengths withn = 1, 2, 3,4, 5 and two Riemann
curvatures. To this end, we consider the elastic scattering
process of two RR fields into two gravitons. When the two RR
forms have the same rank, the supergravity actions (2.1) and
(2.2) dictate that the massless poles in the s and u channels
and the contact terms are given by the following expressions:

A ~ nv é - AD
= Vm<ﬁ (h) OMh),
§ ( Fln an h VAP 304
A (‘7 )m..mﬁl (G ) PRI
u = (n) 1 n—1) n=
F{"hsC=D ¢ 1 -1

X(V 1y ) ) :
Ccn I)FZ" hy N

n—1

Ae = “.1)

Fl(n)Fén)hﬂu'

The ¢ channel amplitude A; can now be obtained from A,
by permuting the particles lines 3 and 4.

For the process we want to calculate, we need the two
RRs-one graviton, three gravitons, one RR—one graviton—
one RR and two RRs—two gravitons vertex functions. These
vertices can be obtained from the supergravity actions (2.1)
and (2.2) by expanding to cubic and quartic powers in «,
respectively. Fortunately, these vertex functions as well as

the graviton and RR propagators (in Feynman-like gauge)
have been derived previously in the literature [23-25,39,40]
up to an overall factor:

~ Qv iK ( VY]
<VF](n)F2(n)h) = (2n Flﬂur-'unq F, et
Y By FI) 4.2)
- i 1
<Gh>;w.)»p = _ﬁ NuiNvp + NupMor — Z’]uvnkp ,
“4.3)

- rp 3
(Vh]hzh) = ik [( Shik 7 + kK — kK k") Tr(hi.ha)

—ki.hyhydo P 4 265 )P by ks
424 P g kg 4 2ky % ) s
—ki.ky (h}.h5 + h5.h7)

—ky.hoky B = ka.hy Ky hg"] , (4.4)
- Husftn-t 2ik [Hl"'l/«n—lh“w]k
<VF](">112C("’”) = WF]/L 2 Vs
4.5)
- in!
<GC(”))M14HH VicVn 7k72)7[l“ Vi nMZVZ e n#/x]v"* (46)
y dix R 1 rp
VF](")FZ(mhglu = l FlMl“'#nFZ —Zh3)tph4
1
+§h3'\xh4”p>
l )
=5+ DF1y o, Fo,"2Fn bty nlt
1
5100 = D Fii e, Fayp"3 M A RGP
RS F2U#2#3~‘Mnh3ltkh4\1)~i|
+(3 < 4). “4.7)

Our notation is such that Tr(h1.h2) = hY" hoyy, ki.hy =
ki phg)‘ and hf ko = hf Akz;“ The bracket (parenthesis) nota-
tion over indices means antisymmetrization (symmetriza-
tion) with a factor 1/2. k,, in (4.5) denotes the momentum of
internal leg i.e., k), = ki, + k2,.

The next step is to write the amplitude in terms of indepen-
dent variables. This imposes all symmetries including mono-
term symmetries (antisymmetry property of RR potentials
and symmetry property of graviton polarizations) as well as
multi-term symmetries (the Bianchi identities governing on
the RR field strengths and Riemann tensors). In doing so, we
have first written the RR field strengths and Riemann tensors
in terms of RR potentials and graviton polarizations, respec-
tively. Then we have manipulated with some of the terms.
For instance, momentum conservation Zf‘: (ki = 0 as well
as the mass-shell and on-shell relations for momenta, kl.2 =0
and k;.€; = 0, are imposed. We have also rewritten some
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terms using the relation s + ¢ + u = 0. Furthermore, we
have applied the tracelessness property of external graviton
polarizations.

After doing the above steps to canonicalize the ampli-
tude, the final result is simplified in terms of some Mandel-
stam variables, momenta, two RR potentials and two graviton
polarizations. When n = 1, the result is simplified as

% (52 S s + 2507 W o + 1 15 o
165> hag" hagy kKE + 160> h3g? hag, kS kS
—1652u hag? hapy k9kE — 325u> hag hag, kiKE
—160° hag hagy KSK + 641 b3y shaaskS kDI 1S
— 12851 h3ay hapskShP KK — 1286 hsgy hagski kP k) i3
6452 h3aphay sk kP I IS + 12851 hagphay skSkP k) kS

