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Abstract Recently reported [Eur. Phys. J. C., 77, 549
(2017). https://doi.org/10.1140/epjc/s10052-017-5116-y]
gravitoelectromagnetic equations of Ummarino and Gallerati
(UG) in their linearized version of general relativity (GR) are
shown to match with (a) our previously reported special rela-
tivistic Maxwellian Gravity equations in the non-relativistic
limit and with (b) the non-relativistic equations derived here,
when the speed of gravity cg (an undetermined parameter of
the theory here) is set equal to c (the speed of light in vac-
uum). Seen in the light of our new results, the UG equations
satisfy the Correspondence Principle (cp), while many other
versions of linearized GR equations that are being (or may be)
used to interpret the experimental data defy the cp. Such new
findings assume significance and relevance in the contexts
of recent detection of gravitational waves and the gravito-
magnetic field of the spinning earth and their interpretations.
Being well-founded and self-consistent, the equations may
be of interest and useful to researchers exploring the phe-
nomenology of gravitomagnetism, gravitational waves and
the novel interplay of gravity with different states of matter
in flat space-time like UG’s interesting work on supercon-
ductors in weak gravitational fields.

1 Introduction

In a recent interesting theoretical study on the interplay
of superconductivity and weak static gravitational field,
Ummarino and Gallerati [1] concluded that the reduction
of the gravitational field in a superconductor, if it exists, is
a transient phenomenon and depends strongly on the param-
eters that characterize the superconductor. The gravitational
equations used by the authors in their study are represented
by the following Gravito-Maxwell Equations:
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∇ · Eg = − 4πGρg, (1)

∇ · Bg = 0, (2)

∇ × Bg = − 4πG

c2
g

jg + 1

c2
g

∂Eg

∂t
, (3)

∇ × Eg = − ∂Bg

∂t
, (4)

and the equation of motion of a particle moving with non-
relativistic velocity, v, is given by Gravito-Lorentz force law:

dv
dt

= Eg + v × Bg. (5)

In the above equations ρg = ρ0 is the (rest) mass density,
jg = ρgv mass current density, the speed of gravitational
waves in vacuum cg = c (the speed of light in vacuum)
in [1], Eg is the usual Newtonian gravitational field (called
gravitoelectric field) and Bg is the gravitational analogue of
magnetic induction field (called gravito-magnetic field). The
Eg and Bg fields are related to gravitoelectric scalar potential
φg and gravitomagnetic vector potential Ag as

Eg = −∇φg − ∂Ag

∂t
, (6)

Bg = ∇ × Ag. (7)

Ummarino and Gallerati [1] derived these equations from
Einstein’s GR by linearization procedure in the weak field
and slow motion approximations. We name the Eqs. (1–7)
to represent the General Relativistic Maxwellian Gravity of
Ummarino-Gallerati as (GRMG-UG) to differentiate it from
other existing (or future) formulations that (may) result from
different methods of study. For instance, in this communica-
tion we show how one can derive these equations in a non-
relativistic approach without invoking the space-time curva-
ture and the linearization schemes of GR. By adopting, in
essence, the non-relativistic approach of Schwinger et al. [2]
for their derivation of Maxwell’s equations and the Lorentz
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force law in the electromagnetic case, we derive the fun-
damental equations of Time-Dependent Galileo-Newtonian
Gravitodynamics of moving bodies (called here as Non-
Relativistic Maxwellian Gravity or NRMG in short) within
the Galileo-Newtonian relativity physics by combining the
following ingredients:

(a) The validity of Newton’s laws of gravitostatics,
(b) The validity of the equation of continuity that expresses

the law of conservation of mass,1 and
(c) Postulating the existence of gravitational waves trav-

eling in free space with a finite velocity cg (which is
an undetermined parameter of the theory but whose
value may be fixed in measurement of physical quan-
tities involving cg or by comparing the field equations
with those obtainable from more advanced theories).

As will be shown here, our derived equations of NRMG
match with the Eqs. (1–7) of GRMG-UG, if cg = c. Further,
if cg = c, the equations of NRMG also match with those
of Special Relativistic Maxwellian Gravity (SRMG) [3]2 in
flat space-time, where cg = c is a natural outcome of the
theory there (here discussed in Sect. 3). From McDonald’s
[4] report of little known Heaviside’s Gravity (HG) [4,5]
of 1893,3 we find that the equations of NRMG also match
with those of HG in which Heaviside thought cg might be
equal to c. These findings assume significance and relevance
in the contexts of recent experimental detection of gravita-
tional waves [6–9], gravito-magnetic field of the spinning
Earth using the orbital data of two laser-ranged satellites
(LAGEOS and LAGEOS II) [10–14] and the Gavity Probe B
(GP-B) experimental results [15–17] vindicating Einstein’s
GR, because all of these results are being interpreted in the

1 Schwinger et al. [2] derived (b) using the Galileo-Newton principle
of relativity (masses at rest and masses with a common velocity viewed
by a co-moving observer are physically indistinguishable). Here, we
will use this relativity principle for deriving the gravitational analogue
of the Lorentz force law.
2 We named our relativistic gravity as Maxwellian Gravity since J. C.
Maxwell [J.C Maxwell, Phil. Trans. Roy. Soc. London 155, 459–512
(1865), sec. 82: Note on the Attraction of Gravitation] first tried to con-
struct a field theory of gravity analogous to Classical Electromagnetic
theory and did not work on the matter further as “He was dissatisfied
with his results because the potential energy of a static configuration is
always negative but he felt this should be re-expressible as an integral
over field energy density which, being the square of the gravitational
field, is positive [3,4]. Maxwell concluded his note on the attraction of
gravitation with the statement,“As I am unable to understand in what
way a medium can possess such properties, I cannot go any further in
this direction in searching for the cause of gravitation”.
3 Reproduced in (1.) O. Heaviside, Electromagnetic Theory, Vol. 1,
455–465. The Electrician Printing and Publishing Co., London, (1894);
(2.) O. Heaviside, Electromagnetic Theory, Appendix B, pp. 115–118.
Dover, New York, (1950)(See also the quotation in the Introduction of
this book.); (3.) O. Heaviside, Electromagnetic Theory, Vol. 1, 3rd Ed.
455–466. Chelsea Publishing Company, New York, N. Y., (1971).

literature as new crucial tests of general relativity having no
Galileo-Newtonian counterpart. For instance, Ciufolini et al.
[10], in their report of measurement of the Lense-Thirring
effect4 stated:

Newton’s law of gravitation has a formal counterpart
in Coulomb’s law of electrostatics; however, Newton’s the-
ory has no phenomenon formally analogous to magnetism.
On the other hand, Einstein’s theory of gravitation predicts
that the force generated by a current of electrical charge,
described by Ampère’s law, should also have a formal coun-
terpart “force” generated by a current of mass.

2 Non-relativistic Maxwellian gravity (NRMG)

In Galileo-Newtonian physics, gravitational mass,5 mg , is
the source of Newtonian gravitational field, Eg , which obeys
the following two equations, viz.,

∇ · Eg = − 4πGρg and (8)

∇ × Eg = 0, (9)

where ρg = ρ0 is the (positive) rest mass density (to be
shown shortly in this section and also in the next section in
the relativistic case) and G is Newton’s universal gravita-
tional constant having the value 6.674 × 10−11 N · m2/kg2.
In an inertial frame, the gravitational force on a point parti-
cle having gravitational mass mg in a gravitational field Eg

is expressed as

Fg = mgEg = −mg∇φg, (10)

where φg is gravitational potential at the position of mg . Fur-
ther, the mass that appears in Newton’s second law of motion,
which Newton actually wrote in The Principia, is of the fol-
lowing form (valid only in inertial frames):

d

dt
(mv) = F = Net force on m, (11)

is called the inertial mass, m, which is a measure of inertia
of a body’s resistance to any change in its state of motion
represented by its velocity v or linear momentum p = mv.
If m does not change with time, then the most powerful and
profound Eq. (11) of Newton in classical physics, whose
form survived special relativistic revolution, takes the famil-
iar non-relativistic (v << c) form,

m
dv
dt

= ma = F, (12)

4 This effect and the precessing spin axis of on board gyroscopes of the
GP-B experiment etc. can also be understood in terms of gravitomag-
netic effects.
5 The mass that appears in Newton’s law of Gravitation is called the
gravitational mass of a body.
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where a is the acceleration of m as measured in an inertial
frame. In Galileo-Newtonian physics, inertia is of two types,
viz., inertia of rest and inertia of motion. Accordingly, iner-
tial mass is of two types: rest mass (m0 = a measure of inertia
of a body at rest) and inertial6 mass (m = a measure of inertia
of a body in motion). Thus a qualitative distinction between
two types of inertial masses exists in Newtonian physics, but
there is no quantitative distinction, i.e., m = m0 in Newto-
nian world of physics.7 With this understanding, if the only
force acting on the particle is the gravitational force, then the
equation of motion of a particle of rest mass m0 and gravi-
tational mass mg can be obtained from Eqs. (10) and (12) as

dv
dt

= mg

m0
Eg. (13)

Equation (13) shows us that if mg = m0 (or ρg = ρ0 for
continuous mass distribution), then any particle of whatever
rest mass will fall with the same acceleration in a given grav-
itational field. This is the law of universality of free fall –
known to be true since the time of Galileo. In view of these
observations, in this section term ‘mass’ is to be understood
as the rest mass which represents the gravitational charge (or
mass) of a particle.

