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Abstract Families of vector-like deformed relativistic
quantum phase spaces and corresponding realizations are
analyzed. A method for a general construction of the star
product is presented. The corresponding twist, expressed
in terms of phase space coordinates, in the Hopf alge-
broid sense is presented. General linear realizations are
considered and corresponding twists, in terms of momenta
and Poincaré–Weyl generators or gl(n) generators are con-
structed and R-matrix is discussed. A classification of linear
realizations leading to vector-like deformed phase spaces
is given. There are three types of spaces: (i) commuta-
tive spaces, (ii) κ-Minkowski spaces and (iii) κ-Snyder
spaces. The corresponding star products are (i) associative
and commutative (but non-local), (ii) associative and non-
commutative and (iii) non-associative and non-commutative,
respectively. Twisted symmetry algebras are considered.
Transposed twists and left–right dual algebras are presented.
Finally, some physical applications are discussed.

1 Introduction

Reconciliation of quantum mechanics and general relativ-
ity, leading to a formulation of quantum gravity, is a long-
standing problem in theoretical physics. At very high ener-
gies, gravitational effects can no longer be neglected and
spacetime is no longer a smooth manifold but rather a fuzzy
space or some type of non-commutative space [1,2]. Non-
commutative geometry is one of the candidates for describ-
ing the physics at the Planck scale. Combined analyses of
Einstein’s general relativity and Heisenberg’s uncertainty
principle lead to a very general class of non-commutative
spacetimes [1], for example Gronenwald–Moyal plane [3,4]
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and κ-Minkowski algebra [5–11]. Generally, physical theo-
ries on non-commutative manifolds require a new framework
of non-commutative geometry [12]. In this framework, the
search for generalized (quantum) symmetries that leave the
physical action invariant leads to deformation of the Poincaré
symmetry, with κ-Poincaré symmetry being one of the ones
most extensively studied [5–10,13–22]

One example of a deformed relativistic symmetry that
could describe the physics at the Planck scale is the κ-
deformed Poincaré Hopf algebra symmetry, where κ is the
deformation parameter, usually corresponding to the Planck
scale. It has been shown that a quantum field theory with
κ-Poincaré symmetry emerges in a certain limit of quantum
gravity coupled to matter fields [23–27], which amounts to a
non-commutative field theory on the κ-deformed Minkowski
space.

It is well known [3,28–30] that deformations of a sym-
metry group can be realized through application of Drinfeld
twists on that symmetry group [31–34]. The main virtue of
the twist formulation is that the deformed, twisted symmetry
algebra is the same as the original undeformed one. There
is only a change in the coalgebra structure [3], which then
leads to the same single particle Hilbert space and free field
structure as in the corresponding commutative theory.

In [35], complete analysis of linear realizations for κ-
Minkowski space that are expressed in terms of generators of
the gl(n) algebra was given. A method for constructing Drin-
feld twist operators, corresponding to each linear realization
of κ-Minkowski space satisfying cocycle and normalization
condition was presented. Symmetries generated by Drinfeld
twists were classified and κ-Minkowski space was embedded
into the Heisenberg algebra having natural Hopf algebroid
structure. In [36], a method for the construction of the star
product and twist in Hopf algebroid sense was presented.

Assuming vector-like deformations, we aim to explore
which kinds of deformed relativistic quantum phase spaces
can arise. In the present paper we consider general vector-
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like deformations of relativistic quantum phase space and
expand results from [35] to all possible linear realizations
and we construct the corresponding twists. Linear realiza-
tions and vector-like deformed spaces are classified in three
types and the related symmetry algebras are presented.

In Sect. 2, general vector-like deformed relativistic quan-
tum phase spaces are constructed and corresponding real-
izations are presented. In Sect. 3, the method for gen-
eral construction of star product and twist (expressed in
terms of phase space coordinates) in Hopf algebroid sense
is presented. In Sect. 4, linear realizations are considered
and corresponding twists (expressed in terms of momenta
and Poincaré–Weyl generators or gl(n) generators) are con-
structed. Also, the R-matrix is discussed. In Sect. 5, a classifi-
cation of linear realizations leading to vector-like deformed
phase spaces is given. There are three types of spaces: (i)
commutative spaces, (ii) κ-Minkowski spaces and (iii) κ-
Snyder spaces. In Sect. 6, twisted symmetry algebras are
considered. In Sect. 7, transposed twists and left–right dual
algebras are presented. Finally, an outlook and a discussion
are given in Sect. 8.

2 Vector-like deformations of relativistic quantum
phase spaces and realizations

Let us start with deformed phase space (deformed Heisen-
berg algebra) Ĥ generated by commutative momenta pμ

and generically non-commutative coordinates x̂μ, μ =
0, 1, . . . , n − 1 satisfying the following commutation rela-
tions:

[pμ, pν] = 0,

[pμ, x̂ν] = −iϕμ
ν
( p

M

)
,

[x̂μ, x̂ν] = i

M
x̂αCμν

α

( p

M

)
,

(1)

where M is the mass parameter, ϕμν

( p
M

)
is an invertible

matrix, and Cμν
α

( p
M

) = −Cνμ
α

( p
M

)
are generalized struc-

ture constants depending on the momenta [36].
The matrix ϕμ

ν is arbitrary and the structure constants
Cμν

α are restricted by the Jacobi relations which include the
matrix ϕμ

ν . In the limit M → ∞, the matrix ϕμν → ημν

and [x̂μ, x̂ν] → 0, where ημν = diag(−1, 1, . . . , 1), or
more generally, instead of ημν , we have the metric gμν with
an arbitrary signature.

The deformed phase spaces, Eq. (1), generalize Lie alge-
bras. Note that if the x̂μ generate a given Lie algebra with
structure constants Cμν

λ, then there are infinitely many pos-
sible matrices ϕμ

ν , compatible with the Jacobi relations [36];
see also [37–39].