+ 64 haphays kKL YRS 4.8)

where the RR polarizations have been written in terms of
momenta. To rewrite the amplitude (4.8) in terms of RR field
strengths and Riemann tensors, we consider all possible con-
tractions between two RR 1-form field strengths with a partial
derivative acting on each one and two Riemann tensors. Then
we make an ansatz of all these contractions by multiplying
them by unknown constant coefficients:

CLFYF' Rae” Rydes + C2F“"F! Ruc! Rpear
+C3F“PFOI R, ! Rpear + C4aF P FRy* I Rogae
+CsFy F“P Ryl Reger + CoF" F Ry’ Reeay
+C7F F“P Ry Recas + CsFup F* Reaes R
+CoFyp F*" Reeay R . 4.9)
By comparing Eq. (4.8) with the result obtained from writ-

ing (4.9) in terms of independent variables with the same

steps as mentioned above, one obtains some algebraic equa-
tions among unknown constant coefficients:

{2C5 4+ C¢+ C7+8Cs +4C9 =0,
2C5+2Ce+ C7 =0,
—51242C1+Cr+C3+2C6 =0,
2C1+Cr — C4+2C5+3Cs+ C7 =0,
2C1+Cr—C4+Cs=0,
2C1+Cy —C4+2C5+ Ce+ C7 4+ 16Cg + 8Co = 0,
5124+4C1 4+2Cy — C3 —3C4 4+ C¢ =0,
2C1+ Cr — C4+8Cg +4Co =0,
—1024 4+ 2C1 + Cy +2C3 4+ C4 +2C5 + 5C¢
+C7=0,-5124+C3+ C4+ Cs =0,
—1024 +4C1 +2C2 +2C3 —2C5 4+ C — C7
+8Cs +4Cy =0,
6C; +3C) —3C4—2C5+Ce—C7=0,

@ Springer

—5124+C3+C4+2C5+3Cs+C7 =0,
—4096 + 16C1 + 8C3 +8C3 — 8C5 + 8C¢ — 4C7 = 0,
51242C1+ Co — C3 —2C4 =0,
2048 +2C1 + Cy —4C3 — 5C4 +2Cs — C¢ + C7 = 0}.
(4.10)

After solving the above 18 equations, simultaneously, one
finds the unknown constant coefficient C3 to be 512. The
other coefficients are free parameters which can be set to
Zero.

Having available the unknown coefficients and substitut-
ing them into Eq. (4.9), we can obtain the couplings between
two RR 1-form field strengths and two Riemann tensors?.
The effective action, which reproduces the corresponding

amplitude, takes the following form in the string frame:

v
3.24k2

X /dlox e*P/—G F“’ch’dRaechbedf’

4.11)

S(gF(l))ZRQ =

where y = 3¢ (3)/23, and comma refers to a partial deriva-
tive with respect to the index afterwards. Note that, to acquire
the standard sphere-level dilaton factor e 2% in the string
frame, it is convenient to normalize the RR potentials and
graviton polarizations with a factor e?0. The normalization
of RR fields in the above action is consistent with the super-
gravities (2.1) and (2.2). Moreover, the couplings of two RR
2-form field strengths and two Riemann curvatures appear in
the following effective action:

_r
3.25«2

x/dlox V=G (24 F Ry 45 Regg
+Fah’chd’eRadngbefg
+2Fah’che’fRacngbdeg
+2FPC FIS Ry Rigee )

S(a F(2))2R2 B

4.12)

Hence, there is no unique way of writing down the expres-
sions (4.11) and (4.12) because of different presentations of
tensor polynomials using the symmetries of the individual
tensors, but we believe the above forms are the most econom-
ical one. The number of terms has been reduced as much as
possible using the algorithm introduced in [24]. We also find
the couplings between two RR 3-form field strengths and two
Riemann curvatures:

2 The calculations in this study have been carried out by the Mathemat-
ica package xAct [41].
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s _ Y
@FD)?2R* = 35572
X /dlox e?h /-G (SFabc’eFabC’defghRefgh

~3Fupa,c F°9 Ropon ROTS"

+H12F T F©4Rep®" Reng
—12F T F 4R Raggn
+24 F g FOPUR 48" Rofon
C12F 0T AR g R
+24F ¢ p FOP“IRIE R, po
—24Faef’gFabC’dedeh Refng
+48F, "8 FPI Ry " Rafon
+24F, 8 Fabed Ry S Rypng
—24F, /8 Fabed Ry 4" Rofen
—12Fabed Fdef a Rbegh Refhg

H12F P Fgl Ry Regn ) (4.13)