In Newtonian physics, mass obeys a local conservation
law expressed by the equation of continuity:

∇ · j0(r, t) + ∂

∂t
ρ0(r, t) = 0. (14)

where j0 = ρ0(r, t)v is the rest mass current density. With
ρg = ρ0, the three laws expressed in Eqs. (8), (9) and
(14) have their individual indisputable validity in Newto-
nian Physics. But they are simultaneously valid only for the
systems or situations where

∇ · j0(r, t) = 0, (15a)

∂

∂t
ρ0(r, t) = 0, (15b)

∂

∂t
Eg(r, t) = 0, (15c)

remain valid (here in (15) the time dependence of the phys-
ical quantities is made explicit). The Eqs. (8–15) describe
the familiar Galileo-Newtonian gravitodynamics. Newton’s
gravitational force law (10) implies “action-at-a-distance” –
the gravitational force seems to act instantaneously at a dis-
tance – which Newton considered as an absurd element of

6 Despite the fact that rest mass is also inertial mass, we are reluctant
to add one more adjective to mass in motion.
7 However, this is not the case in relativistic world of physics. But we
are least concerned about this in the non-relativistic situation that we
want to study in this section. In the next section the equality of mg = m0
will be clearly demonstrated in a thought experiment without violating
Galileo’s law of universality of free fall in the relativistic case also.

his theory. Despite his great efforts, Newton could not offer a
plausible mechanism for resolving the problem of action-at-
a-distance and left the problem for others to resolve as evi-
dent from his 3rd letter to Bentley, dated February 5, 1692/3,
where he wrote [18]:

It is inconceivable, that inanimate brute Matter should,
without the Mediation of something else, which is not
material, operate upon, and affect other Matter with-
out mutual Contact, as it must be, if Gravitation in the
Sense of Epicurus, be essential and inherent in it. And
this is one Reason why I desired you would not ascribe
innate Gravity to me. That Gravity should be innate,
inherent and essential to Matter, so that one Body may
act upon another at a Distance thro’ a Vacuum, without
the Mediation of any thing else, by and through which
their Action and Force may be conveyed from one to
another, is to me so great an Absurdity, that I believe
no Man who has in philosophical Matters a compe-
tent Faculty of thinking, can ever fall into it. Gravity
must be caused by an Agent acting constantly accord-
ing to certain Laws; but whether this Agent be material
or immaterial, I have left to the Consideration of my
Readers.

In our attempt to resolve Newton’s action-at-a-distance prob-
lem within his domain of physics, we first wish to explore
a system where the Gauss’s law of gravitostatics (8) and the
equation of continuity (14) work peacefully or co-exist simul-
taneously but now with the restrictions in (15) removed by
the following conditions:

∇ · j0(r, t) �= 0, (16a)

∂

∂t
ρ0(r, t) �= 0, (16b)

∂

∂t
Eg(r, t) �= 0. (16c)

For this purpose, we introduce the time dependence in (8) by
taking its time derivative and then write the result as

∂ρg

∂t
= ∂ρ0

∂t
= − 1

4πG
∇ · ∂Eg

∂t
. (17)

Now using Eq. (17) in Eq. (14) we obtain

∇ ·
(

j0 − 1

4πG

∂Eg

∂t

)
= 0. (18)

The quantity inside the parenthesis of (18) is a vector whose
divergence is zero. Since ∇ · (∇ ×X) = 0 for any vector X,
the vector inside the parenthesis of (18) can be expressed as
the curl of some other vector, say h. Mathematically speak-
ing, the Eq. (18) admits of two independent solutions:
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∇ × h = ±
(

j0 − 1

4πG

∂Eg

∂t

)
. (19)

Except for the sign ambiguity in (19) (to be clear up soon),
we now realize that we have just arrived at (in some form)
the gravitational analogue of the Ampère–Maxwell law in
classical electrodynamics:

∇ × H = + je + ε0
∂E
∂t

or (20a)

∇ × B = + μ0je + ε0μ0
∂E
∂t

, (20b)

where H is called the magnetic field, B = μ0H is called the
magnetic induction field in vacuum, E represents the electric
field, je = ρev = the electric charge current density (ρe

being electric charge density), ε0 and μ0 respectively repre-
sents the electric permitivity and the magnetic permeability
of free space or vacuum and they are related to the speed of
electromagnetic wave in vacuum, c , by the relation

c = 1√
ε0μ0

(21)

and c is a universal constant of nature. In fact, there are
four field equations in electrodynamics which are collectively
known as Maxwell’s equations:

∇ · E = + ρe

ε0
(22a)

∇ × B = +μ0je + 1

c2

∂E
∂t

(22b)

∇ · B = 0 (22c)

∇ × E = − ∂B
∂t

(22d)

Maxwell’s Eqs. (22a–22d) form the basis of all classi-
cal electromagnetic phenomena including the production
and transmission of electromagnetic waves carrying energy
and momentum even in vacuum. When combined with the
Lorentz force equation,

FL = qE + qv × B (23)

and Newton’s 2nd law of motion (11), these equations pro-
vide a complete description of classical dynamics of interact-
ing charged particles and electromagnetic fields. Do analo-
gous phenomena occur in gravitational physics? For instance,
Maxwell’s equations predict the existence of electromagnetic
waves that travel through vacuum (where ρe = 0 and je = 0)
at a universal speed c = 3 × 108 m/s and the wave equations
for the fields E and B in vacuum are obtainable from (22a–
22d) as

∇2E − 1

c2

∂2E
∂t2 = 0, (24a)

∇2B − 1

c2

∂2B
∂t2 = 0. (24b)

Before we explore analogous wave equations for the Eg and
h fields, we note that one of the solutions in (19) would cor-
respond to the reality and the other might be a mathematical
possibility having no or new physical significance in which
we are not presently interested in. We should note that Nature
does not behave in two different ways at the same place and
time - A physical quantity has to take a unique value at a par-
ticular place and time to be real. For this reason and for our
present purpose, we have to choose one of the two solutions
that may correspond to the reality. Which one to choose? We
can answer this question by following the rule of study by
analogy. A close look at Maxwell’s in-homogeneous Eqs.
(22a, 22b) suggests us:

(a) that the source terms (ρe) and (je) are of the same sign
(b) that the analogue of ε0 in gravity is ε0g:

ε0g = 1

4πG

(
or ε0g = − 1

4πG

)
(25)

which we may call the gravito-electric permitivity of vac-
uum or whatever better name one may assign to it, and

(c) to introduce a new constant μ0g as

μ0g = 4πG

c2
g

(
or μ0g = − 4πG

c2
g

)
(26)

which is the gravitational analogue of μ0 and cg is a new
universal constant for vacuum having the dimension of
velocity (which will turn out as the speed of gravitational
waves in vacuum, if they exist) such that we get a relation
an analogous to (21) as

cg = 1√
ε0gμ0g

. (27)

Accepting the suggestion (a), we are naturally led to choose
the solution (19) having a negative sign before j0 as the real
solution in view of Eq. (8), where the source term ρ0 has
a negative sign before it. Now, we multiply8 μ0g with our
chosen Eq. (19) to get

∇ × Bg = ∇ × (μ0gh) = −μ0gj0 + 1

c2
g

∂Eg

∂t
, (28)

8 We can multiply a positive scalar quantity with a vector equation
without altering the physical content of that equation as we only re-
scaling the those vectors in some new units.
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where we considered (μ0g = 4πG/c2
g) and defined Bg =

μ0gh as the gravitomagnetic induction field. Now taking the
curl of (28) and using the vector identity ∇ × (∇ × B) =
∇(∇ · B) − ∇2B, we get

∇(∇ · Bg) − ∇2Bg = −μ0g∇ × j0 + 1

c2
g

∂

∂t
(∇ × Eg). (29)

In vacuum (where j0 = 0) Eq. (29) will reduce to a wave
equation for the Bg field, viz.,

∇2Bg − 1

c2
g

∂2Bg

∂t2 = 0, (30)

provided the following two conditions:

∇ · Bg = 0 and (31)

∇ × Eg = − ∂Bg

∂t
(32)

are fulfilled. Now the taking curl of the Eq. (32) and using (28)
we get the following equations for vacuum (where j0 = 0)

∇(∇ · Eg) − ∇2Eg = − ∂

∂t
∇ × Bg = − 1

c2
g

∂2Eg

∂t2 . (33)

Since ρ0 = 0 = ∇ · Eg in vacuum, this equation yields a
wave equation for the Eg field:

∇2Eg = 1

c2
g

∂2Eg

∂t2 . (34)

Thus, we notice that we have arrived at gravitational wave
producing Gravito-Maxwell equations representing what call
here as

Non-relativistic Maxwellian gravity (NRMG):

∇ · Eg = − ρ0/ε0g (35a)

∇ × Bg = − μ0gj0 + 1

c2
g

∂Eg

∂t
(35b)

∇ · Bg = 0 (35c)

∇ × Eg = − ∂Bg

∂t
(35d)

To complete the dynamical picture, we explore the gravita-
tional the analogue of Lorentz force law (23) below adopting
the logic and methods of Schwinger et al. [2] in their deriva-
tion of the Lorentz force law.

