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Abstract Predictions for our ability to distinguish quark
and gluon jets vary by more than a factor of two between
different parton showers. We study this problem using ana-
lytic resummed predictions for the thrust event shape up to
NNLL′ using e+e− → Z → qq̄ and e+e− → H → gg as
proxies for quark and gluon jets. We account for hadroniza-
tion effects through a nonperturbative shape function, and
include an estimate of both perturbative and hadronization
uncertainties. In contrast to previous studies, we find rea-
sonable agreement between our results and predictions from
both Pythia and Herwig parton showers. We find that this
is due to a noticeable improvement in the description of
gluon jets in the newest Herwig 7.1 compared to previous
versions.

1 Introduction

The reliable discrimination between quark-initiated and
gluon-initiated jets is a key goal of jet substructure meth-
ods [1–4]. It would provide a direct handle to distinguish
hard processes that lead to the same number but different
types of jets in the final state. A representative example is the
search for new physics, where the signal processes typically
produce quark jets, while QCD backgrounds predominantly
involve gluon jets from gluon radiation.

Jet substructure observables for quark-gluon discrimina-
tion have been studied extensively using both parton show-
ers and analytic calculations [5–14]. Much effort has been
dedicated to identifying the most promising observables to
achieve this goal. However, it has been known for a while that
the discrimination power one obtains differs a lot between
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different parton shower predictions. A detailed study has
been carried out in Refs. [10,14]. It uses the classifier

� = 1

2

∫
dλ

[
pq(λ) − pg(λ)

]2

pq(λ) + pg(λ)
(1)

to quantify the differences between the normalized quark
and gluon distributions pq,g for an observable λ, providing a
measure of the quark-gluon separation. The study found that
the various parton showers agree well in their predictions for
quark jets, which is not surprising since much information
on the shape of quark jets is available from LEP data. On
the other hand, there is still very little information on gluon
jets available, and correspondingly the study identified the
substantially different predictions for gluon jets as the main
culprit.

Parton showers are formally only accurate to (next-to-)
leading logarithmic order and do not provide an estimate
of their intrinsic perturbative (resummation) uncertainties.
Thus, it is not clear to what extent the observed differences
are a reflection of (and thus consistent within) the inherent
uncertainties, or whether only some of the parton showers
obtain correct predictions.

In this paper, we address this issue by considering the
thrust event shape for which we are able to obtain precise
theoretical predictions from analytic higher-order resummed
calculations, which can be used as a benchmark for parton-
shower predictions. An extensive survey of parton-shower
predictions as carried out in Refs. [10,14] is beyond our scope
here. We will instead restrict ourselves to Pythia [15] and
Herwig [16], as they represent the opposite extremes in the
results of Refs. [10,14].

Thrust has been calculated to (next-to-)next-to-next-to-
leading logarithmic ((N)NNLL) accuracy for quark jets pro-
duced in e+e− → qq̄ collisions [17,18]. Here, we also obtain
new predictions at NNLL′ for gluonic thrust using the toy
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process e+e− → H → gg, from which we can then calcu-
late the quark-gluon classifier separation at NNLL′.1 Thrust
is defined as

T = max t̂

∑
i |t̂ ·pi |∑
i |pi |

, τ = 1 − T, (2)

where the sum over i runs over all final-state particles. For
τ � 1, the final state consists of two back-to-back jets ini-
tiated by the back-to-back quarks or gluons produced in the
hard interaction. The different radiation patterns in these jets
is probed by τ , since in this limit

τ = M2
1 + M2

2

Q2 , (3)

where M1,2 are the invariant masses of the two (hemisphere)
jets and Q is the invariant mass of the collision. Thrust corre-
sponds closely to the generalized angularity (κ, β) = (1, 2),
which is the jet mass and was one of the benchmark observ-
ables considered in Refs. [10,14]. While we consider hemi-
sphere jets, the jet angularities only sum over particles within
a certain jet radius around the thrust axis. However, for our
purposes of providing a benchmark for the radiation pattern
produced by the parton showers this difference in the jet size
is not relevant.