Furthermore, our calculations show that the couplings
which include two RR 4-form field strengths and two Rie-
mann curvatures have the following form:

Y
322642

x / 410 2% /—G (3Fabef”' Fragin RO RESS

" Rabcd Refgh

S(BF(4>)2R2 =

~9Fupe’ £ Fedgi
_9Fabei,chdhi,fRudeRefgh
F6Fpe ™ Fypgi Rt RO
F3Fe® Fypin Rap® R
+6Fpe™  Fapni g Ra“8 R
C6F oMy Fagi e Ra/s R
—2Fp8"  Fagni t Ra¢ ! R
+3Fee™ Fagni, r Rap® R4
D4 Fped F o q Ra'S ROV
C6Fp M o Fponi.q Ra®'S ROV

+9Fpe" FroniaRa* R (4.14)
We are now going to find the couplings containing two RR 5-
form field strengths and two Riemann tensors. The amplitude
in this case is somewhat different, because of the presence
of the 5-form field strength F®, which is self-dual. This
condition should be imposed manually as an extra condition
in physical quantities like the equations of motion as well as
S-matrix.

We expect that imposing the self-duality condition F) —
(F O 4 xF (5)) /2, which is equivalent to (2.4), in the cou-
plings with structure (3 F©))2R? not only gives the correct
overall factor but also results into another coupling with

structure €19(d F )2 R2. This coupling is not calculated here,
because the number of indices is too large, which makes it
difficult to calculate all possible contractions for this struc-
ture. However, the result for the couplings between two RR
5-form field strengths and two Riemann curvatures is

s _ 14
@F)2R* = 3558 2
X /dlox ezmm (1SFabeij’chdfij’hRadeRefgh

_3Fabefi"j chghi,j RadeRefgh

—12Fpe8" Fypgnji R R
_6Fceghi’jFdfghj,iRabefRade

_SFbeh”,CFdfhl‘]’gRaefg Rabcd

+8Fe "y Fagnij.e Ra8 R0
F2FM  Fagnis. g Ra®e! R
+4Foo" T Fygnij, f Rap®! R
48 Fpel Fygnisa RaTS RO
+8Fpc" o F ronij.aRa8 RO

—12Fp M FronijaRa T R, 4.15)
where the product of two Levi-Civita tensors implicitly has
been replaced by the generalized Kronecker delta according
to: €™M ey Ly = =0, - S g)™.

In the next sections we follow a similar approach to obtain-
ing the other couplings. The details of the calculations are
omitted for the sake of brevity.

5 (3F™)2(3¢)? couplings

In this section, the couplings with structure (0 F ("))2(8¢)2
will be calculated. Similar to the previous section, there are
also five types of couplings here, i.e., withn = 1, 2, 3,4, 5.
When we have two RR field strengths, in which the RR forms
have the same rank, and two dilatons, the actions (2.1) and
(2.2) indicate that the amplitudes in the s and u channels and
the contact terms become

~ Wy /oo - rp
A=<V<><>) (Gh) (Vh ) )
s FMFE™Mh wp $34
~ K1 fn—1
Au = (VFF%CM—“)
X (Gc(n—l)) V1+Vn—1
M1 hn—1

x(V
<c<n71>ngn)¢4>w“v ,

n—1

Ac=V

FOEM g3 (5.1

respectively. Here also the amplitude in the ¢ channel is the
same as A, in which the particle labels of the RR fields are

@ Springer
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interchanged, i.e., A; = A, (3 <> 4). The required three- and
four-point interactions are given by

~ 2% 1
(V¢1¢2h> = —2ik (kiukﬁ) - §k1-kzn‘”) , (5.2)

- 1
N _ 12
(VFI(")¢2C<"_1))vl...v,l_l - lKﬁ(n — 1)!(5 ) Fijovnv, K
(5.3)

- 1 (5—n\>
521 .
VFl(n)Fz(")¢3¢4 = —2ik . ( 5 ) Fiypw, > . 5.4)

The graviton and RR propagators are given by Egs. (4.3) and
(4.6), respectively. Substituting these expressions into the
amplitude (5.1), one finds the couplings consisting of two
RR 1-form field strengths and two dilatons as follows:
Seropesr = 7350

3.25¢2

X/dlox 2. /—G (2Fa’bFC’d¢a,h¢c,d

_Fa,bFa’bd’c,d(pC’d) .