In the following, we shall put/fix M = 1. Now we consider
the most general matrix ϕμ

ν describing vector-like deforma-
tions defined by vector uμ, u2 ∈ {−1, 0, 1}, i.e. time-, light-
and space-like, respectively [40];

ϕμ
ν(p) = δν

μ f1+uμ p
ν f2+uμu

ν f3+uν pμ f4+pμ p
ν f5 (2)

where f1,...,5 are functions of A = u · p and B = p2.
In order to fullfil the commutation relations [pμ, x̂ν] =

−iϕμ
ν(p), Eq. (1), we consider a realization of x̂μ of the

form

x̂μ = xαϕα
μ = xμ f1 + (u · x)pμ f2 + (u · x)uμ f3

+ (x · p)uμ f4 + (x · p)pμ f5 (3)

where xμ are commutative coordinates conjugate to pμ, i.e.

[xμ, xν] = 0,

[pμ, xν] = −iδν
μ,

[pμ, pν] = 0,

(4)

describing the undeformed phase space Heisenberg algebra
H. The undeformed coordinates xμ generate an enveloping
algebra A, which is a subalgebra of the undeformed Heisen-
berg algebra, i.e. A ⊂ H. The momenta pμ generate the
algebra T , which is also a subalgebra of the undeformed
Heisenberg algebra, i.e. T ⊂ H. The undeformed Heisen-
berg algebra is, symbolically, H = AT .

Then the structure of the commutation relations [x̂μ, x̂ν]
is given by

[x̂μ, x̂ν] = i[(uμ x̂ν − uν x̂μ)F1 + (x̂μ pν − x̂ν pμ)F2

+ (u · x̂)(uμ pν − uν pμ)F3

+ (x̂ · p)(uμ pν − uν pμ)F4] (5)

where F1,...,4 are also functions of A and B which can be
expressed in terms of the functions f1,...,5 and their deriva-
tives.

We point out that this construction, Eqs. (2) and (5), unifies
commutative spaces with ϕμ

ν �= δν
μ, as well as various types

of NC spaces, including κ-Minkowski space [13,14], Snyder
type spaces [41–43] and κ-Snyder spaces [44,45]. Moyal
type spaces (θ -deformation) [4] could also be included in
this construction by adding χμ(p) in the realization of x̂μ,
i.e. x̂μ = xαϕα

μ(p) + χμ(p). For example, the simplest
realization of Moyal space is x̂μ = xμ − 1

2θμα pα , where
θμν ∈ R is an antisymmetric tensor.

Note that quadratic algebras cannot be included in the
above construction and a new generalization is required.
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3 Star product and twist operator

The action � is defined by

xμ � f (x) = xμ f (x), (6)

pμ � f (x) = −i
∂ f

∂xμ
, i.e. pμ = −i

∂

∂xμ
≡ −i∂μ. (7)

Then it follows that [35]

x̂μ � 1 = xμ, (8)

eik·x̂ � eiq·x = eiP(k,q)·x , kμ, qμ ∈ M1,n−1, (9)

whereM1,n−1 is Minkowski momentum space andPμ(k, q)

satisfies the differential equation

dPμ(λk, q)

dλ
= kαϕμ

α (P(λk, q)) (10)

with Pμ(k, 0) = Kμ(k), Pμ(0, q) = qμ and λ ∈ R.
Hence,

eik·x̂ � 1 = eiK (k)·x (11)

and

eiK
−1(k)·x̂ � 1 = eik·x , (12)

where K−1(k) is the inverse map of Kμ(k), i.e. K−1
μ

(K (k)) = kμ.
The star product is defined by [35]

eik·x � eiq·x = eiK
−1(k)·x̂ � eiq·x = eiD(k,q)·x , (13)

where

Dμ(k, q) = Pμ(K−1(k), q),

Dμ(k, 0) = kμ, Dμ(0, q) = qμ. (14)

The deformed addition of momenta is defined by

(k ⊕ q)μ = Dμ(k, q). (15)

The coproduct 
pμ is


pμ = Dμ(p ⊗ 1, 1 ⊗ p). (16)

For functions f (x) and g(x) which can be Fourier trans-
formed, the relation between star product and twist operator
is given by [46,47]

( f � g)(x) = m
[
F−1(� ⊗ �)( f (x) ⊗ g(x))

]
, (17)

where m is a map m : H⊗H → H such that m(h1 ⊗ h2) =
h1h2 with h1, h2 ∈ H and

F−1 =: ei(1⊗xα)(
−
0)pα : +I0, (18)

where 
0 pμ = pμ ⊗ 1 + 1 ⊗ pμ and I0 is the right ideal
defined by1

m [I0(� ⊗ �)( f (x) ⊗ g(x))] = 0. (19)

The symbol : · : denotes the normal ordering in which the x
stand to the left of the p.

If the generators x̂μ close the subalgebra, i.e. if the com-
mutator [x̂μ, x̂ν] does not depend on the momenta, then the
PBW theorem holds, the star product is associative and the
coproduct is coassociative. The inverse statement also holds.
If the star product is associative, the twist operator Eq. (18)
satisfies the cocycle condition in the Hopf algebroid sense
and vice versa [47–52].