Our numerical results include resummation up to NNLL′
resummation and include nonperturbative hadronization cor-
rections through a shape function [19–22]. We assess the per-
turbative uncertainty through appropriate variations of the
profile scales [18,22], and the nonperturbative uncertainty
by varying the nonperturbative parameter �, which quanti-
fies the leading nonperturbative corrections.

Figure 1 shows the classifier separation for quark-gluon
discrimination in Eq. (1) at parton and hadron level obtained
from our analytic predictions, compared toPythia8.223 [15]
and Herwig 7.1 [16]. Our resummed results are shown at
NLL′ and NNLL′, and include an estimate of the pertur-
bative and hadronization uncertainty. As we do not combine
our NNLL′ prediction with the full fixed-order NNLO result,
which would become relevant at large τ , we restrict the inte-
gration range here to τ < 0.15. Both Pythia’s parton shower
and Herwig’s default angular-ordered shower are consistent
with our results. We observe that the tension between these
two showers is much reduced here compared to what was
found in Refs. [10,14]. As we will see later, this is due to
an improved description of gluon jets in Herwig 7.1 com-
pared to earlier versions. Specifically, the parton shower now
preserves the virtuality rather than the transverse momentum
after multiple emissions, and has been tuned to gluon data for
the first time [23]. For comparison, we also include results

1 Since we consider normalized distributions, there is very little depen-
dence on the specific hard processes we consider.

Fig. 1 The quark-gluon classifier separation � for τ < 0.15 from
Pythia 8.223 (violet), Herwig 7.1 angular-ordered shower (green)
and dipole shower (yellow) compared to analytic resummation at NLL′
(blue) and NNLL′ (red). The results at parton and hadron level are shown
in dotted and solid, respectively. The uncertainty bars on the resummed
results show the perturbative uncertainty and also the sum of perturba-
tive and hadronization uncertainties (lighter outer bars at hadron level)

obtained using Herwig’s dipole shower, which still gives
substantially lower predictions compared to the others.

The outline of this paper is as follows: In Sect. 2 we present
the details of our calculation. Many of the ingredients can
be found in the literature but are reproduced here (and in
appendices) to make the paper self-contained. We present
numerical results in Sect. 3 for the thrust distribution of quark
and gluons jets, as well as the classifier separation calculated
from it, and performing comparisons toPythia andHerwig.
In Sect. 4 we conclude.

2 Calculation

The cross section for thrust factorizes [19,24–26]

dσi

dτ
= σi,0 |Ci (Q, μ)|2

∫
ds1 Ji (s1, μ)

∫
ds2 Ji (s2, μ)

×
∫

dk Si (k, μ) δ

(
τ − s1 + s2

Q2 − k

Q

)
+ dσ nons

i

dτ
,

(4)

where the label i = q corresponds to the hard process
Z → qq̄ and i = g corresponds to H → gg. The Born
cross section is denoted by σi,0, with hard virtual corrections
contained in the hard Wilson coefficient Ci . The jet func-
tions Ji describes the invariant masses s1,2 of the energetic
(collinear) radiation in the jets. The soft function Si encodes
the contribution k of soft radiation to the thrust measure-
ment. Contributions that do not factorize in this manner are
suppressed by relative O(τ ) and are contained in the nonsin-
gular cross section dσ nons

i /dτ .
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2.1 Resummation

For τ � 1 the thrust spectrum contains large logarithms
of τ , that we resum by utilizing the renormalization group
evolution that follows from the factorization in Eq. (4). This
is accomplished by evaluating Ci , Ji , and Si at their natural
scales

μC � Q, μJ � √
τQ, μS � τQ, (5)

where they each do not contain large logarithms, and evolv-
ing them to a common (and arbitrary) scale μ. The precise
resummation scales and their variations used in our numeri-
cal results are given in Eq. (11).