One can also write down the couplings between two RR
2-form field strengths and two dilatons as

(5.5)

Siar@2 42 = _r
OFR00)? = 338,32

x / 4% =G (16F,5F gy ape.

+18F, 4 (Fypy

~OFuco P ga.cd™ ). (5.6)

In the same way, the couplings of two RR 3-form field
strengths and two dilatons can be written as

_r
320642

xfdlox V=G (Fdef,chef.b%’%a’b
_3Fae"f,b Fcef,dqba’bqbcyd
_3Faef,cFdef,b¢u7b¢c’d) .

S@FO0g2 =

(5.7
Furthermore, the couplings of two RR 4-form field strengths
and two dilatons can be introduced as

__r
32292

x / d0% 20 /=G (cheg, pFeAl 8, Lotb
_2deef,g chef,g¢a’c¢a’b
—16F,*¢ ,chefg,d(zﬁ”’bqﬁ""’) .

SF@)2op2 =

(5.8)

Finally, for n = 5 case only the contribution of the s channel
exists and is given by the first line in (5.1). The amplitudes
in the ¢ and u channels and the contact terms here are zero.
Once more, using the self-duality condition, one can easily
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find the following coupling for two RR 5-form field strengths
and two dilatons with correct overall factor:

Y
32272

x/dlox e/ —G F, 8" Foepon.adp™ 9.

(5.9)

SFe)2 92 =

Note that imposing the self-duality condition also leads to a
new coupling of the form €10(3F)2(3¢)2, but we ignore
it for the reasons already mentioned. We use the algorithm
introduced in [24] to reduce the tensor polynomials and
rewrite the couplings of this section in the minimal-term
form.

6 (AF™)2(3¢)R couplings

Let us now consider the couplings with structure (3 F )2
(0¢)R. Atthe first glance, it seems that there are five types of
couplings in this section, i.e., withn = 1, 2, 3, 4, 5, but the
contribution of dFMVIFD PR and dFDIFD PR van-
ishes as can be seen from the action (2.2). When the two
RR forms have the same rank, from the type II supergravity
actions, it is concluded that the amplitudes in the s and u
channels and the contact terms are given by the following
expressions:

AS = VFI(’I)FZ(n)¢G¢V¢¢3h4’

A (‘7 )Ml"'ﬂnfl (G T
u — (n) —~1 C(nfl)) -
Fy"gsCr=D A

X(V —1) pm )
C=D " hy Vl"'Vn—l’

Ac =V (6.1)

F" ¢3hy’

respectively. The amplitude in the ¢ channel is the same as
A, in which the particle labels of the RR fields are inter-
changed, i.e., Ay = A,(3 <> 4). Here, the dilaton propagator
and vertex operators which are needed in the calculation of
amplitude, are

~ . 5—n ety

VFl(n)Fz(n)¢ = —IKW Fl//vl“'#n le‘«l H . (62)
- i

Go = —23. 6.3)
Vingop = —2ikky .y k, (6.4)

- R 5—n N
(Tepascon ) = =i Gy P
(6.5)
2
(7 K (5 — n) M1 Un
VFI(")Fz(")¢3h4 = T (Fuypyoy By "
=21 Flppg ey P2 My ") (6.6)
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The RR propagator is given by Eq. (4.6) as well. After doing
some algebra, we have

S o N
@F@PeOR = I

x | a0 200 /=G (2Fad'eFab’C¢b‘chdef
—2FCF 29, Ryapy

—Fad’cFab’C¢e’beedf) . 6.7)

Doing the same steps as above, one finds the couplings
with structure (3 F@)2(3¢)R in the type IIA theory. In the
string frame, they are

)4
3.23x2
x / d'0x 0 J/=G (2F, ¢ Foe"5 ¢ Ry
_FaCd,b Fcef’gqba’degef
_2Fa6d’eFcfg,bﬁba’defeg
+2FCfg'chde’a¢a,b> .

SFOR@HR = —

(6.8)

Finally, we have found the following result for the cou-
plings containing two RR 4-form field strengths, one dilaton
and one Riemann curvature in the string frame:

_r
32272

X /dlox 62¢0V -G <2Fhfgh,dF('fgh,e¢a’hRaCde

_3Fbcfg’hFdefg,h‘pa'bRaCde

Swor@2apr =

+Fel8h Fdefg,h(b”"hRa('bd). (6.9)

Here also the algorithm introduced in [24] has been used to
rewrite the couplings of this section in their minimal-term
form.