We also have


pμ = F
0 pμF−1 = Dμ(p ⊗ 1, 1 ⊗ p), (20)

x̂μ = m
[
F−1(� ⊗ 1)(xμ ⊗ 1)

]

= xμ+i xαm
[
(
−
0)pα(� ⊗ 1)(xμ ⊗ 1)

]

= xαϕα
μ(p), (21)

eiK
−1(k)·x̂ = m

[
F−1(� ⊗ 1)(eik·x ⊗ 1)

]
. (22)

The above construction generalizes Sect. 4 in [35] to non-
associative star products. Note that the commutator [pμ, x̂ν]
is given by

[pμ, x̂ν] = −iδν
μ + m{[
0 pμ,F−1](� ⊗ 1)(xν ⊗ 1)}. (23)

4 Linear realizations and twists

In this section, we consider linear realizations of vector-like
deformed phase space, that is, the realizations where the func-
tion ϕμ

ν(p) is linear in the momenta,

ϕμ
ν(p) = δν

μ + c1δ
ν
μ(u · p) + c2u

ν pμ + c3uμu
ν(u · p)

+ c4uμ p
ν = δν

μ + K αν
μ pα, (24)

where K αν
μ ∈ R is proportional to the deformation scale

1/M . In terms of c1,...,4, x̂μ = xαϕα
μ(p) and K αν

μ are
given by

x̂μ = xμ(1 + c1(u · p)) + c2u
μ(x · p)

+ c3u
μ(u · x)(u · p) + c4(u · x)pμ, (25)

K αν
μ = c1δ

ν
μu

α + c2u
νδα

μ + c3u
αuνuμ + c4η

ανuμ.

(26)

1 The ideal I0 (19) is generated by xμ ⊗ 1 − 1 ⊗ xμ .
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Since x̂μ = xαϕα
μ(p) = xμ + K βμ

αxα pβ , then it follows
that

[x̂μ, x̂ν] = (Kμν
α − K νμ

α)x̂α

+ i[K βμ
αK

αν
γ − K βν

αK
αμ

γ

− (Kμν
α − K νμ

α)K βα
γ ]Lγ

β, (27)

where Lμ
ν = xμ pν . The generators Lμ

ν and the momenta
pμ generate the igl(n) algebra:

[Lα
β, Lγ

δ] = i(δα
δ L

γ
β − δ

γ
β L

α
δ)

[Lμ
ν, pλ] = iδμ

λ pν

(28)

and

[Lμ
ν, x

λ] = −iδλ
ν x

μ. (29)

The generators x̂μ and Lμ
ν close a Lie algebra,

[Lμ
ν, x̂

λ] = −iδλ
ν x̂

μ+i(δλ
ν K

βμ
α+δβ

ν K
μλ

α−δμ
α K

βλ
ν)L

α
β.

(30)

The Lie algebra is closed in x̂μ if

K βμ
λK

λν
α − K βν

λK
λμ

α = (Kμν
λ − K νμ

λ)K
βλ

α (31)

and Cμν
λ = Kμν

λ − K νμ
λ are structure constants, i.e.

[x̂μ, x̂ν] = iCμν
λ x̂λ.

Application of Eqs. (10) and (14) to the algebra {x̂μ, Lμ
ν}

gives

Pμ(k, q) =
(

1 − e−K(k)

K(k)

)
α

μkα +
(
e−K(k)

)
α

μqα, (32)

where K(k)μν = −Kμα
νkα . Specially,

Kμ(k) = Pμ(k, 0) =
(

1 − e−K(k)

K(k)

)
α

μkα. (33)

The function Dμ(k, q) is given by

Dμ(k, q) = Pμ(K−1(k), q) = kμ +
(
e−K(K−1(k))

)
α

μqα,

(34)

which defines the deformed addition of momenta. For lin-
ear realizations, the star product is associative if and only
if condition (31) is satisfied. Up to the second order in the
deformation, the function Dμ(k, q) is given by

Dμ(k, q) = kμ + qμ + K βα
μkαqβ

+ 1

2
(K γβ

λK
λα

μ − K αβ
λK

γ λ
μ)kαkβqγ

+O(1/M3). (35)

It is straightforward to show that the deformed addition of
momenta (k ⊕ q)μ = Dμ(k, q) is associative in the first
order and in order to be associative in the second order,
condition (31) has to be satisfied, which also implies a Lie
algebra closed in x̂μ. The Lie algebra closed in x̂μ leads
to the associative star product, which leads to an asso-
ciative Dμ(k, q), which implies that for linear realizations
(k ⊕ q)μ = Dμ(k, q) is associative in all orders if and only
if the condition (31) is satisfied.

The deformed coproduct of the momenta 
 : T → T ⊗T
is


pμ = Dμ(p⊗ 1, 1 ⊗ p) = pμ ⊗ 1 +
(
e−K(pW )

)
α

μ ⊗ pα,

(36)

where pWμ = K−1
μ (p) and it is a function of the momenta

with the property

(pWμ − kμ)eik·x̂ � 1 = 0, (37)

where W stands for Weyl ordering. For details of the calcu-
lation of pWμ , see Appendix A. It follows that 
pμ is coasso-
ciative for linear realizations of the non-commutative coordi-
nates x̂μ if and only if x̂μ close a Lie algebra, i.e. if condition
(31) holds.

Note that the commutator [Lμ
ν, x̂λ] is given by

[Lμ
ν, x̂

λ] = −iδλ
ν x̂

μ + m{[
0L
μ

ν,F−1](� ⊗ 1)(xλ ⊗ 1)}.
(38)

4.1 Twist and R-matrix

Combining Eq. (18) for the twist and Eq. (36) for the
deformed coproduct of momenta yields

F−1 =: exp
{
i
(
eK(pW ) − 1

)
β

α ⊗ xα pβ

}
: . (39)

Furthermore, it can be shown that

: ei Aβ
αxα pβ : = ei[ln(1+A)]βαxα pβ (40)

holds for any Aβ
α such that [Aα

β, Aγ
δ] = 0 and [Aα

β, xγ

pδ] = 0; see Appendix B from [35]. Using the identity (40),
we find

F−1 = exp(−iK(pW )βα⊗xα pβ) = exp(i pWα ⊗(x̂α−xα)).

(41)

Twist (39) is written in Hopf algebroid approach [46,47].
The main point is that it can be written in the standard form
(41), where xα pβ is identified with the gl(n) generators Lαβ ,
satisfying (28).
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The twist (41) satisfies the normalization condition

m(ε ⊗ 1)F = 1 = m(1 ⊗ ε)F . (42)

For linear realizations x̂μ that close a Lie algebra
[x̂μ, x̂ν] = i(c1 − c2)(uμ x̂ν − uν x̂μ), the twist (41) will
satisfy the cocycle condition for arbitrary choice of vector
uμ,

(F ⊗ 1)(
0 ⊗ 1)F = (1 ⊗ F)(1 ⊗ 
0)F . (43)

The proof is analogous to the one provided in [35]. Generally,
if condition (31) is not satisfied, twist (41) will not satisfy
the cocycle condition (43).