The renormalization group equations of the hard, jet, and
soft functions are given by

μ
d

dμ
Ci (Q, μ) = γ i

C (Q, μ)Ci (Q, μ), (6)

γ i
C (Q, μ) = �i

cusp[αs(μ)] ln
Q2

μ2 + 2γ i
C [αs(μ)],

μ
d

dμ
Ji (s, μ) =

∫
ds′ γ i

J (s − s′, μ) Ji (s
′, μ),

γ i
J (s, μ) = −2�i

cusp[αs(μ)] 1

μ2

[
μ2

s

]
+

+γ i
J [αs(μ)]δ(s),

μ
d

dμ
Si (k, μ) =

∫
dk′ γ i

S(k− k′, μ) Si (k
′, μ),

γ i
S(k, μ) = 4 �i

cusp[αs(μ)] 1

μ

[
μ

k

]
+

+γ i
S[αs(μ)] δ(k),

and involve the cusp anomalous dimension �i
cusp(αs) [27]

and a noncusp term γ i
C,J,S(αs). (The factor of 2 in front of

γ i
C (αs) is included to be consistent with our conventions in

e.g. Ref. [28].) The μ independence of the cross section in
Eq. (4) implies the consistency condition

4γ i
C (αs) + 2γ i

J (αs) + γ i
S(αs) = 0. (7)

We employ analytic solutions to the RG equations, which for
the jet and soft function follow from Refs. [29–31]. For our
implementation we use the results for the RG solution and
plus-function algebra derived in Ref. [22].

The ingredients that enter the cross section at various
orders of resummed perturbation theory are summarized in
Table 1. Our best predictions are at NNLL′ order, which
is closer to NNNLL than NNLL, as the inclusion of the
two-loop fixed-order ingredients has a larger effect than the
three-loop non-cusp and four-loop cusp anomalous dimen-
sion. Our NNLL′ predictions require the two-loop hard func-
tion [32–39], jet function [40,41], and soft function [42,43].
The RG evolution involves the three-loop QCD beta func-
tion [44,45], three-loop cusp anomalous dimension [46] and

Table 1 Perturbative ingredients at different orders in resummed per-
turbation theory

Ci , Ji , Si γ i
C , γ i

J , γ
i
S �cusp, β

LL 0-loop – 1-loop

NLL 0-loop 1-loop 2-loop

NLL′ 1-loop 1-loop 2-loop

NNLL 1-loop 2-loop 3-loop

NNLL′ 2-loop 2-loop 3-loop

NNNLL 2-loop 3-loop 4-loop

two-loop non-cusp anomalous dimensions [35,36,36,47].
All necessary expressions are collected in the appendices.
In our numerical analysis we take αs(mZ ) = 0.118.

2.2 Nonsingular corrections

To obtain a reliable description of the thrust spectrum for
large values of τ we also need to include the nonsingular
dσ nons

i /dτ in Eq. (4). These are obtained from the full O(αs)

expressions

dσq

dτ
= σq,0

αsCF

2π

1

τ(τ − 1)

[
3 − 9τ − 3τ 2 + 9τ 3

− (4 − 6τ + 6τ 2) ln
1 − 2τ

τ

]
,

dσg

dτ
= σg,0

αs

2π

{
CA

1

3τ(τ − 1)

[
11 − 68τ + 144τ 2 − 132τ 3

+ 45τ 4 − 12(1 − 2τ + 3τ 2 − 2τ 3 + τ 4) ln
1 − 2τ

τ

]

+ TFn f
2

3τ

[
2 − 21τ + 60τ 2 − 45τ 3

+ 6τ(1 − 2τ + 2τ 2) ln
1 − 2τ

τ

]}
, (8)

and subtracting the terms that are singular in the τ → 0 limit,
which are contained in the NLL′ resummed result. Adding the
O(αs) nonsingular corrections to the NLL′ resummed cross
section then yields the final matched NLL′+NLO result. The
above result for the quark case has been known for a long
time [48]. The gluon result was obtained by squaring and
summing the helicity amplitudes in Ref. [49] and performing
the required phase-space integrations to project onto the τ

spectrum. At NNLL′ we would also need the full O(α2
s )

terms to obtain the matched NNLL′+NNLO result, so we
restrict ourselves to small τ < 0.15 in this case, such that we
can neglect the nonsingular corrections.

2.3 Hadronization effects

The soft function in the factorization theorem in Eq. (4)
accounts for both perturbative soft radiation and nonpertur-
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bative hadronization effects. The hadronization effects can
be taken into account by factorizing the full soft function
as [19,21,22]

Si (k, μ) =
∫

dk′ Spert
i (k − k′, μ)Fi (k

′), (9)

where Spert
i (k, μ) contains the perturbative corrections and

Fi (k) is a nonperturbative shape function encoding hadroniza-
tion effects. This treatment is known to provide an excellent
description of hadronization effects in B-meson decays [50]
and e+e− event shapes [18]. It has furthermore been success-
fully utilized for quark and gluon jet mass spectra in hadron
collisions [51].

