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Abstract We revisit the definition and some of the char-
acteristics of quadratic theories of gravity with torsion. We
start from a Lagrangian density quadratic in the curvature
and torsion tensors. By assuming that General Relativity
should be recovered when the torsion vanishes and investi-
gating the behaviour of the vector and pseudo-vector torsion
fields in the weak-gravity regime, we present a set of neces-
sary conditions for the stability of these theories. Moreover,
we explicitly obtain the gravitational field equations using
the Palatini variational principle with the metricity condition
implemented via a Lagrange multiplier.

1 Introduction

General relativity (GR) radically changed our understanding
of the universe. The predictions of this elegant theory have
been confirmed up to the date [1,2]. In order to fit extragalac-
tic and cosmological observational data, however, the pres-
ence of a non-vanishing cosmological constant and six times
more dark matter than ordinary matter have to be assumed
in this framework [3]. In addition, the observed value of this
cosmological constant differs greatly from the value expected
for the vacuum energy. On the other hand, while the strong
and electroweak forces are renormalisable gauge theories,
that is not the case for GR, and the compatibility of GR with
the quantum realm is still a matter of debate. Given this situa-
tion, there has been a renewed interest in alternative theories
of gravity, which modify the predictions of GR.

A particular approach to formulating alternative theories
of gravity involves an extension of the geometrical treatment
that covers the microscopic properties of matter [4]. It should
be noted that the mass is not enough to characterize particles
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at the quantum level given that they have another indepen-
dent label, that is, the spin. Whereas at macroscopic scales the
energy-momentum tensor is enough to describe the source of
gravity, a description of the spacetime distribution of the spin
density is needed at microscopic scales. Moreover, there are
macroscopic configurations that may also need a description
of the spin distribution, as super-massive objects (e.g. black
holes or neutron stars with nuclear polarisation). In this spirit,
a new geometrical concept should be related to the spin dis-
tribution in the same way that spacetime curvature is related
to the energy-momentum distribution. Torsion is a natural
candidate for this purpose [4,5] and an important advantage
of a theory of gravity with torsion is that it can be formulated
as a gauge theory [6–8].

Since 1924 many authors have considered theories of
gravity in a Riemann–Cartan U4 spacetime. In this manifold
the non-vanishing torsion can be coupled to the intrinsic spin
density of matter and, in this way, the spin part of the Poincaré
group can change the geometry of the manifold as the energy-
momentum tensor does it. The first attempt to introduce tor-
sion in a theory of gravity was the Einstein–Cartan theory,
which is a reformulation of GR in a U4 spacetime. In this
theory the scalar curvature of the Einstein–Hilbert action
is constructed from a U4 connection instead of using the
Christoffel symbols. However, the resulting theory was not
completely satisfactory because the field equations relate the
torsion and its source in an algebraic way and, therefore, tor-
sion is not dynamical. Hence the torsion field vanishes in vac-
uum and the Einstein–Cartan theory collapses to GR except
for unobservable corrections to the energy-momentum ten-
sor [4]. In order to obtain a theory with propagating torsion,
we need to consider an action that is at least quadratic in the
curvature tensors [4,6–11]. Moreover, an important advan-
tage of adding quadratic terms R2 to the Einstein–Hilbert
action is the possibility of making the theory renormalisable
[9]. In addition, it can be shown [4,6] that, considering a
gauge description, the torsion and curvature tensors corre-
spond to the field-strength tensors of the gauge potentials of
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the Poincaré group (e a
μ ,w ab

μ ), which are the vierbein and
the local Lorentz connection, respectively. Thus, a pure R2

gauge theory of gravity has some resemblance to electroweak
and strong theories.

From an experimental point of view there have been many
attempts to detect torsion or to set an upper bound to its
gravitational effects. One of the most debated attempts was
the use of the Gravity Probe B experiment to measure tor-
sion effects [12]. Nevertheless, this experiment was criticized
because torsion will never couple to the gyroscopes installed
in the satellite [13]. Therefore, this probe cannot measure
the gravitational effects due to torsion. On the other hand,
other unsuccessful experiments aimed to constrain torsion
with accurate measurements on the perihelion advance and
the orbital geodetic effect of a satellite [14]. The experimen-
tal difficulty is the need of dealing with elementary particles
with spin to obtain a maximal coupling with torsion.

In this paper we present a self-contained introduction to
quadratic theories of gravity with torsion in the geometri-
cal approach (gauge treatment is not considered). We partly
recover well-known results about the stability of these theo-
ries using simple methods. Therefore, we simplify the exis-
tent mathematical treatment and reinforce the critical dis-
cussion as regards some controversial results published in
the literature.