The R-matrix is given by [46] (see also [53])

R = F̃F−1 = e−(x̂α−xα)⊗i pWα eip
W
β ⊗(x̂β−xβ)

, (44)

where F̃ = exp(−(x̂α − xα) ⊗ i pWα ) is the transposed twist
F̃ = τ0Fτ0, where τ0 : H ⊗ H → H ⊗ H is a linear map
such that τ0(A ⊗ B) = B ⊗ A ∀A, B ∈ H.

In the case of commutative spaces with [pμ, x̂ν] �= −iδν
μ,

the coproducts 
pμ are cocommutative, the star product is
commutative, R − 1 ⊗ 1 ∈ I0 and F−1 − F̃−1 ∈ I0 (see
Eq. (19) for the definition of the right ideal I0).

The R-matrix is given by R = 1 ⊗ 1 + rcl + O(1/M2),
where rcl = i K βα

γ (pα ⊗ Lγ
β − Lγ

β ⊗ pα) is the classical
r-matrix, which will satisfy the Yang–Baxter equation if and
only if the condition (31) is satisfied.

The twisted flip operator τ is defined by

τ = Fτ0F−1 = τ0R (45)

and it satisfies the following properties:

[
h, τ ] = 0, ∀h ∈ H, (46)

τ 2 = 1 ⊗ 1. (47)

Projector operators for the twisted symmetric and antisym-
metric sectors of the Hilbert space are given by 1

2 (1⊗1±τ).
Using twisted flip operator, the bosonic state is defined by

f ⊗ g = τ( f ⊗ g) (48)

or equivalently

F−1(� ⊗ �)( f ⊗ g) = F̃−1(� ⊗ �)(g ⊗ f ). (49)

Note that the bosonic state remains invariant under the action
of the projector operator 1

2 (1 ⊗ 1 + τ) for the twisted sym-
metric sector of the Hilbert space.

5 Three types of star products from linear realizations

In this section, we present star products which are: (i) com-
mutative and associative (Sect. 5.1), (ii) non-commutative
and associative (Sect. 5.2) and (iii) non-commutative and
non-associative (Sect. 5.3).

5.1 Commutative spaces with [pμ, x̂ν] �= −iδν
μ

Using linear realizations for x̂μ = xαϕαμ(p) with ϕμν(p)
given in Eq. (24), and using Eq. (27) restricted to the com-
mutative case, i.e. [x̂μ, x̂ν] = 0, we find three families of
solutions for commutative spaces. We have

(i) : x̂μ = xμ + c3u
μ(u · x)(u · p), c1 = c2 = c4 = 0,

(50)

(ii) : x̂μ = xμ + c3

[
uμ(u · x)(u · p) − u2(u · x)pμ

]
,

c1 = c2 = 0, c4 = −c3, (51)

(iii) : x̂μ = xμ
[
1 − c3u

2(u · p)
]

+ c3u
μ

[
(u · x)(u · p) − u2(x · p)

]
,

c1 = c2 = −c3, c4 = 0. (52)

For the sake of simplicity, c ≡ c3 will be used in the rest of
this subsection.

For the family (i),

Kμ(k) =

⎧
⎪⎪⎨
⎪⎪⎩

kμ +
(
ec(u·k)u2 − 1

c(u · k)u2 − 1

)
u · k
u2 uμ, u2 �= 0

kμ + 1

2
c(u · k)2uμ, u2 = 0,

(53)

K−1
μ (k) =

⎧
⎪⎪⎨
⎪⎪⎩

kμ − c
cu2(u · k) − ln[1 + cu2(u · k)]

(cu2)2 uμ, u2 �= 0

kμ − c
(u · k)2

2
uμ, u2 = 0.

(54)

Functions Pμ(k, q) and Dμ(k, q) for the family i) are given
by

Pμ(k, q) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

kμ + qμ + c(u · k)
[(

ecu
2(u·k) − 1

cu2(u · k) − 1

)
1

cu2

+ecu
2(u·k) − 1

cu2(u · k) (u · q)

]
uμ, u2 �= 0,

kμ + qμ + c(u · k)
(
u · k

2
+ u · q

)
uμ, u2 = 0,

(55)

Dμ(k, q) = kμ + qμ + c(u · k)(u · q)uμ. (56)
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For the family (ii),

Kμ(k) = kμ + c

2

[
(u · k)2 − u2k2

]
uμ, (57)

K−1
μ (k) = kμ − c

2

[
(u · k)2 − u2k2

]
uμ. (58)

Furthermore,

Pμ(k, q) = kμ + qμ + cuμ

[
(u · k)2 − u2k2

2

+ (u · k)(u · q) − u2(k · q)

]
, (59)

Dμ(k, q) = kμ + qμ + cuμ

[
(u · k)(u · q) − u2(k · q)

]
.