7 (3F™)2(d H)? couplings

Now, we consider the couplings with structure (3 F )2
(0 H)?. There are also five types of couplings in this sec-
tion, i.e., withn = 1,2,3,4,5. Whenn = 1, 2, 3, it can be
seen from the actions (2.1) and (2.2) that the s and u channel
amplitudes as well as the contact terms are given by

A ~ 1% é - Ap
= V<><>) (h) (Vhbb>
§ ( Fln an h VAP 304
+VF]()1)F2(n)¢G¢ Vobsba s
- WL fntl [ ~
Au = (V (n) 1 ) (G (n+1)> VITVnt
Fy"bsCrtD ¢ 1 )

X (‘7 (n) )
(n+1) ’
¢ Fy7bs V1 Vpt1

Ac = FF P biby

(7.1)

respectively. The t channel amplitude A; can now be obtained
from A, by permuting the external B-fields lines 3 and 4.
The vertices, which have not been introduced in the previous
sections, are

- v . 1
(Vb1b2h> = —2ik |:5 (kl.kz " — qu k'zj
—ki) ké‘) Tr(b1 .b2) — k] .bz.b] .k2 7]’”
F2kY by by ey + 2k by o ey

+2k1 by by ky — ky ko (BB + b‘;.br)] . (7.2)
Viiba = —~/2ik [2k1.b2 b1k — ki ko Tr(by.b2)], (7.3)
N . B
(VF](")bzc("H))vl_.VHI = _2”(7@ T 1)!" boptoy Flvy-vi11s (7.4)
_ 2ik?(n+2)(n+1) et
VE® By =~ n b3 Fipey i1 b By
+(3 < 4). (7.5)

Putting theses contributions together, one finds the following
couplings between two RR 1-form field strengths and two B-
field strengths:

S _ Y
OFD2@H)? = 33 56,2

x /dlox e /=G (12F“~bFL"dHaef,ﬁHb(,f,d
+6F, F“Y Hy% Hego s

—Fap P Heae, pHT) (7.6)

which is written in its minimal-term form. In a similar way,
the couplings between two RR 2-form field strengths and two
B-field strengths have appeared in the action,

_r
32.29¢2

X/dlox ewo\/j (3Fab’cFde,cHadf’gHbeg,f

+6Fab,c Fde,f Hucg,bdeg,e _ 3Fad’eFab’chfg,cdeg,e
+3Fab,Cch»€deg’a Hefg,b —+ 3Fab’che’fHabg,dHefg,c
_3Fad’eFab’chfg,dHefg,c - 3Fad’eFab'CHbfg,CHefgﬂ
+3F, P FCHT® y Hopg.a + 2Fuc F7 Hepg a HY'
—Fa P Hopg aHET ). (7.7)

SF@2@eH?2 = —

It is also straightforward to find the couplings between
two RR 3-form field strengths and two B-field strengths as

v
33.26x2
x / d'0%x 2 /=G (lSF”bC’dFefg’hHabd,theflg

+27F T8 FY Hyeo " Hyep
+36F,,5  FlH 8 Hy,p
_36Faef,g Fabc,d Hbgh,cHdeh,f
_9Fabc’dFefg’hHabh,edeg,c

SF®2@oH? =

@ Springer
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_36Faef,gFabc,dech
+36Fa"f*gF“b"’degh,edeh,c
+72Fabc'dFefg’h Habe,cdeh,g
—36F, S " Hy" o Hapn
+54F 5T Ol H 8 Hy
_9Fabe,f FadeHcgh,fHdgh,e
+216F, 8 FC Hy," - Hygn, 5
+72Fabe,f Fubc,dHceg,h Hdgh,f
+18Fabe,fFabc,d Hcgh,eHdgh,f
_Fahc,dFefg,h Hubc,dHefg,h
+27Fa€f,g Fabc,d Hb(;d”’l Hefg,h
—18F A E e Hy8" Horg
+1 08Fade’f Fabc,deghyc Hefg,h
_72Fabe,f Fabc,dHCdg,h Hefg,h
—9Fap¢ aF T H I8 Hypy
+36Fd® 5 F* oIS gy

+9Fabe,fFabc,degh’chgh’e> .

eHafen

(7.8)