The shape function Fi (k) is normalized to unity and has
typical support for k ∼ �QCD. It should vanish at k = 0 and
fall off exponentially for k → ∞. We use a simple ansatz
that satisfies these basic criteria [51]

Fi (k
′) = k′

�2
i

e−k′/�i . (10)

The parameter �i captures the leading nonperturbative cor-
rection in the tail of the distribution, where it leads to a shift
τ → τ+2�i/Q. We take �q = 0.4 [18] and assume Casimir
scaling, �g = �qCA/CF . As an estimate of the nonpertur-
bative uncertainty we vary �q and �g over a large range as
discussed above Eq. (17). In the peak of the distribution in
principle the full functional form of Fi (k) enters. However,
given the large uncertainties for �i we currently include, the
precise functional form of Fi is not yet of practical impor-
tance.

2.4 Estimation of uncertainties

The canonical scales in Eq. (5) do not properly take into
account the transition from the resummation region into the
fixed-order region where τ is no longer small, or into the
nonperturbative region for τ � �QCD/Q. A smooth transi-
tion between these different regimes is accomplished using
profile scales [18,22].

For the choice of profiles scales and the estimation of per-
turbative uncertainties through their variations we follow the
approach of Ref. [52] adapted to the thrust-like resummation
as in Ref. [53]. The central values for the profile scales are
taken as

μH = μ, μS(τ ) = μ frun(τ ), μJ (τ ) = √
μS(τ )μ,

frun(τ ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

τ0(1 + τ 2

(2τ0)2 ) τ ≤ 2τ0

τ 2τ0 ≤ τ ≤ τ1

τ + (2−τ2−τ3)(τ−τ1)
2

2(τ2−τ1)(τ3−τ1)
τ1 ≤ τ ≤ τ2

1 − (2−τ1−τ2)(τ−τ3)
2

2(τ3−τ1)(τ3−τ2)
τ2 ≤ τ ≤ τ3

1 τ3 ≤ τ

(11)

Here, τ0 determines the boundary between the resumma-
tion and nonperturbative region, where the jet and soft
scales approach

√
τ0Q and τ0Q respectively. We choose

τ0 = 3GeV/Q, so that μJ , μS are always greater than �QCD.
From τ0 onwards we have the canonical resummation scales
in Eq. (5) up to τ1 = 0.1, where the different scales are still
well separated. Then we smoothly turn the resummation off
by letting frun(τ ) go to 1. The resummation is completely
turned off at τ3 = 1/3, where the singular and nonsingular
contributions start to cancel each other exactly at O(αs). The
central curve of our prediction corresponds to

μ = Q, τ0 = 3GeV

Q
, τ1 = 0.1,

τ2 = τ1 + τ3

2
, τ3 = 1

3
. (12)

The perturbative uncertainty is obtained as the quadratic
sum of a fixed-order and a resummation contribution,

δpert =
√

δ2
FO + δ2

resum. (13)

The fixed-order uncertainty is estimated by the maximum
observed deviation from varying the parameter μ in Eq. (11)
by a factor of two,

δFO(τ ) = max
μ={2Q,Q/2}

∣∣∣∣dσ

dτ
− dσcentral

dτ

∣∣∣∣. (14)

The resummation uncertainty is estimated by varying μJ,S

by [53]

μ
vary
S (τ, α) = f α

vary(τ ) μS(τ ),

μ
vary
J (τ, α, β) = μ

vary
S (τ, α)1/2−βμ1/2+β,

fvary(τ ) =
⎧⎨
⎩

2(1 − τ 2/τ 2
3 ) τ ≤ τ3/2

1 + 2(1 − τ/τ3)
2 τ3/2 ≤ τ ≤ τ3

1 τ3 ≤ τ

(15)

and taking the maximum absolute deviation among all vari-
ations

δresum(τ ) = max
(α,β)

∣∣∣∣dσ

dτ
− dσcentral

dτ

∣∣∣∣, (16)

with (α, β) ∈ {(1, 0), (−1, 0), (0, 1/6), (0,−1/6)}. Fur-
thermore, we vary the transition points τ0 and τ1 of the resum-
mation region by ± 25%. These variations however have a
much smaller effect than the α, β variations, and their effect
on the final resummation uncertainty is almost negligible.