(60)

For the family (iii),

Kμ(k) =

⎧
⎪⎪⎨
⎪⎪⎩
e−cu2(u·k)kμ + 1 − e−cu2(u·k)(1 + cu2(u · k))

c(u2)2 uμ, u2 �= 0,

kμ + 1

2
c(u · k)2uμ, u2 = 0,

(61)

K−1
μ (k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

kμ

1−cu2(u·k)
+c(u · k)2 −cu2(u·k)−(1−cu2(u·k)) ln(1−cu2(u·k))

(cu2(u·k))2(1−cu2(u·k)) uμ, u2 �= 0,

kμ − c
(u · k)2

2
uμ, u2 = 0,

(62)

Pμ(k, q) = Kμ(k)+qμ−cu2[Kμ(k)(u · q)+qμ(u · K (k))]
+ cuμ(u · K (k))(u · q), (63)

Dμ(k, q) = kμ + qμ − cu2[kμ(u · q)

+ qμ(u · k)] + cuμ(u · k)(u · q). (64)

Note that for each family of commutative spaces,Dμ(k, q) =
Dμ(q, k), which implies commutativity of the correspond-
ing star products and cocommutativity of the corresponding
coproducts. Also, for each of these families, Dμ(D(k1, k2),

k3) = Dμ(k1,D(k2, k3)), which implies associativity of the
corresponding star products and coassociativity of the corre-
sponding coproducts, which is consistent with [x̂μ, x̂ν] = 0.

5.2 κ-Minkowski spaces

There are four families of linear realizations of κ-Minkowski
space. Their classification is given in [35]:

C1 : x̂μ = xμ + [c2(x · p) + c(u · x)(u · p)] uμ, (65)

C2 : x̂μ = xμ + c1x
μ(u · p)

+ c [(u · x)(u · p) − (x · p)] uμ, (66)

C3 : x̂μ = xμ + [c2(x · p) + c(u · x)(u · p)] uμ

+ (c2 − c)(u · x)pμ, (67)

C4 : x̂μ = xμ + c1
[
xμ(u · p) − (u · x)pμ

]
,

only for u2 = 0. (68)

The family C4 was also considered in [54,55]. For each fam-
ily, the parameters c1,...,4 are given by

C1 : c1 = 0, c2 ∈ R, c3 = c, c4 = 0, (69)

C2 : c1 ∈ R c2 = −c, c3 = c, c4 = 0, (70)

C3 : c1 = 0, c2 ∈ R, c3 = c, c4 = c2 − c, (71)

C4 : c1 ∈ R, c2 = 0, c3 = 0, c4 = −c1. (72)

We point out that c = 0 for u2 = 0 and c ∈ R for u2 �= 0.
The commutator of the coordinates is given by

[x̂μ, x̂ν] = i(c1 − c2)(u
μ x̂ν − uν x̂μ) ≡ i(aμ x̂ν − aν x̂μ),

(73)

where aμ = (c1 − c2)uμ.
Explicitly, for C1, C2, C3 and C4, the functions K−1

μ (k) and
Dμ(k, q) are given by

• Case C1:

K−1
μ (k) =

⎧⎪⎨
⎪⎩

[
kμ − aμ

a2 (Z(k) − 1 − a · k)
] ln Z(k)

Z(k) − 1
, a2 �= 0,

kμ

ln Z(k)

Z(k) − 1
, a2 = 0,

(74)

Dμ(k, q) =
⎧⎨
⎩
kμ + Z(k)qμ + aμ

a2 (Z(k)1−c − Z(k))(a · q), a2 �= 0,

kμ + Z(k)qμ, a2 = 0,

(75)

where

Z(k) = [1 − (1 − c)a · k]
1

1−c . (76)

• Case C2:

K−1
μ (k) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
kμ − aμ

a2 (1 − Z(k)−1 + a · k)
]

× ln Z(k)

1 − Z(k)−1 , a2 �= 0,

kμ

ln Z(k)

1 − Z(k)−1 , a2 = 0,

(77)

Dμ(k, q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

kμ +
(
Z(k)c − c

1 + c

)
qμ +

(
c
aμ

a2 + (c − 1)
K−1

μ (k)

ln Z(k)

)

× Z(k)−1 − Z(k)c

1 + c
a · q, a2 �= 0,

kμ + qμ − K−1(k)
Z(k)−1 − 1

ln Z(k)
a · q, a2 = 0,

(78)

where

Z(k) = [1 − (c − 1)a · k]
c

c−1 . (79)
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• Case C3:

K−1
μ (k) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
kμ − aμ

a2 (Z(k) − 1 + a · k)
]

× ln Z(k)

Z(k) − 1
, a2 �= 0,

[
kμ + aμk2

Z(k)

]
ln Z(k)

Z(k) − 1
, a2 = 0,

(80)

Dμ(k, q) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

kμ + Z(k)qμ + aμ

(
(1 + c)

K−1(k) · q
ln Z(k)

− c
a · q
a2

)

×(Z(k) − 1)Z(k), a2 �= 0,

kμ + Z(k)qμ

+aμ

K−1(k) · q
ln Z(k)

(Z(k) − 1)Z(k), a2 = 0,

(81)

where

Z(k) =
[
c + (1 − c)

(
(1 − a · k)2 − a2k2

)] 1
2(1−c)

.

(82)

• Case C4:

K−1
μ (k) =

(
kμ + aμ

2
k2

) ln Z(k)

1 − Z(k)−1 , (83)

Dμ(k, q) =kμZ(q)−1 + qμ − aμ(k · q)Z(k)

− aμ

2
k2Z(k)(a · k), (84)

where

Z(k) = 1

1 + a · k . (85)

Note that for each of these families, Dμ(D(k1, k2), k3) =
Dμ(k1,D(k2, k3)), which implies associativity of the corre-
sponding star products and coassociativity of the correspond-
ing coproducts, which is consistent with x̂μ closing a Lie
algebra, i.e. [x̂μ, x̂ν] = iCμν

λ x̂λ. In this case, the structure
constants Cμν

λ are given by Cμν
λ = aμδν

λ − aνδ
μ
λ .

We note that the Jordanian twist, leading to κ-Minkowski
space [56], produces linear realizations x̂μ = xμ(1 + a · p),
which belongs to the case C2. A new construction of a simple
interpolation between two Jordanian twists, corresponding
to linear realizations C1 and C2, was proposed in [57].

5.3 Deformed phase spaces generated by Poincaré–Weyl
generators /κ-Snyder spaces

Here, we consider the algebras with c3 = 0 and c4 = −c1,
i.e. the realization is

x̂μ = xμ(1 + c1(u · p)) − c1(u · x)pμ + c2uμ(x · p)
= xμ − c1u

αMαμ + c2uμD (86)

where Mμν = Lμν − Lνμ are the Lorentz generators and
D = x · p is the dilatation operator.