Consider two inertial frames S and S′ having a relative
velocity v between them. Let all the masses are in static
arrangement in one of these frames, say S′, which is moving
with velocity v. This way we introduce the time dependence
of ρ and Eg in the simplest way by assuming all masses are in

uniform motion with a common velocity v with respect to S-
frame. Here we use the Galileo-Newton principle of relativity
(masses at rest and masses with a common velocity viewed
by a co-moving observer are physically indistinguishable)
and insist that physical laws are the same in the two inertial
frames. Further, we assume that |v| << cg = c. To catch
up with the moving masses one would have to move with
velocity v. Accordingly, the time derivative in the co-moving
system, in which the masses are at rest, is the sum of explicit
time dependent and co-ordinate dependent contributions,

d

dt
= ∂

∂t
+ v · ∇ (36)

so, in going from static system to uniformly moving system,
we make the replacement

∂

∂t
−→ d

dt
= ∂

∂t
+ v · ∇. (37)

The equation for constancy of gravitational field in Eq. (15c)
becomes, in the moving system

0 = ∂Eg

∂t
−→ 0 = dEg

dt
= ∂Eg

∂t
+ (v · ∇)Eg. (38)

The vector identity for constant v is

∇ × (v × Eg) = v(∇ · Eg) − (v · ∇)Eg. (39)

Now using Gauss’s law of gravitostatics (35a) in the above
identity we get

∇ × (v × Eg) = − (ρ0v)

ε0g
− (v · ∇)Eg

= − j0

ε0g
− (v · ∇)Eg.

(40)

Again, from Eqs. (38) and (40), we get

∇ × (v × Eg) = − j0

ε0g
+ ∂Eg

∂t
. (41)

Multiplication of equation (41) by c−2
g gives us

∇ ×
(

v × Eg

c2
g

)
= −μ0gj0 + 1

c2
g

∂Eg

∂t
. (42)

Equation (42) will agree with the Eq. (35b) of NRMG, only
when

Bg = v × Eg

c2
g

. (43)
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Now consider the vector identity for constant v

∇ × (v ×Bg) = v(∇ ·Bg) − (v ·∇)Bg = − (v ·∇)Bg (44)

where we have used ∇·Bg = 0. Moreover, in the co-moving
system where the masses are at rest – static – the Bg field
should also not change with time:

dBg

dt
= ∂Bg

∂t
+ (v · ∇)Bg = 0. (45)

From (44)and (45) we get

∂Bg

∂t
= ∇ × (v × Bg). (46)

Again, the vector identity

∇2Eg = Eg(∇ · Eg) − ∇ × (∇ × Eg) (47)

gives us the left hand side of the wave Eq. (34) for Eg in
vacuum (i.e. outside the mass distribution where ∇·Eg = 0)
as

∇2Eg = −∇ × (∇ × Eg). (48)

By means of the Eq. (35b) of NRMG and Eq. (46), the right
side of the wave Eq. (34) becomes (j0 = 0 outside the charge
distribution)

1

c2
g

∂2Eg

∂t2 = + ∂

∂t
(∇ × Bg)

= +∇ × [∇ × (v × Bg)
]
.

(49)

Equations (48, 49) show that the wave equation for Eg (34)
will hold if

Eg = − v × Bg. (50)

But this cannot be completely correct since as v → 0 ⇒
Eg → 0. No gravitostatics ! However, all that is necessary is
that the curl of this Eg in (50) should be valid:

∇ × Eg = −∇ × (v × Bg) (51)

or, if we use Eq. (46),

∇ × Eg = − ∂Bg

∂t
. (52)

This is consistent with gravitostatics since it generalizes ∇ ×
Eg = 0 to time-dependent situation.
Now we are ready to address the question: What replaces
the equation F = m0Eg to describe the force on a point

particle of mass m0, when that particle moves with some
non-relativistic velocity v in given Eg and Bg field? For this
purpose, consider two coordinate systems, one in which the
particle is at rest (co-moving coordinate system) and one in
which it moves at velocity v. Suppose, in the later coordinate
system, the gravitational (or gravito-electric) and gravito-
magnetic fields are given by Eg and Bg , respectively. In the
co-moving frame, the force on the particle is

Fg = m0Eeff
g , (53)

where Eeff
g is the gravitational (or gravito-electric) field in

this frame. In transforming to the co-moving frame, all the
other masses – those responsible for Eg and Bg – have been
given an additional counter velocity −v. From Eq. (50), we
then infer that (+v × Bg) has the character of an additional
gravito-electric field in the co-moving frame. Hence, the sug-
gested Eeff

g is

Eeff
g = Eg + v × Bg, (54)

leading to the gravitational analogue of the Lorentz force law
that we call Gravito–Lorentz force law:

FgL = m0
(
Eg + v × Bg

)
. (55)

This gravito-Lorentz force law when used in Newton’s 2nd
law of motion,

m0
dv
dt

= FgL, (56)

we get the following equation of motion of NRMG

dv
dt

= Eg + v × Bg. (57)

Since ∇ · Bg = 0, Bg can be defined as the curl of some
vector function, say Ag:

Bg = ∇ × Ag, (58)

where Ag is the vector potential for NRMG. Using Eq. (58)
in the Gravito–Faraday law of NRMG (35d), we get the fol-
lowing expression for the Eg in terms of φg and Ag as

Eg = −∇φg − ∂Ag

∂t
. (59)

We now recognize that the equations of NRMG correspond to
the Eqs. (1–7) of GRMG-UG provided we set cg = c. In this
derivation, cg is an undetermined parameter of the theory,
whose value may be obtained from some more advanced
theory or from experiments.
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Substituting the expression for Eg given by Eq. (59) and
the expression for Bg defined by (58) in the in-homogeneous
field Eqs. (35a, 35b) of NRMG, we get the following expres-
sions for the in-homogeneous Eqs. (35a, 35b) in terms of
potentials (φg, Ag) as

∇2φg − 1

c2
g

∂2φg

∂t2 = ρ0

ε0g
, (60)

∇2Ag − 1

c2
g

∂2Ag

∂t2 = μ0gj0, (61)

if the following gravitational Lorenz gauge condition,

∇ · Ag + 1

c2
g

∂φg

∂t
= 0, (62)

is imposed. These will determine the generation of gravi-
tational waves by prescribed gravitational mass and mass
current distributions. Particular solutions of (60) and (61) in
vacuum are

φg(r, t) = − 1

4πε0g

∫
ρ0(r′, t ′)
|r − r′| dv′ and (63)

Ag(r, t) = −μ0g

4π

∫
j0(r′, t ′)
|r − r′| dv′, (64)

where t ′ = t−|r−r′|/cg is the retarded time and dv′ is an ele-
mentary volume element at r′. Thus, we saw that retardation
in gravity is possible in Newtonian space and time in the same
procedure as we adopt in electrodynamics. Hence, we have
reasons to strongly disagree with Rohrlich’s conclusion [19]:
“Because the Newtonian theory is entirely static, retardation
is not possible until the correction due to deviations from
Minkowski space is considered”. According to the present
field theoretical view, gravitation, like electromagnetism and
all other fundamental interactions, acts locally through fields:
A mass at one point produces a field, and this field acts
on whatever masses with which it comes into contact [20].
Because of the finite propagation speed of the fields, gravita-
tional effects/information propagate at finite speed, that is the
cause behind retarded interaction. However, in case of static
or quasi-static mass distributions, retardation effects are neg-
ligible and hence no distinction can be made between local
interaction and action-at-a-distance. By introducing the con-
cept of physical fields carring energy and momentum,9 one
can address Newton’s “action-at-a-distance” problem within
Newton’s world of physics by extending his field equations
to time-dependent fields, sources and searching for the con-
ditions for the existence of gravitational waves in free space

9 Field is the material Newton was serching for: the field is material
because it possesses an energy density [20].

traveling at a finite speed. This is what Heaviside had done
in 1893 [4,5]. May be Einstein had not seen Heaviside’s field
equations when he was working on his relativistic theory of
gravity. Had Einstein seen Heaviside’s field equations, his
remark on Newton’s theory of gravity would have been dif-
ferent than what he made before the 1913 congress of natural
scientists in Vienna [21],viz.,

After the un-tenability of the theory of action at distance
had thus been proved in the domain of electrodynamics,
confidence in the correctness of Newton’s action-at-a-
distance theory of gravitation was shaken. One had to
believe that Newton’s law of gravity could not embrace
the phenomena of gravity in their entirety, any more
than Coulomb’s law of electrostatics embraced the the-
ory of electromagnetic processes.