To account for hadronization uncertainties, we separately
vary �q by ± 50%, �g by ± 50%, and simultaneously vary
�q and �g by ± 75%. The hadronization uncertainty δnonp is
then taken as the maximum deviation under these variations.
It is treated as a separate uncertainty source uncorrelated from
the perturbative uncertainty, with the total uncertainty given
by their quadratic sum,

δ =
√

δ2
pert + δ2

nonp. (17)

123



Eur. Phys. J. C (2017) 77 :770 Page 5 of 10 770

Fig. 2 The normalized thrust spectrum at NLL (green), NLL′ (blue),
and NNLL′ (orange) for quarks (left panel) and gluons (right panel).
Since the quark distribution on the left is peaked at small τ , we restrict

the plot range to τ < 0.05. The bands indicate the perturbative uncer-
tainty at each order, obtained using Eq. (13)

We follow a similar procedure to assess the uncertainty on
the classifier separation. However, we do not vary the quark
distribution and gluon distribution simultaneously, as varying
them in opposite directions would lead to an unrealistic infla-
tion of the uncertainty. Instead, we obtain the uncertainty on
the classifier separation by taking the central quark result and
varying the gluon distribution, and vice versa. This amounts
to treating the perturbative uncertainties in the quark and
gluon distributions as uncorrelated sources of uncertainties.

3 Results

We now present our numerical results and compare these to
Pythia and Herwig. We restrict ourselves to normalized
distributions, as these are the input entering in the classifier
separation in Eq. (1).

Figure 2 shows the thrust spectrum for quarks and glu-
ons at various orders in resummed perturbation theory. The
bands show the perturbative uncertainty, obtained using the
procedure described in Sect. 2.4. The overlapping uncertainty
bands suggest that our uncertainty estimate is reasonable, and
the reduction of the uncertainty at higher orders indicates the
convergence of our resummed predictions. This is not true for
large values of τ , because we did not include the nonsingular
corrections dσ nons/dτ that are important in this region.

In Figs. 3 and 4 we compare our predictions for quarks
and gluons at parton and hadron level to Pythia and Her-
wig. Note that the peak of the quark distribution is in the
nonperturbative regime τQ � �QCD. Therefore we restrict
to τ < 0.1 when considering the quark distributions in Fig. 3,
allowing the use of the NNLL′ result. On the other hand, the
gluon distribution peaks at much higher values, and so we
consider the gluon distribution over the full τ range using
the matched result at NLL′+NLO.

For quarks at parton level, shown in the left panel of Fig. 3,
both Pythia and Herwig agree well with the resummed
result and also with each other. The only exception is in the
nonperturbative regime at very small τ , where the compar-
ison of parton-level predictions is not very meaningful. At
the hadron level (right panel of Fig. 3) we also include the
nonperturbative uncertainty in our band, and our predictions
agree well with Pythia and Herwig. Note that Pythia and
Herwig at hadron level agree with each other even better
than at parton level. This is of course not surprising, as their
hadronization models have been tuned to the same LEP data.
The differences seen at parton level are likely due to a higher
shower cutoff scale inHerwig (which would also explain the
events with τ = 0), and is compensated for by the hadroniza-
tion [14].

We now turn to the results for gluons shown in Fig. 4.
Here, there differences between Pythia and Herwig are
much larger at both parton and hadron level. At parton level
and small values of τ , the Herwig 7.1 and Pythia pre-
dictions touch opposite sides of the uncertainty band of the
NLL′+NLO result. Thus, although the differences in the par-
ton shower results are clearly sizeable, they might still be con-
sidered to be within their intrinsic uncertainties, also since
the formal accuracy of the showers is less than that of the
NLL′+NLO result. For large values beyond τ > 0.2 there
are differences between Pythia and our result. However, this
region is not described by the resummation but the fixed-
order calculation. At NLO there are only three partons, so
τ ≤ 1/3. Although Pythia produces events with τ > 1/3,
it does not do so with any formal accuracy, since the parton
shower is built from collinear/soft limits of QCD which do
not apply here.