For n = 4, the contribution of the u channel in the ampli-
tude is replaced by

s (‘7 W3 & V- Vp3
u = )y ~(n—3 ) ( C("*3)> B
F"bsC0=Y Wi =3

X (‘7 _3) () )
Cc )F2 by VL V3
~ M1 Hpt1
+ (VF|(")173C(”+”>

X (Gc()1+l)) VIt Vntl (‘7 (1) ) ,
1Pt CUTVR04) vy

(7.9)

where

- 1 v
Vot 73) = —ik————Fiyvpv v, 3Dy k.
( F by C(n=3) V- Vp3 (n— 3)' HYPVL-Vp 377

(7.10)

Inserting this contribution into the amplitude, one finds the
following couplings between two RR 4-form field strengths
and two B-field strengths:

_r
32 28 2
/dloxe e (ngmeng Hape Hb

_2Fefgi,hFefgh’iHabd,cHabC’d
_Snghi,chghi,eHabe’fHabc’d
H12Fpe ™ Fopgin Ha g HO
_SFbghi,cFeghi fH ef dHabc,d
+48dehi’e engabc d
—48 Fpgt.

Ser@y@me = —

cfhl g
s be,d
chehi,fHaenga ¢

@ Springer

_24Fbc eFafnigH, engabc d
_48Fbe ,chfhi,gHaef’gHabc’d
_48Fbehi,chghi,f Haef,g Habc,d
_24Fbcdh’i Fefgi,h Haef’gHahC’d
_6Fbchi, Fefhi JH, ef,g Habc,d

+24Fbcd Ml oy i g H P8 HOPO4
+6Fbc dFefhlg engabcd

—96 Fpeq" Fogni. r Ha®' H’”’C’d) . 7.11)

For n = 5, in addition to the u channel amplitude, which
is given by (7.9), the s channel amplitude is also replaced by

~ WY /oo ~ rp
As = (VFl(n)Fz(n)h) (Gh>/j,v,)u,0 (Vhb3b4)

Applying these changes to the amplitude along with impos-
ing the self-duality condition, after some simplifications, one
finds the following couplings between two RR 5-form field
strengths and two B-field strengths:

_r
5.32.29%2
/dloxe /=G (2nghij,enghij,dHabC,eHabc,d

—SFefghj’iFefghiajHabd‘CHabc,d
_ZOnghij,chghij,eHabe’fHabc’d
60 Fp 8T Fypni i Ha® g HOPOA
—20F8"i  Fygpij. r Hy® g HOPe
F160Fpg" Foppij. o Hy®8 HOPe4
—160F,,g’”'f' Faenij. p Ha®F8 Hbed

(7.12)

S@FeO2@m? = —

—80Fp" o Fypnij o Hy 8 H
_160Fbe ij Fdfhi/' gH ef,gHabc,d
_160Fbe nghl] 7 Hy ef.g prabe.d

—240Fped") Fopgnji Hy®'8 HOP 4
_ZOFbchij’ Fopnij.a Ha8 HObed

—120Fp, d I Fyppij g Ha 8 HOP 4
420 Fpc M7 ' aFepnij o H.
+480 Fpe"™ Foghij, r HaF S HOP* ).

engab¢ d
(7.13)

Imposing the self-duality constraint also leads to a new
coupling with structure €19(d F 5123 H)?, which has been
neglected here.

8 dF™YF =4 (3 H)? couplings

Since the minimum rank of RR field strength is 1, there is
only one type of couplings in this section, i.e., with n = 5.
The effective action (2.2) shows that the amplitude in the
s channel and contact terms vanishes. It also produces the
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following u channel amplitude:

- WU ln=3 ( ~ vy
Au = (VFl(n)bQC(”*”) (GC("73)> !

M1 Hn—3
x(V,.._ (n—4) )
( C(n 3)F2 b4 V] Up—3 ’

8.1

where the vertices and propagator are given in (7.10), (7.4)
and (4.6), respectively. The amplitude in the ¢ channel is the
same as A, in which the particle labels of the external B-
fields are interchanged which means that A; = A, (3 < 4).
Gathering these two contributions, imposing the self-duality
constraint, one finds the coupling

14
32252
x / d'0x e2/=G (3Fcdefgn " Hy " Hy /%"
+3F caggn b F“" Ho"  H T8
Fa,bHacd bHefg,h)

Sor®arv @R = —

—Ledefg.h (82)
plus a coupling of the form €198 F©O 9 F (3 H)?, which we
drop here. The above coupling is written in its minimal-term
form.