3 Special relativistic Maxwellian gravity (SRMG)

With the establishment of special relativity (SR) theory and
the equivalence of mass and energy, the meaning of the
inertial mass and gravitational mass became ambiguous,
because SR suggests two inertial mass-energy concepts: (1)
the Lorentz invariant rest-mass m0 = E0/c2 (E0 = rest-
energy, which is the sum total of all forms of energy in the
rest frame of a body or particle) and (2) the mass attributed to
the relativistic energy m = E/c2 (E = sum of all forms of
energy at rest and motion) which is not Lorentz-invariant. The
qualitative distinction that existed between two inertial mass
concepts in Newtonian mechanics became quantitatively dis-
tinct and clear in SR. Now, one fundamental question arises,
“What form of mass (or energy) should be the source of grav-
ity (mg) in a relativistic version of Newtonian gravity?” In
any construction of a field theory of gravity compatible with
SR and the correspondence principle by which a relativistic
theory gravity is reducible to Newtonian gravity, a decision
on which form of “mass” (or energy) is the source of gravity
has to be taken. Such a decision, as Price [22] has rightly
pointed out, will be crucial not only to the resolution of the
ambiguity mentioned above but also to the issue of the non-
linear nature of gravity. One of the Eddington’s [23] four
reasons to feel dissatisfied with Newton’s Law of gravitation
is appropriate here to quote:

The most serious objection against the Newtonian Law
as an exact law was that it had become ambiguous.
The law refers to the product of the masses of the two
bodies; but the mass depends on the velocity- a fact
unknown in Newton’s days. Are we to take the variable
mass, or the mass reduced to rest? Perhaps a learned
judge, interpreting Newton’s statement like a last will
and testament, could give a decision; but that is scarcely
the way to settle an important point in scientific theory.
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In his construction of a relativistic theory of gravity popularly
known as General Relativity (GR), Einstein has taken a deci-
sion in favor of the equality of m with mg . For a theoretical
justification of this decision, Einstein by writing Newton’s
equation of motion in a gravitational field (in our present
mathematical notation) as

m
dv
dt

= mgEg (65)

(wrongly!) inferred from it [24]:

It is only when there is numerical equality between the
inertial and gravitational mass that the acceleration is
independent of the nature of the body.

This inference is often expressed in one of the two ways:

(S1) that the particle’s motion is mass independent, or
(S2) that the particle’s inertial mass m = its gravitational

mass mg .

The two statements (S1) and (S2) are sometimes used inter-
changeably as the weak equivalence principle (WEP) in the
literature [25–27]. This use of terminology is rather con-
fusing, as the two statements are logically independent [28].
They happen to coincide in the context of Galileo-Newtonian
physics where m0 = m = mg but may diverge in the context
of special relativity where m �= m0 and Einstein’s wrong
inference of m0 �= m = mg from a non-relativistic Eq. (65),
which is exactly the Eq. (13) of NRMG, where m = m0 and
mg = m0 is a condition for Galileo’s law of Universality of
Free Fall to be true. To explore this possibility, to get new
insights for making Newtonian gravity compatible with the
SR, to regard old problems from a new angle, we re-examined
[3] an often cited [29,30] Salisbury-Menzel’s [31]10 thought
experiment (SMTE) from a new perspective as discussed in
the following subsection. Before that the author would like
to remark that perhaps Einstein, himself, was not satisfied
with his above inference of mg = m, as we can sense from
his another statement on the equality of mg with m [32,33]:

The proportionality between the inertial and gravita-
tional masses holds for all bodies without exception,
with the (experimental) accuracy achieved thus far, so

10 The correct special relativistic result is obtained by P. Lorrain, Grav-
itational analogue of the magnetic force, Nature, 257 161–162 (1975).
See the response to P. Lorrain by D. H. Menzel, W. W. Salisbury, Nature
257 162 (1975). Present author is not satisfied with this response because
Menzel and Salisbury did not prove mg = m = m0/

√
1 − v2/c2,

although they said m = m0/
√

1 − v2/c2 has the experimental valid-
ity. A general relativistic analysis of SMTE is done by A. R. Khan, R.
F. O’Connell, Gravitational analogue of magnetic force, Nature, 261
480–481 (1976).

that we may assume its general validity until proved
otherwise.

The last three words of Einstein’s above statement,‘until
proved otherwise’, show that he was very cautious and not
very confident of what he was stating. Based on the exper-
imental results available up to 1993, Mashhoon [30] noted
that the observational evidence for the principle of equiva-
lence of gravitational and inertial masses is not yet precise
enough to reflect the wave nature of matter and radiation in
their interactions with gravity (see other references on equiv-
alence principle in [3,30]).

3.1 Re-examination of SMTE to show m0 = mg

Consider a system of two non-spinning point-like charged
particles with charges q1 and q2 with respective rest masses
m01 (= E01/c2) and m02 (= E02/c2) such that they are
at rest in an inertial frame S′ under equilibrium condition
due to a mutual balance of the force of Coulombic repul-
sion (F′

C ) and the Newtonian gravitostatic attraction (F′
N )

between them. Our aim is to investigate the condition of equi-
librium of this two-particle system (realizable in a Laboratory
by taking two perfectly identical spherical metallic spheres
having requisite masses and charges so that they are in equi-
librium) and in different inertial frames in relative motion.
For our re-examination purpose, suppose that the particles
are positively charged and they are in empty space. Let the
particle No. 2 be positioned at the origin of S′-frame and r′
be the position vector of the particle No. 1 with respect to the
particle No. 2. In this S′-frame the condition of equilibrium
is fulfilled by

F′
C + F′

N = q1q2r′

4πε0r ′3 − Gm01m02r′

r ′3 = 0 (66)

where r ′ = |r′| and other symbols have their usual mean-
ings. From (66) we get

q1q2

4πε0
= Gm01m02 = m01m02

4πε0g
(ε0g = 1/4πG) (67)

Equation (67) represents the condition of equilibrium, in
terms of the charges and rest masses (or rest energies) of
the particles, under which an equilibrium can be ensured in
the S′-frame. For example, if each metallic sphere is given
a charge of 1 × 10−6 Coulomb, then the rest mass of each
sphere should be 1.162 × 104 kg, to fulfill the equilibrium
condition (67) in a laboratory experiment.

Now, let us investigate the problem of equilibrium of the
said particle system from the point of view of an observer
in another inertial frame S, in uniform relative motion with
respect to the S′-frame. To simplify the investigation, let
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the relative velocity v of S and S′-frame be along a com-
mon X/X ′-axis with corresponding planes parallel as usual.
Since the particles are at rest in S′-frame, both of them have
the same uniform velocity v relative to the S-frame. Let the
position vector of the particle No. 1 with respect to the par-
ticle No. 2 as observed in the S-frame be r and the angle
between v and r be θ .

For an observer in the S-frame, the force of electric origin
on either particle (say on particle No. 1 due to particle No.
2) is no more simply a Coulomb force, but a Lorentz force,
viz.,

FL = q1E2 + q1v × B2 (68)

where

E2 = q2(1 − β2)r

4πε0r3
(
1 − β2 sin2 θ

)3/2 , (β = v/c) (69)

B2 = v × E2

c2 = (q2v) × r (1 − β2)

4πε0c2 r3
(
1 − β2 sin2 θ

)3/2

= μ0

4π

(q2v) × r (1 − β2)

r3
(
1 − β2 sin2 θ

)3/2 (70)

r = r′ (1 − β2 sin2 θ
)1/2

(
1 − β2

)1/2 . (71)

What about the force of gravitational interaction as observed
in the S-frame? It can not simply be a Newtonian force but
something else, otherwise the particle system will not remain
in equilibrium in the S-frame. Such a situation will amount
to a violation of the principle of relativity in special relativity.
A null force should remain null in all inertial frames. There-
fore, a new force law of gravity has to be invoked so that
the equilibrium is maintained in accordance with the prin-
ciple of relativity (Lorentz invariance of physical laws). Let
this new unknown force be represented by FgL such that the
equilibrium condition in S-frame is satisfied as:

FgL + FL = 0 �⇒ FgL = − FL . (72)

Taking into account the Eqs, (68)–(71), FgL in Eq. (72) can
be expressed as:

FgL = − q1q2
(
1 − β2

)
r

4πε0r3
(
1 − β2 sin2 θ

)3/2

− μ0

4π

q1q2v × (v × r)
(
1 − β2

)
r3

(
1 − β2 sin2 θ

)3/2 . (73)

Now, using Eq. (67), we can eliminate q1q2 from Eq. (73) to
get the expression for FgL in terms of m01, m02 and G as:

FgL = − Gm01m02
(
1 − β2

)
r

r3
(
1 − β2 sin2 θ

)3/2

− G

c2

m01m02v × (v × r)
(
1 − β2

)
r3

(
1 − β2 sin2 θ

)3/2

= − 1

4πε0g

m01m02
(
1 − β2

)
r

r3
(
1 − β2 sin2 θ

)3/2

− μ0g

4π

m01m02v × (v × r)
(
1 − β2

)
r3

(
1 − β2 sin2 θ

)3/2 , (74)

where

ε0g = 1

4πG
, μ0g = 4πG

c2 �⇒ c = 1√
ε0gμ0g

. (75)

By comparing the quantities in Eq. (75) with those in Eqs.
(25–27), we immediately find that

cg = 1√
ε0gμ0g

= c. (76)

Now, (74) may be rearranged to the following form to repre-
sent the Gravito–Lorentz force law of SRMG:

FgL = m01Eg2 + m01v × Bg2 (77)

where

Eg2 = − 1

4πε0g

m02(1 − β2)r

r3
(
1 − β2 sin2 θ

)3/2

	 − 1

4πε0g

m02r
r3 (when β << 1), (78)

Bg2 = v × Eg2

c2 = − μ0g

4π

(m02v) × r (1 − β2)

r3
(
1 − β2 sin2 θ

)3/2

	 − μ0g

4π

(m02v) × r
r3 (when β << 1). (79)

Equations (77–79) are in complete formal analogy with
the Eqs. (68–70) of classical electromagnetism in its rela-
tivistic version. Thus, from the requirement of the frame-
independence of the equilibrium condition, we not only
obtained a gravitational analogue of the Lorentz-force law
expressed by Eq. (77) but also unexpectedly found the
Lorentz-invariant rest mass as the gravitational analogue
of the electric charge by electromagnetic analogy. From
this analysis, the gravitational charge (or rest mass) invari-
ance may be interpreted as a consequence of the Lorentz-
invariance of the physical laws. These findings are in confor-
mity with Poincar̀e’s [34] remark that if equilibrium is to be
a frame-independent condition, it is necessary for all forces
of non-electromagnetic origin to have precisely the same
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transformation law as that of the Lorentz-force. Now, fol-
lowing Rosser’s [35] approach to classical electromagnetism
via relativity one can obtain the field equations of SRMG as
represented in Eqs. (35a–35d) with cg = c, from the Eqs.
(77–79). Alternatively, after recognizing our new findings
from the above thought experiment, especially mg = m0

and cg = c, one may follow the procedure we followed in
NRMG to arrive at desired gravitational wave producing field
equations. It is to be noted that the Lorrain’s (See Lorrain in
footnote 10 of this paper) exact special relativistic derivation
of gravitational analogue of the magnetic force from SMTE
matches with our SRMG results.