For gluons at hadron level, Pythia agrees well with our
result. The agreement for Herwig 7.1 is less good, though
the differences are not that large either. However, we see that

123



770 Page 6 of 10 Eur. Phys. J. C (2017) 77 :770

Fig. 3 The normalized thrust spectrum for quarks at NNLL′ (orange
band) compared to Pythia (violet) and Herwig’s angular-ordered
(green) and dipole shower (yellow) at parton level (left panel) and

hadron level (right panel). The band in the left panel shows the per-
turbative uncertainty in Eq. (13). In the right panel, it shows the sum of
perturbative and nonperturbative uncertainties as in Eq. (17)

Fig. 4 The normalized thrust spectrum for gluons at NLL′+NLO (blue
band) compared to Pythia (violet) and Herwig’s angular-ordered
(green) and dipole shower (yellow) at parton level (left panel) and
hadron level (right panel). The band in the left panel shows the per-
turbative uncertainty in Eq. (13). In the right panel, it shows the sum of

perturbative and nonperturbative uncertainties as in Eq. (17). The result
from the angular-ordered shower inHerwig 7.0.4 is shown in light gray,
which differs significantly from the resummed results, highlighting the
noticeable improvement in Herwig 7.1

the angular ordered shower from Herwig 7.0.4 shown by the
gray lines shows clear discrepancies from our predictions. (It
also yields similarly large differences between Herwig and
Pythia for the quark-gluon separation as observed for Her-
wig 2.7.1 in Refs. [10,14].) This highlights the substantial
improvement in the description of gluon jets in the latest
version of Herwig.

Finally, in Fig. 5 we show the classifier separation at
NLL′+NLO compared to Pythia and Herwig at parton and
hadron level. This is similar to Fig. 1, but we do not impose
a cut on thrust and therefore omit the NNLL′ result. The
perturbative uncertainty δpert is shown, as well as the total
uncertainty. Both Pythia and Herwig agree with our results
within uncertainties. They differ from each other more than
in Fig. 1, which is due to the relatively large differences in the
gluon distribution at larger τ . Herwig predicts a lower clas-

sifier separation �, because its gluon distribution is peaked at
smaller values of τ and thus closer to the quark distribution.
As in Fig. 1, this is most pronounced for the Herwig dipole
shower, which has the gluon distribution with the lowest peak
and as a result gives the lowest �.

Finally, it is worth noting that the resummation and
hadronization uncertainties on the classifier separation are of
similar size. Thus at higher orders the hadronization uncer-
tainty currently becomes the limiting factor, as can be seen in
the NNLL′ results in Fig. 1. This is of course also due to our
rather generous variations for the hadronization parameter
�i . This situation can be improved by using a more refined
treatment than carried out here, including renormalon sub-
tractions and performing a fit to LEP data as done in Ref. [18],
which yields a much more precise determination of �q . How-
ever, one would then also have to perform a more careful
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Fig. 5 Analogous to Fig. 1 but without a cut on τ

treatment of the full shape function in the nonperturbative
peak region of the quark distribution, for example using the
methods of Refs. [22,50].

4 Conclusions

Large differences have been observed between parton show-
ers in their prediction for our ability to discriminate quark
jets from gluon jets. This inspired us to consider the thrust
event shape, which can be calculated very precisely, obtain-
ing a sample of quark jets from Z → qq̄ and gluon jets
from H → gg. We compared our analytic results up to
NNLL′ to Pythia and Herwig, which represented the two
opposite extremes in an earlier study [10,14]. Our results are
consistent with both Pythia and Herwig, though closest to
Pythia. This is due to the improved description of gluon jets
in the most recent Herwig release, while the previous Her-
wig 7.0.4 showed substantial differences in the gluon distri-
bution. Resummed predictions, like those obtained here, can
thus serve as an important standard candle for parton show-
ers. The perturbative uncertainties can be reduced further by
going to higher orders. At NNLL′ the uncertainty from non-
perturbative effects currently constitutes the limiting factor
in the resummed results, which can be improved in the future
with a more refined treatment of nonperturbative corrections.
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Appendix A: Anomalous dimensions