The algebra of generators x̂μ, Mμν and D is given by

[x̂μ, x̂ν ] = i(c1 − c2)(uμ x̂ν − uν x̂μ)

+ic1[c1u
2Mμν − c2u

α(uμMαν − uνMαμ)],
[Mμν, x̂λ] = i

[
ημλ x̂ν − ηνλ x̂μ

+c1(Mμλuν − Mνλuμ) − c2(ημλuν − ηνλuμ)D
]
,

[D, x̂μ] = −i x̂μ + ic1u
αMαμ − ic2uμD

[Mμν, Mρτ ] = i(ημρMντ − ηνρMμτ − ημτ Mνρ + ηντ Mμρ),

[Mμν, D] = 0. (87)

For the realization (86), the functions Kμ(k), K−1
μ (k),

Pμ(k, q) and Dμ(k, q) are

Kμ(k) = kμ + 1

2

[
(c1 + c2)(u · k)kμ − c1k

2uμ

]

+ 1

6

[
(c1 + c2)

2(u · k)2 − c2
1k

2u2
]
kμ

− 1

3
c1c2(u · k)k2uμ + O(1/M3), (88)

K−1
μ (k) = kμ − 1

2

[
(c1 + c2)(u · k)kμ − c1k

2uμ

]

+
[
(c1 + c2)

2

3
(u · k)2 − c1

4

(c1

3
+ c2

)
k2u2

]
kμ

− c1

4

(
c1 + 5c2

3

)
(u · k)k2uμ + O(1/M3), (89)

Pμ(k, q) = Kμ(k) + qμ + c1
[
kμ(u · q) − (k · q)uμ

]

+ c2(u · k)qμ + O(1/M2), (90)

Dμ(k, q) = kμ + qμ + c1
[
kμ(u · q) − (k · q)uμ

]

+ c2(u · k)qμ + O(1/M2). (91)

The function Dμ(k, q) is associative only in two cases—in
the case c1 = 0, which corresponds to realization (65) (κ-
Minkowski C1) with c = 0, and in the case c2 = 0, u2 = 0,
which corresponds to the realization (68) (κ-Minkowski C4).

There are special cases of deformed phase space generated
by Poincaré generators appearing only in 1 + 1, 2 + 1 and
3 + 1 spacetime dimensions. Their realizations are given by

1 + 1 : x̂μ = xμ + cuμεαβMαβ, (92)

2 + 1 : x̂μ = xμ + cuμεαβγ Mαβuγ , (93)

3 + 1 : x̂μ = xμ + cεμαβγ Mαβuγ , (94)

where εαβ , εαβγ and εαβγ δ are the Levi-Civita tensors for
1+1, 2+1 and 3+1 dimensions, respectively. Commutators
of coordinates x̂μ are given by
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1 + 1 : [x̂μ, x̂ν] = 2ic
[
(εαμuν − εανuμ)x̂α + 2cu2Mμν

]
,

(95)

2 + 1 : [x̂μ, x̂ν] = 2icuα(εαβμuν − εαβνuμ)x̂β, (96)

3 + 1 : [x̂μ, x̂ν] = 4icεμναβ x̂αuβ + 4ic2u2Mμν. (97)

κ-Snyder spaces defined by x̂μ = xμ + cuαMαμ, u2 �= 0
were considered in [44,45].

6 Twisted symmetry algebras

In an undeformed igl(n) Hopf algebra, coproducts 
0 :
igl(n) → igl(n)⊗igl(n), counit ε : igl(n) → C and antipode
S0 : igl(n) → igl(n) are given by


0 pμ = pμ ⊗ 1 + 1 ⊗ pμ, (98)


0Lμν = Lμν ⊗ 1 + 1 ⊗ Lμν, (99)

ε(pμ) = ε(Lμν) = 0,

ε(1) = 1, S0(pμ) = −pμ, S0(Lμν) = −Lμν. (100)

When applied to undeformed igl(n) algebra, the twist (41)
produces the corresponding deformed igl(n) Hopf alge-
bras or generalized Hopf algebras (quasi-bialgebras). For
h ∈ igl(n), the deformed coproduct 
h is given by


h = F
0hF−1 (101)

where 
0h is the undeformed coproduct of h.
The antipode S(h) is obtained from the coproduct 
h

using the identity

m[(S ⊗ 1)
h] = m[(1 ⊗ S)
h] = ε(h), (102)

where ε(h) is the counit, which remains undeformed.
Coproducts and antipodes of pμ and Lμ

ν are given by


pμ = F
0 pμF−1 = pμ ⊗ 1 + (eK)αμ ⊗ pα, (103)


Lμ
ν = F
0L

μ
νF−1 = Lμ

ν ⊗ 1 +
(

(e−K)βγ
∂(eK)γ α

∂pμ
pν

+ (e−K)βν(eK)μα

)
⊗ Lα

β, (104)

S(pμ) = −(e−K)αμ pα, (105)

S(Lμ
ν) = −

(
(eK)βγ

∂(e−K)γ α

∂S(pμ)
S(pν)

+ (eK)βν(e−K)μα

)
Lα

β . (106)

For the family i) of commutative spaces (Sect. 5.1), the
coproduct and the antipode of pμ are given by


pμ = 
0 pμ + cuμ(u · p) ⊗ (u · p), (107)

S(pμ) = −pμ − cuμ

(u · p)2

1 + cu2(u · p) . (108)

For the family (ii) of commutative spaces (Sect. 5.1), the
coproduct and the antipode of pμ are given by


pμ = 
0 pμ + cuμ[(u · p) ⊗ (u · p) − u2 pα ⊗ pα],
(109)

S(pμ) = −pμ − cuμ

[
(u · p)2 − u2 p2

]
. (110)

For the family (iii) of commutative spaces (Sect. 5.1), the
coproduct and the antipode of pμ are given by


pμ = 
0 pμ + cuμ(u · p) ⊗ (u · p) − cu2[(u · p) ⊗ pμ

+ pμ ⊗ (u · p)], (111)

S(pμ) = − pμ

1 − cu2(u · p) + cuμ

(
u · p

1 − cu2(u · p)
)2

.