3.2 Lorentz co-variant formulation of SRMG

In Lorentz co-variant formulation, by introducing the space-
time 4-vector xα = (ct, x), proper (or rest) mass current den-
sity 4-vector jα = (ρoc, j0) and second-rank anti-symmetric
gravitational field strength tensor fαβ :

fαβ = ∂α Aβ − ∂β Aα =

⎛
⎜⎜⎝

0 Egx/c Egy/c Egz/c
−Egx/c 0 −Bgz Bgy

−Egy/c Bgz 0 −Bgx

−Egz/c −Bgy Bgx 0

⎞
⎟⎟⎠ ,

(80)

one can rewrite the field equations of SRMG as:

∂β fαβ = ∂β
(
∂α Aβ − ∂β Aα

) = 4πG

c2 jα = μ0g jα, (81)

∂α fβγ + ∂β fγ δ + ∂γ fαβ = 0, (82)

where α, β, γ are any three of the integers 0, 1, 2, 3;
jα = (ρoc, −j0) and jα = (ρoc, j0); Gravito-Lorenz con-
dition: ∂α Aα = 0; Aα = (φg, −Ag) and Aα = (φg, Ag)

with φg = scalar potential and Ag = vector potential; ∂α ≡
(∂/c∂t, ∇) & ∂α ≡ (∂/c∂t, −∇). In this convention, the rel-
ativistic gravito-Lorentz force law takes the following form

d2xα

dτ 2 = f αβ dxβ

dτ
(83)

where τ is the proper time along the particle’s world-line and
f αβ is given by

f αβ = ηαγ fγ δη
δβ =

⎛
⎜⎜⎝

0 −Egx/c −Egy/c −Egz/c
Egx/c 0 −Bgz Bgy

Egy/c Bgz 0 −Bgx

Egz/c −Bgy Bgx 0

⎞
⎟⎟⎠

(84)

where the flat space-time metric tensor ηαβ = ηαβ is repre-
sented by symmetric diagonal matrix with

η00 = 1, η11 = η22 = η33 = −1. (85)

The relativistic equation of motion (83) is independent of
the mass of the particle moving in an external gravito-
electromagnetic (GEM) field f αβ . Thus we saw that the
motion of a particle in an external GEM field can be inde-
pendent of its mass without any postulation on the equality
of gravitational mass with frame-dependent inertial mass.
Equation (83) is the relativistic generalization of Galileo’s
law of Universality of Free Fall (UFF) expressed through
the non-relativistic equations of motion (13) and (57) and
known to be true both theoretically and experimentally since
Galileo’s time.

Now, if we introduce the energy momentum four vector:

pα = (p0, p) = m(U0, U) (86)

where p0 = E/c and Uα is the 4-velocity, then with this pα

we can re-write equation (83) as

dpα

dτ
= f αβ pβ (87)

Thus, in SRMG the fields fαβ couple to the energy-
momentum 4-vector of all particles of whatever rest masses
they have, provided mg = m0 holds exactly. It is to be noted
that the equation of motion (83 or 87) holds only in an inertial
frame. Appropriate modifications are necessary for its appli-
cation in non-inertial frames, as is done in non-relativistic
physics by introducing pseudo-forces.

3.3 Original analysis of SMTE with assumption of
mg = m = m0/

√
1 − v2/c2

In the original analysis of SMTE [31] Salisbury and Men-
zel (SM) axiomatically used flat space-time and assumed
mg = m = m0/

√
1 − v2/c2 for their thought experimen-

tal demonstration of gravito-magnetic field (they called it
Gyron field) and the gravitational analogue of Lorentz force
law. From the analysis of their results, one can find that in
the slow motion approximation, if the gravito-Lorentz force
law is written in the following form

FSM
gL = m0

dv
dt

= m0Eg + m0v × Bg, then (88)

μSM
0g = 8πG

c2 while εSM
0g = 1

4πG
, (89)

which yields

cSM
g =

(
μSM

0g μSM
0g

)−1/2 = c/
√

2. (90)

On the other hand if one considers cSM
g = c, then equation

(88) has to be written in the following form:

FSM
gL = m0

dv
dt

= m0Eg + 2m0v × Bg. (91)
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We designate this type of gravity as linearized version of non-
linear SRMG (SRGM-N) in flat space-time. The origins of
the non-linearity of (SRGM-N), the appearance of the spuri-
ous value of cg = c/

√
2 or a factor of “2” in the gravitomag-

netic force term (due to a supposed value of cg = c) are all
now traced to the adoption of Einstein’s doubtful postulate
on the equality of gravitational mass with the velocity depen-
dent inertial mass. As such, SRMG-N does not correspond
either to the NRMG when cg = c or to the non-relativistic
limit of SRMG.

4 Discussions

Several authors have suggested or obtained different Maxwell-
type equations for gravity following different approaches.
Some without using the formalism of GR [36–50] and some
using the formalism of GR in the weak field and linearized
approximations. These are discussed in two separate sections
below. The two subsequent sections concern discussions on
Spin-1 Vector Gravity vs Spin-2 Tensor Gravity and remarks
on little known Heaviside’s work on gravity.

4.1 Maxwellian Gravity of others without GR

Sciama[36], in 1953, hypothetically adopted SRMG (assum-
ing mg = m0) to explain the origin of inertia, calling it a
toy model theory of gravity which differs from GR princi-
pally in three respects: (a) It enables the amount of mat-
ter in the universe to be estimated from a knowledge of the
gravitational constant, (b) The principle of equivalence is
a consequence of the theory, not an initial axiom and (c)
It implies that gravitation must be attractive. However, he
concluded his paper mentioning three limitations of such a
theory: (i) It is incomplete because the relativistic form of
Newton’s law must be derived from a tensor potential,11 not
from a vector potential, (ii) It is difficult to give a consis-
tent relativistic discussion of the structure of the universe
as a whole12 and (iii) It is also difficult to describe the
motion of light in a gravitational field.13 Carstoiu [37–39], in
1969, rediscovered Heaviside’s gravitational Eqs. (35a–35d)
(in our present notation as per the report of Brilloiun [39])
assuming the existence of a second gravitational field called
gravitational vortex (here called gravito-magnetic field) and

11 This thought comes to anyone who believes in mg = E/c2, where
E is the relativistic energy, which may not be true as per our findings
discussed here.
12 An interesting topic of research not yet fully explored. As matter of
scientific curiosity, one may explore the Universe from the new per-
spective of a vector gravitational theory.
13 It is a deep question involving the interaction of two fundamental
fields which is beyond the scope of this paper but needs further inves-
tigation.

assumed cg = c by electromagnetic analogy [39]. In 1980,
Cattani [40] considered linear equations for the gravitational
field by introducing a new field by calling it the Heavisidian
field which depends on the velocities of gravitational charges
in the same way as a magnetic field depends on the veloc-
ities of electric charges and shown that a gravitational field
may be written with linear co-variant equations in the same
way as for the electromagnetic field. Cattani’s equations dif-
fer from some important formulae of general relativity such
as the gravitational radiation, Coriolis force by a factor of
4. In 1982, Singh [41] considered a vector gravitational the-
ory having formal symmetry with the electromagnetic theory
and explained the (a) precession of the perihelion of a planet
(b) bending of light in the gravitational field and (c) gravi-
tational red-shift by postulating the self-interaction between
a particle velocity and its vector potential. In 2004, Flanders
and Japaridze [42] axiomatically used the field equations of
SRMG (albeit without reference to [3]) and special relativ-
ity to explain the photon deflection and perihelion advance
of Mercury in the gravitational field of the Sun. Borodikhin
[43] explained the perihelion advance of Mercury, gravita-
tional deflection of light as well as Shapiro time delay by
postulating a vector theory of gravity in flat space-time that
is nothing but SRMG. Borodikhin also showed that in a vec-
tor theory of gravity, there exists a model for an expanding
Universe. Jefimenko [44,45] also deduced the equations of
NRMG by extending Newton’s gravitational theory to time-
dependent sources and fields and using the causality prin-
ciple. Jefimenko assumed cg = c and postulated a gravito-
Lorentz force. Recently, Heras [46], by recognizing the gen-
eral validity of the axiomatic approach to Maxwell’s equa-
tions of electromagnetic theory, used those axioms to derive
only the field equations (leaving out gravito-Lorentz force
law) of SRMG, where the in-variance of gravitational charge
is considered. Other recent derivations of SRMG equations
from different approaches include the works of Nyambuya
[47], Sattinger [48], Vieira and Brentan [49]. The historical
objections of several researchers, starting from Maxwell (see
footnote 2 of this paper) upto Misner, Thorne and Wheeler
(MTW, Sect. 7.2) [54], concerning negative energy density
of gravitational field (‘Maxwell’s Enigma’ as Sattinger puts
it) in a linear Lorentz invariant field theory of gravity are
also refuted by Sattinger [48], who considered negative field
energy density for SRMG in agreement with our result [3].
In the discussion on the Dark Matter problem, Sattinger fur-
ther noted: “The Maxwell-Heaviside equations of gravitation
constitute a linear, relativistic correction to Newton’s equa-
tions of motion; they interpolate between Newton’s and Ein-
stein’s theories of gravitation, and are therefore a natural
mathematical model on which to build a dynamical theory of
galactic structures”. Our unique, important and new findings
reported and discussed here, again confirmed by our very
recent work on “Attractive Heaviside-Maxwellian (vector)
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Gravity from Quantum Field Theory” [50] (where gravita-
tional energy density for free fields is fixed positive by choice
to address the objection of MTW (Sect. 7.2) [54] without
any inconsistency with the field Eqs. (81–83) of SRMG),
corroborate all the above suggested or derived linear vector
gravitational equations in flat space-time which are seen to
satisfy the correspondence principle (cp) in its correct sense:
Newtonian Gravity ⇔ NRMG ⇔ SRMG. This means that
the field equations of SRMG have room for both positive and
negative energy solutions – a discussion of which is left out
here.