9 JF™YF =2 (3 H)R couplings

Here, we will calculate the couplings with structure 8 F ™9
F"=2 (3 H)R. There are three possibilities in this case, with
n = 3,4, 5. The supergravity actions (2.1) and (2.2) dictate
that the amplitudes in the s channel and contact terms are
given by

~ wy oo ~ Ap
As = (Vpwpon,) (Go) o (Vo)

A, = ‘7an> 9.1)

Fz(n_z)b3h4’

where the vertex operators and B-field propagator are given
by

v ik 1224 Vi Vp—2

( F(n)F(n Z)b) —mFl Vl"'Vn—2F2 s (92)
< >MV A,o = 2/(2 (nuknvp - nupnvk) s 9.3)
(f/ lhzb) = —2ik (ka.by koh”

2k bR Ky + 2ka. by BY K

2k o bV + kYD By ey

b k) 9.4)
Y ix? (1p2 pus=inly A
VFI(”)F;’*%M T (F b3 haj,

_ZnF])\/,Lz M"b[PMZFIH “n] ]’l A ) (95)

The amplitude in the u# channel is the same as A in which
the particle labels of the RR (n — 2)-form field strength and
B-field are interchanged, i.e., A, = As(2 <> 3). We have

~ M1 HUn-3 ~ NIRRT
Ay = (VFf")b3C<”*3)) (GC(II—3)> n-

M1 n—3
X (VC(”*3>F2(”72)h4>

Similarly, the amplitude in the ¢ channel is the same as
A, in which the particle labels of the external B-field and
graviton are interchanged, i.e., A; = A, (3 <> 4). We have

~ M1 Bl [~ A
A= (VFf”)mcw“)) (GC“’“))

B Mgl
X (VC<"+1>F2("_2)h3>

Replacing the vertices and propagators in the above ampli-
tudes and then summing them yields the following result for
the couplings of one RR 3-form field strength, one RR 1-form
field strength, one B-field strength and one Riemann tensor:

(9.6)

Vi-Vp-3

9.7)

V1 Vn41

Y
3.25¢2

x / 410 €03/=G (2FIT F Hyl¥ ) Rageg

+4FeS FOPH, 8 ¢ Rpgeg — 10F““T FOPH 8 Rpgeq
_ZFaCd’eFa’bec'ﬁngge,f + 2Fa0d’eFa’bHcdf’gRbgef
—2F%e  FOY H oy T8 Ryger — Fu  F@P H T8 Ryger
+4FedeS FOPH 8 Rpgeg + 2FT F@PH (8 4 Ryeng
9.8)

SyF®aFrM@GHR = —

+FCde,aFa’bHcfg,defeg> .

The couplings of one RR 4-form field strength, one RR
2-form field strength, one B-field strength and one Riemann
curvature can be written in the string frame as

_r
32.25¢2

/dmxe e (12Fdfgh,e

—6Fpden.g FOPCH AT R,S 4"
—12Fpagn.e F**CH 2 RS 4"
+6Fpern g FUCHY (R, ,"
+12Fpegn, f FOPCHY RS 4"
+6Fpon p FOCHI (R,8 4"
— 12Fbcgh,f Fab’CHdef’gRuhde
—6Fpefn.c FOCHY TSR, 4o
—12Fpegn, f FOCHITE R, 4
—Feaef n F0CHITE R 0"
+3Feden, f F7 HY 8 Rapg"
—6F conp FOOCHIT8 Ry oy
12 F oo p FOCHIFS R,y

Sa FOIFDBH)R = —

Fab,cHade,f Rbcgh

@ Springer
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—2Fdefh,bF”b’CHdef»gRahcg) . (9.9)

Finally, we find the couplings of one RR 5-form field
strength, one RR 3-form field strength, one B-field strength
and one Riemann curvature in the type IIB theory as

S _ 14
IFOIFOBH)R = _W

% /dmx 2 /-G (Siceﬁ’hFabc,deef,gRahgi

46 Fpeeni f FO2°9 H T8 R,
—12Fpegni, f F*“I Hy 8 R, 1
A2 Fegi, f FPO H TS R
_3Fbcfgi,h Fabc,dHefg’dRahei
6 Fpepni o FUUIHE 4R,
6 Fypgnc FUOUHEE 4R
_3Fbcfgi,dFabC’dHefg’h Raehi
3 Fpepeia FO L HTS M Ry
6 Fpepni g FPOTHOONR 4,
+12Fpafgi e FPCTHIEM R0
6 Fpagrc FUOUHETS Ryl
2 Fpepai.e FPOTHOSI R gl
+12Fpponi o FPCTHIEM R, 4,

+4Fdegi,c P HIEM Ry (9.10)

Similar to the previous cases, imposing the self-duality
constraint in the above action leads to a new coupling with
structure €109 FO9F 3 (AH)R. We also find that there is
another coupling with structure €19d F ™3 F =2 (9 H)R,
which has not been considered here.