(112)

For the families C1,2,3,4 of κ-Minkowski spaces (65), (66),
(67) and (68), presented in Sect. 5.2, coproducts and
antipodes of pμ and Lμ

ν are presented in [35].
For deformed phase spaces generated by the Poincaré–

Weyl generators (86), presented in Sect. 5.3, the coprod-
ucts are coassociative only in two cases—case c1 = 0
and case c2 = 0 with u2 = 0—which correspond to κ-
Minkowski space. Otherwise, these deformed phase spaces
lead to a generalized Hopf algebra (quasi-bialgebra) with
non-coassociative coproducts. For these deformed phase
spaces, the coproduct and antipode of pμ are given by


pμ = 
0 pμ + c1(pμ ⊗ u · p − uμ pα ⊗ pα)

+ c2(u · p) ⊗ pμ + O(1/M2), (113)

S(pμ) = −pμ(1 − (c1 + c2)(u · p)) − c1uμ p
2 + O(1/M2).

(114)

7 Transposed twists and left–right dual algebras

The transposed twist F̃ = τ0Fτ0, obtained from F by inter-
changing left and right side of the tensor product, is given by

F̃ = exp
(
(x̂α − xα) ⊗ (−i pWα )

)
. (115)

Twist F̃ will be a Drinfeld twist, satisfying cocycle and nor-
malization condition, if and only if this also holds for the
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twist F . From the transposed twist F̃ , a set of dual non-
commutative coordinates can be obtained,

ŷμ = m
[
F̃−1(� ⊗ 1)(xμ ⊗ 1)

]
= xα

(
e−K(pW )

)
μ

α.

(116)

In the second order of deformation, dual coordinates ŷμ are
given by

ŷμ = xμ + Kμβ
αx

α pβ

+ 1

2
(Kμβ

λK
λγ

α − Kμλ
αK

βγ
λ)x

α pβ pγ

+O(1/M3). (117)

Commutators [x̂μ, ŷν] and [ŷμ, ŷν] are given by

[x̂μ, ŷν ] = i

2

[
(K βμ

λ − Kμβ
λ)K

νλ
α

+ K νμ
λK

λβ
α − K νβ

λK
λμ

α

]
xα pβ + O(1/M3)

≡ i

2
T βμν

αx
β pα + O(1/M3), (118)

[ŷμ, ŷν ] = − i(Kμν
λ − K νμ

λ)ŷ
λ + i

2

[
(Kμν

λ − K νμ
λ)K

λβ
α

+ (Kμβ
λ − K βμ

λ)(K
νλ

α − K λν
α) − (Kμβ

λ

− K βμ
λ)(K

νλ
α − K λν

α)

− K βμ
λK

λν
α + K βν

λK
λμ

α

]
xα pβ + O(1/M3)

= − i(Kμν
λ − K νμ

λ)ŷ
λ

+ i

2
(Tμβν

α − T νβμ
α)xα pβ + O(1/M3), (119)

where Tμνβ
α is given by

Tμνβ
α = (Kμν

λ−K νμ
λ)K

βλ
α+K βν

λK
λμ

α−K βμ
λK

λν
α.

(120)

The condition Tμνβ
α = 0 is equivalent to the condition (31),

which corresponds to the case of a Lie-algebraic deformation.
For commutative spaces (50)–(52), coproducts are cocom-

mutative, therefore F̃ andF are equivalent, i.e.F−1−F̃−1 ∈
I0, and the result is trivial: ŷμ = x̂μ. For the special
cases of κ-Minkowski spaces, the results for ŷμ are given in
Sect. VII of [35]. For Lie-algebraic deformations, the non-
commutative coordinates x̂μ commute with their duals ŷμ,

[x̂μ, ŷν] = 0, (121)

and their duals also close a Lie algebra,

[ŷμ, ŷν] = −iCμν
λ ŷ

λ. (122)

For deformed phase spaces generated by the Poincaré-
Weyl generators (86), the result for ŷμ to second order is

ŷμ = xμ + c1
(
uμ(x · p) − (u · x)pμ

) + c2x
μ(u · p)

+ c1

2

[
c1

(
2(u · x)(u · p)pμ − uμ(u · x)p2 − u2(x · p)pμ

)

+ c2
(
xμ(u · p)2 − xμu2 p2 + uμ(x · p)(u · p) − (u · x)(u · p)pμ

)]

+ O(1/M3). (123)

The generators (86) fail to commute with their duals in the
second order,

[x̂μ, ŷν] = i
c1

2

{
c1u

2((x · p)ημν − xμ pν)

+ c2
[
(xμ(u · p) − uμ(x · p))uν

−(u · x)((u · p)ημν − uμ pν)
]}

+ O(1/M3), (124)

and the commutator of their duals is given by

[ŷμ, ŷν] = i(c2 − c1)(u
μ ŷν − uν ŷμ)

+i
c1

2
{c1u

2(xμ pν − xν pμ)

+c2[(uμxν − uνxμ)(u · p)
−(u · x)(uμηβν − uνηβμ)] + O(1/M3)}

= i(c2 − c1)(u
μ ŷν − uν ŷμ)

+c1[c1u
2Mμν + c2uα(uμMαν − uνMαμ)]

+O(1/M3). (125)

8 Outlook and discussion

Families of vector-like deformed relativistic quantum phase
spaces and corresponding realizations are analyzed. A
method for a general construction of the star product is pre-
sented. The corresponding twist, expressed in terms of the
phase space coordinates, in the Hopf algebroid sense is pre-
sented. General linear realizations are considered and corre-
sponding twists, in terms of the momenta and the Poincaré–
Weyl generators or gl(n) generators, are constructed and
the R-matrix is discussed. A classification of linear realiza-
tions leading to vector-like deformed phase spaces is given.
There are three types of spaces: (i) commutative spaces,
(ii) κ-Minkowski spaces and (iii) κ-Snyder spaces. The cor-
responding star products are (i) associative and commuta-
tive (but non-local), (ii) associative and non-commutative
and (iii) non-associative and non-commutative, respectively.
Twisted symmetry algebras are considered. The transposed
twists and left–right dual algebras are presented.