4.2 Maxwellian gravity From GR (GRMG)

Different Maxwell–Lorentz-type equations for gravity obtained
from GR by different researchers following different lin-
earization procedures are not isomorphic [51] as seen below:
some contain non-linear terms and do not satisfy the cp
from the perspective of our present new NRGM results sub-
stantiated by the cp-respecting SRMG results. Some sam-
ples of this type of General Relativistic Maxwellian Gravity
(GRMG) are listed below for discussion.

4.2.1 GRMG of Braginsky et al. and Forward (GRMG-BF)

Braginsky et al. [52], following Forward [53] and Misner,
Thorne and Wheeler [54], reported the following Maxwell-
type equations of GR in their parametrized-post-Newtonian
(PPN) formalism as14:

∇ · Eg = − 4πGρ0

[
1 + 2

v2

c2 + �

c2 + 3p

ρ0c2

]

+ 3

c2

∂2φg

∂t2 (92a)

∇ × Hg = − 16πG

c
(ρ0v) + 4

c

∂Eg

∂t
(92b)

∇ · Hg = 0 (92c)

∇ × Eg = − 1

c

∂Hg

∂t
(92d)

where we have put the values of PPN parameters as appro-
priate for GR, ρ0 is the density of rest mass in the local rest
frame of the matter, v is the ordinary (co-ordinate velocity)
velocity of the rest mass relative to the PPN frame, � is the
specific internal energy (energy per unit rest mass) and p is
the radiation pressure and φg is the electric-type scalar poten-
tial. In terms of (φg) and magnetic-type gravitational vector
potential (Ag), Braginsky et al. [52] wrote (in our present
notation)

Eg = −∇φg − 1

c

∂Ag

∂t
, (93)

14 Here we use the notation Eg for g and Hg for H in [52].

Bg = ∇ × Ag (94)

∇ · Ag + 3

c

∂φg

∂t
= 0 (For Lorenz-type gauge)

(95)

where the number 3 in the Lorenz-type gauge above is the
GR value for some PPN parameters used in [52]. For the
source and particle of velocities |v0| < 105 cm/sec << c,
Braginsky et al. [52] approximated the gravitational force
(with a typographical error in eqn. (3.10)15, p.2054, [52],
corrected here) on a unit mass,

F
m0

=
[

1 + 1

2
(2γ + 1)

v2
0

c2

]
Eg + 1

c

(
v0 × Hg

)
, (96)

where the PPN parameter γ 	 1 in GR. In empty space
(ρ0 = 0) with no radiation pressure (p = 0), if we consider
Coulomb-Newton Gauge (∇ · Ag = 0), the field Eqs. (92a,
92d) reduce to the following equations

∇ · Eg = 0, (97a)

∇ × Hg = + 4

c

∂Eg

∂t
, (97b)

∇ · Hg = 0, (97c)

∇ × Eg = − 1

c

∂Hg

∂t
. (97d)

Now taking the curl of (97d) and utilizing Eqs. (97a) and
(97b), we get the wave equation for the field Eg in empty
space as

∇2Eg − 4

c2

∂2Eg

∂t2 = ∇2Eg − 1

c2
g

∂2Eg

∂t2 = 0, (98)

where cg = c/2. Similarly, the wave equation for the field
Hg can be obtained by taking the curl of Eq. (97b) and uti-
lizing Eqs. (97c) and (97d):

∇2Hg − 4

c2

∂2Hg

∂t2 = ∇2Hg − 1

c2
g

∂2Hg

∂t2 = 0, (99)

where again we find cg = c/2. This result is against the spe-
cial relativistic (as well as the gauge field theoretic) expecta-
tion that the speed of gravitational waves (if they exist) should
be equal to the speed of light in any Lorentz-covariant field
theory of gravity and has escaped the attention of the authors
[52]. It is to be noted that the odd factor of 4 is responsible
for this strange result. Thus GRMG-BF formulation is defec-
tive not only for yielding cg = c/2 for gravitational waves in
vacuum but also for the Goravito-Lorentz force law not satis-
fying satisfying the correspondence principle as judged from

15 Viz.: F
m = [

1 + 1
2 (2γ + 1)

] v2

c2 Eg + 1
c

(
v × Hg

)
.

123



Eur. Phys. J. C (2017) 77 :822 Page 13 of 19 822

the the non-relativistic Gravito–Lorentz force of NRMG or
of the SRMG. Further equation of continuity does not follow
from GRMG-BF field equations because of the existence of
some non-linear terms in Eq. (92a).

4.2.2 GRMG of Harris (GRMG-H)

Instead of using the PPN formalism of GRMG-BF, Harris
[55] derived a set of gravitational equations for slowly mov-
ing particles in weak gravitational fields starting from the
equations of GR. The resulting equations have some resem-
blance to those in electromagnetism:

∇ · Eg = − 4πGρ0, (100a)

∇ × Hg = − 16πG

c
(ρ0v) + 4

c

∂Eg

∂t
, (100b)

∇ · Hg = 0, (100c)

∇ × Eg = − 1

2c

∂Hg

∂t
. (100d)

The Gravito–Lorentz force equation of Harris is of the fol-
lowing form

m0
dv
dt

= m0

[
Eg + 1

c
(v × Hg)

]
+ m0v

1

2c2

∂φg

∂t
. (101)

The field Eg is related to the scalar potential (φg) and vector
potential (Ag) as

2Eg = −∇φg − 1

c

∂Ag

∂t
. (102)

In empty space (where ρ0 = 0), the field equations (100a-
100d) give us the following wave equations for the fields
(Eg, Bg):

∇2Eg − 2

c2

∂2Eg

∂t2 = ∇2Eg − 1

c2
g

∂2Eg

∂t2 = 0, (103a)

∇2Hg − 2

c2

∂2Hg

∂t2 = ∇2Hg − 1

c2
g

∂2Hg

∂t2 = 0, (103b)

where cg = c/
√

2. So GRMG-H is also defective like
GRMG-BF.

4.2.3 GRMG of Ohanian and Ruffini (GRMG-OR)

In the Non-relativistic limit and Newtonian Gravity core-
spondence of GR, Ohanian and Ruffini [20] (Sect. 3.4 of
[20]) obtained the following equations from GR:

dv
dt

= g + v × b (104)

∇ · g = − 4πGρ0 (105a)

∇ × g = − 1

2

∂b
∂t

(105b)

∇ · b = 0 (105c)

∇ × b = − 16πG

c2 j0 (105d)

where ρ0 is the (rest) mass density, j0 is the momentum den-
sity. The Eq. (105d) (representing the gravito-Ampère law)
is valid for time independent field [20], i.e., ∂g/∂t = 0,
which in view of Eq. (105a) is equivalent to ∂ρ0/∂t = 0.
Since the divergence of curl of any vector is identically zero,
the divergence of Eq. (105d) gives us ∇ · j0 = 0. Thus
Eq. (105d) has the same limitation as that of the Ampère’s
law of electromagnetism. Therefore, it needs a correction
like Maxwell’s correction to the Amp‘ere’s law. While the
conditions ∇ · j0 = 0 and ∂ρ0/∂t = 0 are valid for steady-
state problems, the general situation, where ∇ · j0 �= 0 and
∂ρ0/∂t �= 0, is given by the continuity equation for mass and
mass current or momentum density:

∇ · j0 + ∂ρ0

∂t
= 0. (106)

The Eqs. (105a) and (105d) will be consistent with the con-
tinuity Eq. (106), if we make the following Maxwell-like
correction to the gravito-Ampère law (105d):

∇ × b = −16πG

c2 j0 + 4

c2

∂g
∂t

. (107)

Further, without the above correction to the Eq. (105d), there
can not be gravitational waves. Now, the corrected self-
consistent field Eqs. (105a–105c, 107) yield transverse grav-
itational waves; the wave equations for the g and b fields of
GRMG-OR, in vacuum, take the following forms:

∇2g − 2

c2

∂2g
∂t2 = ∇2g − 1

c2
g

∂2g
∂t2 = 0, (108a)

∇2b − 2

c2

∂2b
∂t2 = ∇2b − 1

c2
g

∂2b
∂t2 = 0, (108b)

where cg = c/
√

2. This means that the transverse gravita-
tional waves originating from slowly varying fields and weak
sources travel through vacuum not at the light speed but at
a reduced speed cg = c/

√
2. Thus GRMG-OR will have

exact correspondence with NRMG provided cg = c/
√

2.
However, GRMG-OR will not correspond to the slow motion
approximation of SRMG where cg = c in vacuum even at
relativistic motion of the fields and sources. Now, if we define
a new filed for GRMG-OR as

b̃ = b
2
, (109)
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then the Gravito–Lorentz force law of GRMG-OR will take
the form:

dv
dt

= g + 2v × b̃ (110)

and the field Eqs. (105a–105c, 107) will take the form

∇ · g = − 4πGρ0 (111a)

∇ × g = − ∂ b̃
∂t

(111b)

∇ · b̃ = 0 (111c)

∇ × b̃ = −8πG

c2 j0 + 2

c2

∂g
∂t

(111d)

Again these equations yield wave equations for the g and b̃
fields for which cg = c/

√
2. Further, if we define Bg = b/4,

the redefined field equations (not written here) yield wave
equations for the g and Bg fields for which cg = c/

√
2 in

vacuum, while the gravito-Lorentz force law of GRMG-OR
takes the following form

dv
dt

= g + 4v × Bg. (112)

The defects of GRMG-OR are apparent from the perspectives
of cp violation and the suspected value of cg in Einstein’s
linearized equations.

4.2.4 GRMG of Pascual-Sànchez, Moore, (GRMG-PS-M):

Following Huei [56], Wald [57] and Ohanian and Ruffini
[58], Pascual-Sànchez [59], by using some approximation
of GR, obtained the following set of Lorentz–Maxwell-like
gravitomagnetic equations that match with Moore’s [60]
equations from GR in the the weak field and slow motion
approximation:

m0
dv
dt

= m0
(
Eg + 4v × Bg

)
. (113)

∇ · Eg = − 4πGρ0, (114a)

∇ × Bg = − 4πG

c2 (ρ0v) + 1

c2

∂Eg

∂t
, (114b)

∇ · Bg = 0, (114c)

∇ × Eg = − ∂Bg

∂t
. (114d)

Although the field Eqs. (114a–114d) match with those of
GRMG-UG [1], SRMG where cg = c exactly and with
NRMG equations conditionally when cg = c as shwon here,
the Gravito-Lorentz force, containing a factor of 4 in the grav-
itomagnetic interaction, does not satisfy the cp in the sense

discussed here. It is to be noted that Ciubotariu [61] consid-
ered Peng’s [62] version of GRMG equations16 in the predic-
tion of absorption of gravitational waves, while Minter et al.
[63] considered GRMG-PS-M version in their investigation
on the question of the existence of mirrors for gravitational
waves.

4.2.5 Maxwellian Gravity of Mashhoon (MG-Mashhoon)

Mashhoon [64,65], in his general linear solution of the gravi-
tational field equations of Einstein, obtained following grav-
itational analogues of Maxwell’s equations:

∇ · Eg = 4πGρ0, (115a)

∇ ×
(

1

2
Bg

)
= 4πG

c
(ρ0v) + 1

c

∂Eg

∂t
, (115b)

∇ ·
(

1

2
Bg

)
= 0, (115c)

∇ × Eg = − 1

c

∂

∂t

(
1

2
Bg

)
. (115d)

By defining Eg and Bg fields in terms of scalar and vector
potentials (φg, Ag) as

Eg = −∇φg − 1

c

∂

∂t

(
1

2
Ag

)
, Bg = ∇ × Ag, (116)

he wrote the Lagrangian, L, for the motion of a test particle
of rest mass m0 (to linear order in φg and Ag) as

L = −m0c2
(

1 − v2

c2

) 1
2

+ m0γ

(
1 + v2

c2

)
φg − 2m0

c
γ v · Ag,

(117)

where γ = (1 − v2/c2)−1/2 is the Lorentz factor. The equa-
tion of motion, dp/dt = F, where p = γ mv is the kinetic
momentum, is expressed as

dp
dt

= −m0Eg − 2m0
v
c

× Bg, (118)

if ∂Ag/∂t = 0 and F is expressed to lowest order in v/c, φg

and Ag .
In empty space, the field Eqs. (115a–115d) give us wave

equations for Eg and Bg fields with cg = c. But because of the
factor of 2 appearing in the relativistic Gravito-Lorentz force
law (118), it does not correspond to the cp respecting special

16 Which, may be of GRMG-PS-M type as the author could not get the
ref. [62] and Ciubotariu.
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relativistic Gravito-Lorentz force law of SRMG expressed in
equations (77, 83).

dp
dt

= −m0Eg − m0
v
c

× Bg, (119)

written here in Mashhoon’s convention for the gravitostatics
Gauss’s law (115a) and Gravito-Lorentz force Law (118).
Further, in the non-relativistic case also, the Eq. (118) does
not match with our non-relativistic result here, if cg = c.

In our above discussions, we found that the speed of grav-
itational waves in different linearized versions of Einstein’s
equations is not unique; it depends on the thought of a sci-
entist concerning the mangagement of the spurious factor of
4 by splitting it 4 = 2 × 2 and moving a factor of 2 to some
other place of the equations for consistency.17 Eddington
[66] in his textbook “The Mathematical Theory of Relativ-
ity, which Einstein suggested was “the finest presentation
of the subject in any language”, rightly found and said that
weak-field solutions of the wave equation obtained from Ein-
stein’s field equations were just coordinate changes which we
can “propagate” with the speed of thought. Apart from this
defect of yielding a non-unique value of cg , the linearized
theory of gravitational waves has its limits because the linear
approximation is not valid for sources where gravitational
self-energy is not negligible [67], as in the case of merg-
ing of highly compact objects like the Neutron stars and the
‘so called’ Black Holes. It is important to note that the cur-
rent experimental data on observation of gravitational waves
[6–9] and grvitomagnetic phenomena are being (or may be)
explained by using any one of these cp-defying linearized
versions of GR. Further, these generally perceived general
relativistic phenomena are being interpreted as having no
counterpart in the Newtonian world, which we found not
to be true and satisfactory. The author wishes to stress that
just by connecting the Gauss Law of gravitostatics and equa-
tion of continuity in a consistent way, one gets gravitational
analogue of Ampère–Maxwell law, which is being hailed
as one of the most important predictions of GR (where the
mathematical trees seem to obscure the physical forest). Any
talk of gravitomagnetism has long been the prerogative of
general relativists. With our present report, even undergrad-
uates, untrained in the mathematical gymnastics of general
relativity, can now talk and think of the generation, transmis-
sion and detection of gravitational waves [68–70]18 akin to
electromagnetic waves as matter of scientific curiosity and

17 Such a scheme my be made general by thinking 4 = 2x × 2
x with x

being any non-zero real number to get other sorts of spurious results in
a self-consistent way.
18 Which, in the framework of gravito-electromagnetic theory, cannot
be just any other wave, but the waves whose nature is dictated by equa-
tions of gravitodynamics: Gravito-Maxwell Equations. By contrast, the

investigate the role of gravitoelectromagnetism in different
fields of study, ranging from classical physics to quantum
physics [1,3] and to cosmology [36,43] even quantum cos-
mology to test the validity (or the domain of validity) of the
proposed gravitoelectromagnetic theory from experimental
point of view.

Basically, we offer a new pack of beautiful cards (or a
beautifully simple, self-consistent toy model theory of grav-
ity) to play with, if one likes. However, it remains to be seen
how the recently observed phenomena concerning gravito-
magnetism and gravitational waves may be interpreted with
our new findings with cg = c, since these phenomena could
well be explained by NRMG just by adjusting the undeter-
mined parameter to cg = c/2 or c/

√
2 or by cp-violating

SRMG without invoking the curved space-time concept of
Einstein and keeping other experimental parameters intact or
by SRMG (cg = c with normal gravito-Lorentz force) and
varying other parameters of the experiment in a self consis-
tent way, or re-analyzing the sources of possible theoretical
and experimental errors in the interpretation of the experi-
mental data. The author aims to address these questions in
future, if his odd situation permits and wishes the young
minds do this, if they can.