10 F™IF =2 343 H couplings

The last coupling that we aim to obtainis d F ™9 F "2 3¢ H.

There are three types of couplings in this case and those are
with n = 3,4,5. When n = 3,4, from the supergravity
actions (2.1) and (2.2), one can observe that the field-theory
amplitudes in the s channel and contact terms are given by

~ WY /oo ~ rp
A= (Ve o) (G0),,,,, (Toon) ™

A, = VFf”) (10.1)

Fz("_z)¢3b4’

respectively. Here, the vertices, which have not been previ-
ously introduced, are given by

~ JLV
(Vos) = =2k (2K BYHE) — ki kaby™) . (10.2)

@ Springer

V —

[rrpa psepnl
- = F .
FVE ™ p3by 2

Fuyuyp, by

. V2ik3(5 = n)
n!

(10.3)

The u channel amplitude A, can now be obtained from A by
permuting the particles lines 2 and 3 Similarly, the # channel
amplitude A; is obtained by permuting the external lines 3
and 4:

A <‘7 )Ml“-lln—l (G ) S
u = (n) —1 (n—1) B
F{M s C=D ¢ B M1
x(\7 o ) . (10.4)
C(" I)F2 b4 Vi-Vn—1

Similarly, the # channel amplitude A; is obtained by per-
muting the external lines 3 and 4:

A (‘7 )m...urz (G ) s
t = (n) -3 (n=3) :
Fl b4C(n k ¢ M1 Hp—3
X (‘7 3 p(1—2) ) . (10.5)
CONERT03) s

The sum of the pole diagrams, after a simple calculation,
leads to the following couplings for one RR 3-form field
strength, one RR 1-form field strength, one dilaton and one
B-field strength in the type IIB supergravity:

y
3.23k2

X /dmx 62¢0V -G (FCde’fFa’b(/J)a,bHcdf,e

—3Fdef,bFa’b¢a’CHcde,f - che’fFa’b‘pa’CHdgfﬁh

+2Faef’bFa,b¢c,dHcef’d _ 2Faef,CFa’b¢C’deef,b) )
(10.6)

SyF®armagor =

The amplitude of one RR 4-form field strength, one RR
2-form field strength, one dilaton and one B-field strength
produces the couplings

_r
3207 k2
x / 4% 903/=G (12Feesg.a P gu Hy "

H12Fjefg e F o Hy '8 — 12Fpgef o F" 0 HT$
+12deeg,fFah’c‘pa’dHcef’g - 2Faefg,bFah’C¢c’dHefg,d
+12defg,eFab’c¢d’eHc'fg,a - 9Fabfg,eFab’C¢d’edeg‘c
+24F g s F*P ¢ Hy '8

+6Facfg,b Fab,cqsd,edeg’e)

SaF@aFr@agon =

(10.7)

in the string frame. In particular, when n = 5, as can be seen
from the type IIB supergravity action (2.2), the u channel
amplitude as well as contact terms vanishes. In other words,
the s and ¢ channels are the only two diagrams that contribute
to the process. Putting these two contributions together, one
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can obtain the action which reproduces the corresponding
amplitude as

_r

3225 2

« / 419 200 /=G (Zchegh,bFCde'fﬁsa’bHafg’h
+chegh’bche,fd)a,begh.a - 3Fadegh,bFCde’qua’begh»C
+4Fbcfgh,dFac-d’e(pa’begh,e
+chfgh,hFaCd’%a’thgh-E) '

SaF®aF®agaH =

(10.8)

The number of terms in (10.6) and (10.8) has been reduced
as much as possible. Here also imposing the self-duality con-
dition yields a coupling with structure €;0d FO 9 F® ¢ H,
which is not considered here because the number of indices
is too large to find all possible contractions of this structure.

We have compared the results of this paper with the cor-
responding couplings which have been obtained from string
amplitude calculations in the RNS [23] and pure-spinor for-
malisms [28] as well as the T-duality approach [18,23], and
we find exact agreement when we write both couplings in
terms of independent variables.

It is interesting to find the remaining couplings by improv-
ing the computer program. One can also apply the S- and
T-duality approaches to get these couplings.
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