Expanding the beta function and anomalous dimensions in
powers of αs ,

β(αs) = −2αs

∞∑
n=0

βn

( αs

4π

)n+1
,

�i
cusp(αs) =

∞∑
n=0

�i
n

( αs

4π

)n+1
,

γ i (αs) =
∞∑
n=0

γ i
n

( αs

4π

)n+1
, (A1)

the coefficients are given by

β0 = 11

3
CA − 4

3
TF n f ,

β1 = 34

3
C2

A −
(

20

3
CA + 4CF

)
TF n f ,

β2 = 2857

54
C3

A

+
(
C2
F − 205

18
CFCA − 1415

54
C2

A

)
2TF n f

+
(

11

9
CF + 79

54
CA

)
4T 2

F n2
f ,

�
q
0 = 4CF ,

�
q
1 = 4CF

[(
67

9
− π2

3

)
CA − 20

9
TF n f

]
,

�
q
2 = 4CF

[(
245

6
− 134π2

27
+ 11π4

45
+ 22ζ3

3

)
C2

A

−
(

418

27
− 40π2

27
+ 56ζ3

3

)
CA TF n f

−
(

55

3
− 16ζ3

)
CF TF n f − 16

27
T 2
F n2

f

]
,

γ
q
C 0 = −3CF ,

γ
q
C 1 = −CF

[(
41

9
− 26ζ3

)
CA +

(
3

2
− 2π2 + 24ζ3

)
CF

+
(

65

18
+ π2

2

)
β0

]
,

γ
q
S 0 = 0,

γ
q
S 1 = CF

[(
−128

9
+ 56ζ3

)
CA +

(
−112

9
+ 2π2

3

)
β0

]
,

γ
g
C 0 = −β0,

γ
g
C 1 =

(
−59

9
+ 2ζ3

)
C2

A +
(

−19

9
+ π2

6

)
CA β0 − β1.

(A2)
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The expressions for �g and γ
g
S are omitted, as they can be

obtained from Casimir scaling

�
g
n = CA

CF
�
q
n , γ

g
S n = CA

CF
γ
q
S n . (A3)

The coefficients γ i
J of the non-cusp anomalous dimension of

the jet function follow from Eq. (7).

Appendix B: Fixed-Order Ingredients

The form of the Wilson coefficient, jet function and soft func-
tion is highly constrained by the anomalous dimensions in
Eq. (6),

Cq(Q, μ) = 1 + αs(μ)

4π

[
−�

q
0

4
ln2

(−q2 − i0

μ2

)

− γ
q
C 0 ln

(−q2 − i0

μ2

)
+ cq0

]

+
(

αs(μ)

4π

)2
[

(�
q
0 )2

32
ln4

(−q2 − i0

μ2

)

+ �
q
0 (3γ

q
C 0 + β0)

12
ln3

(−q2 − i0

μ2

)

+ 2(γ
q
C 0)

2 + 2β0γ
q
C 0 − �

q
1 − �

q
0 c

q
0

4
ln2

(−q2 − i0

μ2

)

− (γ
q
C 1 + γ

q
C 0c

q
0 + β0c

q
0 ) ln

(−q2 − i0

μ2

)
+ cq1

]
,

Cg(Q, μ) = αs

{
1 + αs(μ)

4π

[
−�

g
0

4
ln2

(−q2 − i0

μ2

)

− (γ
g
C 0 + β0) ln

(−q2 − i0

μ2

)
+ cg0

]

+
(

αs(μ)

4π

)2
[

(�
g
0 )2

32
ln4

(−q2 − i0

μ2

)

+ �
g
0 (3γ

g
C 0 + 4β0)

12
ln3

(−q2 − i0

μ2

)

+ 2(γ
g
C 0)

2 + 6β0γ
g
C 0 + 4β2

0 − �
g
1 − �

g
0 c

g
0

4
ln2

(−q2 − i0

μ2

)

− (γ
g
C 1 + γ

g
C 0c

g
0 + 2β0c

g
0 + β1) ln

(−q2 − i0

μ2

)
+ cg1

}
,

Ji (s, μ) = δ(s) + αs(μ)

4π

[
�i

0

μ2

(
ln(s/μ2)