4.3 Spin-1 vector gravity vs spin-2 tensor gravity

Many quantum field theorists, like Gupta [71], Feynman
[72],19 Zee [73] and Gasperini [74],20 to name a few, have
rejected spin-1 vector theory of gravity on the ground that

Footnote 18 continued
general description of gravitational waves in GR is different [67]. How-
ever, in spite of the interesting work by Mead [68], attempting to provide
a non-general relativistic explanation of the generation and detection of
gravitational waves, which Isi et al. [69] referred to, a proper description
of gravitational waves within a purely gravitoelectromagnetic formal-
ism is still far from being established.
19 On page 30 of ref. [72], one finds: A spin-1 theory would be essen-
tially the same as electrodynamics. There is nothing to forbid the exis-
tence of two spin-1 fields, but gravity can’t be one of them, because one
consequence of the spin 1 is that likes repel, and un-likes attract. This
is in fact a property of all odd- spin theories; conversely, it is also found
that even spins lead to attractive forces, so that we need to consider only
spins 0 and 2, and perhaps 4 if 2 fails; there is no need to work out the
more complicated theories until the simpler ones are found inadequate.
20 On page 27, Gasperini noted: A correct description of gravity in the
relativistic regime thus requires an appropriate generalization of New-
tons theory. Which kind of generalization? A natural answer seems to
be suggested by the close formal analogy existing between the Newton
force among static masses and the Coulomb electrostatic force among
electric charges. In the same way as the Coulomb potential corresponds
to the fourth component of the electromagnetic vector potential, the
Newton potential might correspond to the component of a four-vector,
and the relativistic gravitational interaction might be represented by
an appropriate vector field, in close analogy with the electromagnetic
theory. Such an attractive speculation, however, has to be immediately
discarded for a very simple reason: vector-like interactions produce
repulsive static interactions between sources of the same sign, while -
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if gravitation is described by a vector field theory like
Maxwell’s electromagnetic theory as discussed here, then
vector-like interactions will produce repulsive static inter-
actions between sources of the same sign, while - accord-
ing to Newton’s gravitational theory - the static gravitational
interaction between masses of the same sign is attractive.
However, in one of our recent work [50] on quantum field
theoretical rediscovery of Heaviside-Maxwellian gravity (in
flat space-time) (same as SRMG), we have shown that this
not true because of the existence of a fundamental difference
in the sign before the source term in the in-homogeneous
field equations of SRMG and relativistic Maxwell’s electro-
magnetism (RMEM) as seen below in SI units:

�Aμ
g = −μ0g jμ0 , �Aμ = μ0 jμe (120)

where � = ∂μ∂μ = 1
c2

∂2

∂t2 − ∇2, Aμ
g and jμ0 respec-

tively represents the 4-potential and 4-mass current density
of SRMG while Aμ and jμe respectively represents the 4-
potential and 4-charge current density of RMEM. This fact
that a vector gravitational theory, as proposed first by Heavi-
side and later rediscovered by many others following differ-
ent appoaches, implies attractive interaction between static
masses was transparently clear to Sciama [36]. In spin-1
SRMG, contrary to the electromagnetic cases, like masses
(or gravitational charges) should attract and unlike masses
(if they exist) should repel each other under static condi-
tions, while like (parallel) mass currents repel and un-like
mass currents attract each other [3]. Similarly, there should
be attraction between like gravitomagnetic poles and repul-
sion between un-like gravitomagnetic poles: opposite to the
case in electromagnetism where like magnetic poles repel
and un-like magnetic poles attract each other [3]. Following
Dirac’s scheme of predicting the spin magnetic moment of
an electron, in our previous work [3], we have shown that
the gravitomagnetic moment of a Dirac (spin 1/2) fermion
is exactly equal to its spin angular momentum: μsg = h̄

2 ,
which can just be inferred from the magnetic moment of a
Dirac (spin 1/2) fermion, μse = qh̄

2m0
, by replacing the elec-

tric charge q with the gravitational charge m0 of the Dirac
fermion as per SRMG. However, in GR, μsg value is not
unique as found by different authors and noted in [3].

Regarding the idea of spin-2 graviton, Wald [57] noted
that the linearized Einstein’s equations in vacuum are pre-
cisely the equations written down by Fierz and Pauli [75], in
1939, to describe a massless spin-2 field propagating in flat
space-time. Thus, in the linear approximation, general rela-
tivity reduces to the theory of a massless spin-2 field which
undergoes a non-linear self- interaction. It should be noted,

Footnote 20 continued
as is well known - the static gravitational interaction between masses
of the same sign is attractive.

however, that the notion of the mass and spin of a field require
the presence of a flat back ground metric ηab which one has
in the linear approximation but not in the full theory, so the
statement that, in general relativity, gravity is treated as a
mass-less spin-2 field is not one that can be given precise
meaning outside the context of the linear approximation [57].
Even in the context linear approximation, the original idea
of spin-2 graviton gets obscured due to the several faces of
Gravito-Maxwell equations seen here. This may be seen as
another limitation of GR for not making a unique and unam-
biguous prediction on the spin of graviton.

4.4 Little known Heaviside’s work on gravity

Heaviside’s work on gravity, which McDonald [4] called
a low velocity, weak-field approximation to general rela-
tivity, is little known and has not received as much atten-
tion as it deserves. This is because, in many leading papers
and books exploring gravitomagnetic phenomena and grav-
itational waves, one finds rare or no mention of Heavi-
side’s name, although Heaviside [5] predicted gravitomag-
netic effects and considered the necessity of possible exis-
tence of gravitational waves (for which there must be some
wave equations first written down by him) almost 20 years
before Einstein’s prediction of gravitational waves [76,77].
Further, it is more surprising not to find Heaviside’s name in
the Scientific Background on the Nobel Prize in Physics 2017
[78] when the 2017 Physics Nobel Prize was declared to be
awarded to Rainer Weiss, Barry C. Barish and Kip S. Thorne
for (their) decisive contributions to the LIGO detector and
the observation of gravitational waves. Brillouin [39], in his
final remark on Carstoiu’s [37,38] suggestions for gravity
waves aptly stated, “It is very strange that such an impor-
tant paper had been practically ignored for so many years,
but the reader may remember that Heaviside was the forgot-
ten genius of physics, abandoned by everybody except a few
faithful friends.”

5 Conclusions

Following Schwinger’s non-relativistic formalism of clas-
sical electrodynamics, here we derived the fundamental
equations of Non-Relativistic Maxwellian Gravity (NRMG),
which matches with Heaviside’s Gravity of 1893 and offers a
plausible mechanism for resolving the problem of action-at-
a-distance in Newtonian gravity, within Galileo-Newtonian
domain of physics by demanding the existence of gravi-
tational waves propagating in vacuum at a non-zero finite
speed cg , whose value has to be determined from experiments
on measurable quantities involving cg or from some more
advanced theory. Then, following an independent special rel-
ativistic approach, we re-discovered NRMG in its relativistic
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version and named it Special Relativistic Maxwellian Gravity
(SRMG), where cg = c comes out naturally and the equality
of gravitational mass mg with Lorentz-invariant rest mass m0

is clearly demonstrated (resolving Eddington’s “mass ambi-
guity”) in the re-examination of an old thought experiment
aimed at finding the natural conditions of equilibrium of a two
particle system having requisite masses and electric charges
in two inertial frames in relative motion such that the equi-
librium remains frame-independent. Most importantly the
equality mg = m0 emerges as a consequence of the Lorentz-
invariance of physical laws and the Law of Universality of
Free Fall emerges as a consequence of mg = m0, not an
initial assumption in SRMG. Both NRMG and SRMG obey
correspondence principle (cp) in its true sense: Newtonian
Gravity ⇔ NRMG ⇔ SRMG. These flat space-time ver-
sions of Maxwellian gravity matches with those considered
by several authors either for explaining some GR tests or for
their derivation of SRMG following different approaches.
By the way, we also considered a non-linear form of SRMG
(SRMG-N) in flat spacetime, where the non-linearity arises
due to the initial axiom of mg = m0/

√
1 − v2/c2. The non-

relativistic linearized version of SRMG-N does not corre-
spond to NRMG when cg = c or the non-relativistic version
of SRMG. Thus, SRMG-N seems to defy the cp. Further, we
noted several versions of General Relativistic Maxwellian
Gravity (GRMG), including Ummarino and Gallerati’s ver-
sion, which seem to defy the cp: Newtonian Gravity ⇔
NRMG ⇔ SRMG ��⇔ GRMG; although they are being or
may be (rightly or wrongly) employed to explain the experi-
mental data on gravitational waves and the whole other class
of gravitomagnetic effects predicted by GR. While SRMG
unambiguously fixes the exact value of cg = c and spin of
graviton sg = 1 uniquely, their values in GR are ambiguous
and non-unique. However, the author leaves it for the con-
sideration of the readers to decide which version of gravi-
toelctromagnetism or Maxwellian Gravity is to be taken into
consideration not only in the interpretation, theoretical as
well as experimental error analysis of recent experimental
data on the detection of gravitomagnetic field generated by
mass-energy currents and the very recent detection of gravi-
tational waves but also in the search for the interplay of gravi-
tational fields with other fields/states of matter in nature. The
author wishes to make an important remark that none of the
authors who come up with a factor of 4 or 2 in their Lorentz-
Maxwell-like solutions of GR have made an error in their
calculations; the spurious factor of 4 or 2 (surprisingly 1 in
GRMG-UG formulation), “really does” follow from GR or
rather from its basic building blocks: Einstein’s initial axioms
of (i) mg = E/c2 and (ii) space-time curvature, taken as
inputs to the whole mathematical structure of GR. In our dis-
cussion of non-linear SRMG (SRMG-N) in flat space-time,
we have shown that a factor of 2 originates form the adop-
tion of mg = E/c2 in flat (Minkowski) spacetime, hence the

origin of another factor of “2” or “1” in linearized GR may
be attributed to the adoption of the notion of space-time cur-
vature and on how one chooses to define the gravitomagnetic
field in terms of the potentials (that is, the perturbations in
the metric) in different linearization schemes. Moreover, our
findings in no way affect the main conclusions of Ummarino
and Gallerati’s paper on “Superconductor in a weak static
gravitational field”.
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