In this paper, we were dealing mostly with linear realiza-
tions and corresponding twists. In commutative spaces (Sect.
5.1) and κ-Minkowski spaces (Sect. 5.2), i.e. in Lie-deformed
Minkowski spaces, linear realizations lead to Drinfeld twists
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satisfying the cocycle and normalization conditions. In κ-
Snyder spaces (Sect. 5.3), the star product is non-associative
and the twist does not satisfy the cocycle condition. Field
theories defined on spaces with non-associative star prod-
ucts are constructed; see for example versions on κ-Snyder
space [44,45] and on Snyder space [42,58–60]. The prop-
erties of field theories on non-associative star products are
currently under investigation. In [40], a phenomenological
analysis related to vector-like deformations of the relativistic
quantum phase space and relativistic kinematics was elabo-
rated up to first order in the deformation, particularly on parti-
cle propagation in spacetime. Note that if NC coordinates x̂μ

close a Lie algebra in x̂μ, then the corresponding deformed
quantum phase space has a Hopf algebroid structure [46–
49]. Otherwise, the coproduct is non-coassociative and the
corresponding structure should be quasi-bialgebroid. A gen-
eralization of the Hopf algebroid which includes an antipode
is under investigation. The corresponding symmetry alge-
bra is a certain deformation of the igl(n) Hopf algebra. This
new framework is more suitable for addressing questions of
quantum gravity [62] and related new effects of Planck scale
physics.

We point out that in all Lie-deformed Minkowski spaces,
the problem of finding all possible linear realizations is
closely related to the classification of bicovariant differential
calculi on κ-Minkowski space [55]. Namely, the requirement
that differential calculus is bicovariant leads to finding all
possible Lie superalgebras generated by non-commutative
coordinates and non-commutative one-forms. The corre-
sponding equations for the structure constants from super
Jacobi identities are the same as (31). Linear realizations
expressed in terms of the Heisenberg algebra can be extended
to a super Heisenberg algebra by introducing Grassman coor-
dinates and momenta. The corresponding extended twists
generate whole differential calculi. In [63], a new class of lin-
ear realizations leading to Lie-deformed Minkowski spaces
has been proposed and the related twisted statistics properties
have been considered.

It is much easier to understand and to perform practical
calculations in the non-commutative space with a linear real-
ization of non-commutative coordinates. In [64–66] it is pro-
posed that the non-commutative metric should be a central
element of the whole differential algebra and that it should
encode some of the main properties of the quantum theory of
gravity. Linear realizations might provide a way to perform
such calculations for a large class of deformations, and for
all types of bicovariant differential calculi and predict new
contributions to the physics of quantum black holes and the
quantum origin of the cosmological constant [67,68].

Acknowledgements The work by S.M. and D.P. has been supported
by the Croatian Science Foundation under the Project No. IP-2014-09-

9582 as well as by the H2020 Twinning Project No. 692194, “RBI-T-
WINNING”.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

A Calculation of pWµ

The momentum pWμ is calculated from

pμ =
(

1 − e−K

K

)
α

μ p
W
α . (A1)

Multiplying by the inverse matrix leads to

pWμ =
( K

1 − e−K

)
α

μ pα (A2)

or, order by order,

pWμ =
(

1 + K(pW )

2
+ K(pW )2

12
− K(pW )4

720
+ O(K6)

)
α

μ pα.

(A3)

The first few terms in the expansion are

(pW(0))μ = pμ,

(pW(1))μ = Kα
μ(p)

2
pα,

(pW(2))μ =
(K(K(p)p)

4
+ K(p)2

12

)
α

μ pα,

(pW(3))μ =
(K(K(K(p)p)p)

8
+ K(K(p)2 p)

24

+ K(p)K(K(p)p)

24
+ K(K(p)p)K(p)

24

)
α

μ pα.

(A4)

For Kμνα leading to non-commutative coordinates x̂μ that
close a Lie algebra, i.e. [x̂μ, x̂ν] = iCμν

λ x̂λ, this can be
written without nesting:

(pW(0))μ = pμ,

(pW(1))μ = 1

2
Kα

μ pα,

(pW(2))μ =
[(K

3
− C

4

)
K

]
α

μ pα,

(pW(3))μ =
[(K

2
− C

3

)(
K − C

2

) K
2

]
α

μ pα,

(A5)
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where Kμ
ν = −Kμα

ν pα and Cμ
ν = −Cμα

ν pα , where
Cμα

ν = Kμα
ν − K αμ

ν are structure constants. For exam-
ple, for linear realizations of commutative coordinates, i.e.
[x̂μ, x̂ν] = 0, pWμ is given by

pWμ =
[− ln(1 − K)

K

]
α

μ pα. (A6)

For κ-Minkowski space, see [35].
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phase spaces are Hopf algebroids. Lett. Math. Phys. 107(3), 475–
503 (2017). arXiv:1409.8188

52. S. Meljanac, Z. Škoda, Hopf algebroid twists for deformation quan-
tization of linear Poisson structures. arXiv:1605.01376 [hep-th]

53. S. Meljanac, A. Samsarov, R. Štrajn, Kappa-deformation of phase
space; generalized Poincare algebras and R-matrix. JHEP 08, 127
(2012). arXiv:1204.4324 [hep-th]
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