(s/μ2)

)
+

− γ i
J 0

2μ2

1

(s/μ2)+
+ j i0 δ(s)

]

+
(

αs(μ)

4π

)2
[

(�i
0)

2

2μ2

(
ln3(s/μ2)

(s/μ2)

)
+

−�i
0

2β0 + 3γ i
J 0

4μ2

(
ln2(s/μ2)

(s/μ2)

)
+

+
(
j i0�

i
0 + β0γ

i
J 0

2
+ (γ i

J 0)
2

4
− π2(�i

0)
2

6
+ �i

1

)

1

μ2

(
ln(s/μ2)

(s/μ2)

)
+

+
(

− j i0

(
β0 + γ i

J 0

2

)
− γ i

J 1

2
+ π2γ i

J 0�
i
0

12
+ ζ3(�

i
0)

2

)

1

μ2

1

(s/μ2)+
+ j i1δ(s)

]
,

Si (k, μ) = δ(k) + αs(μ)

4π

[
−4�i

0

μ

(
ln(k/μ)

(k/μ)

)
+

− γ i
S 0

μ

(
1

(k/μ)

)
+

+ si0 δ(k)

]

+
(

αs(μ)

4π

)2
[

8(�i
0)

2

μ

(
ln3(k/μ)

(k/μ)

)
+

+ �i
0

4β0 + 6γ i
S 0

μ

(
ln2(k/μ)

(k/μ)

)
+

+
(
−4si0�

i
0 + 2β0γ

i
S 0 + (γ i

S 0)
2

− 8π2(�i
0)

2

3
− 4�i

1

)
1

μ

(
ln(k/μ)

(k/μ)

)
+

+
(

−si0

(
2β0 + γ i

S 0

)
− γ i

S 1 − 2π2γ i
S 0�

i
0

3

+ 16ζ3(�
i
0)

2
) 1

μ

1

(k/μ)+
+ si1δ(k)

]
. (B1)

The difference between the expressions for Cq and Cg is due
to the additional prefactor of αs in the latter. The remaining
constants are given by

cq0 =
(

−8 + π2

6

)
CF ,

cq1 =
(

255

8
+ 7π2

2
− 30ζ3 − 83π4

360

)
C2
F

+
(

−51157

648
− 337π2

108
+ 313ζ3

9
+ 11π4

45

)
CFCA

+
(

4085

162
+ 23π2

27
+ 4ζ3

9

)
CFTFn f ,

cg0 =
(

5 + π2

6

)
CA − 3CF ,

cg1 = (7C2
A + 11CACF − 6CFβ0) ln

(−q2 − i0

m2
t

)

+
(

−419

27
+ 7π2

6
+ π4

72
− 44ζ3

)
C2

A

+
(

−217

2
− π2

2
+ 44ζ3

)
CACF

+
(

2255

108
+ 5π2

12
+ 23ζ3

3

)
CAβ0 − 5

6
CATF + 27

2
C2
F
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+
(

41

2
− 12ζ3

)
CFβ0 − 4

3
CFTF + O

(
q2

4m2
t

)
,

jq0 = (7 − π2)CF ,

jq1 =
(

205

8
− 67π2

6
+ 14π4

15
− 18ζ 3

)
C2
F

+
(

53129

648
− 208π2

27
− 17π4

180
− 206ζ3

9

)
CFCA

+
(

4057

162
+ 68π2

27
+ 16ζ3

9

)
CFTFn f ,

j g0 =
(

4

3
− π2

)
CA + 5

3
β0,

j g1 =
(

4255

108
− 26π2

9
+ 151π4

180
− 72ζ 3

)
C2

A

−
(

115

108
+ 65π2

18
− 56ζ3

3

)
CAβ0

−
(

25

9
− π2

3

)
β2

0 +
(

55

12
− 4ζ3

)
β2

0 ,

sq0 = π2

3
CF ,

sq1 = −3π4

10
C2
F +

(−640

27
+ 4π2

3
+ 22π4

45

)
CFCA

+
(−20

27
− 37π2

18
+ 58ζ3

3

)
CFβ0. (B2)

The coefficients sgn for the gluon soft function can directly
be obtained from sqn by replacing CF → CA.
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