The paper is organized as follows: In Sect. 2 we present a
general introduction to the basic concepts on general affine
geometries and introduce the conventions used throughout
the paper. In Sect. 3 we present our main results. In the first
place, we consider a Lagrangian density quadratic in the cur-
vature and torsion tensors. In Sect. 3.1 we discuss the dif-
ferent methods presented in the literature to obtain the field
equations and explicitly derive them in the Palatini formal-
ism. In Sect. 3.2 we obtain conditions on the parameters of the
Lagrangian necessary to avoid large deviations from GR and
instabilities. Then, in Sect. 3.3, we analyse the Lagrangian
density with the aim of setting necessary conditions for avoid-
ing ghost and tachyon instabilities. The conclusions are sum-
marized in Sect. 4. We relegate some calculations and fur-
ther comments to the appendices: in Appendix A we include
the Gauss–Bonnet term in Riemann–Cartan geometries; in
Appendix B we include detailed expressions necessary to
obtain the equations of the dynamics using the Palatini for-
malism; in Appendix C we discuss the source terms of these
equations; and, in Appendix D, we include relevant expres-
sions for the study of the vector and pseudo-vector torsion
fields around Minkowski.

2 Basic concepts and conventions

The geometric structure of a manifold can be catalogued by
the properties of the affine connection. A general affine con-

nection Γ̃ provides three main characteristics: curvature, tor-
sion, and non-metricity. Combinations of these quantities in
the affine connection generate the geometric structure [5]. In
GR it is assumed that the spacetime geometry is described by
a Riemannian manifold, thus the affine connection reduces
to the so-called Levi-Civita connection and the gravitational
effects are only produced by the consequent curvature in
terms of the metric tensor alone. Nevertheless, in a gen-
eral geometrical theory of gravity the gravitational effects
are generated by the whole connection, which involves a
post-Riemannian approach described by curvature, torsion
and non-metricity. In this scheme, there are many ways to
deal with torsion and non-metricity due to different conven-
tions. For that reason, it is important to set the conventions
and definitions used throughout this work. Thus, the notation
assumed for the symmetric and the antisymmetric part of a
tensor A is

A(μ1...μs ) ≡ 1

s!
∑

π∈P(s)

Aπ(μ1)···π(μs ), (1)

A[μ1...μs ] ≡ 1

s!
∑

π∈P(s)

sgn(π)Aπ(μ1)···π(μs ), (2)

respectively, where P(s) is the set of all the permutations
of 1, . . . , s and sgn(π) is positive for even permutations
whereas it is negative for odd permutations.

In the first place, the Cartan torsion is defined as the anti-
symmetric part of the affine connection as [4,15–17]

Tμ·νσ ≡ Γ̃
μ
·[νσ ]. (3)

Note that a dot appears below the index μ to indicate the
position that it takes when it is lowered with the metric. As
the difference of two connections transforms as a tensor, the
Cartan torsion is a tensor. Thus, from now on we call it just
the torsion and emphasise that it cannot be eliminated with a
suitable change of coordinates.

In the second place, non-metricity can also be described
by a third rank tensor. This is

Qρμν ≡ ∇̃ρgμν, (4)

where ∇̃ is the covariant derivative defined from the affine
connection Γ̃ . The non-metricity tensor is usually split into
a trace vector ωρ ≡ 1

4 Q
ν

ρν· , called the Weyl vector [18], and

a traceless part Qρμν ,

Qρμν = wρgμν + Qρμν. (5)

It should be noted that there are manifolds with non-metricity
where the cancellation of the ωρ or the traceless part of Q
are demanded.
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Since the general connection Γ̃ is asymmetric in the last
two indices, a convention is needed for the covariant deriva-
tive of a tensor. Let Aμ1···μr· ··· · ν1···νs be the components of a tensor
type (r, s), then

∇̃ρ A
μ1···μr· ··· · ν1···νs ≡ ∂ρ A

μ1···μr· ··· · ν1···νs

+
r∑

i=1

Γ̃
μi
·λρ A

μ1·λ·μr· ··· · ν1···νs

−
s∑

j=1

Γ̃ λ·ν jρ
Aμ1···μr

· ··· · ν1·λ·νs . (6)

It is important to emphasise the syntax of the lower indices
in the affine connections, that is, the index ρ of the derivative
is written in the last position in the affine connection.

Using the definitions presented in this section, the general
connection Γ̃ is written as [4,15,19]

Γ̃ μ·νσ = Γ μ·νσ + Wμ·νσ , (7)

with Γ
μ·νσ the Levi-Civita connection,

Γ μ·νσ = 1

2
gμρΔαβγ

σνρ ∂αgβγ , (8)

which is expressed in a compact form by the permutation
tensor [20]

Δαβγ
σνρ = δ α

σ δ β
ν δ γ

ρ + δ α
ν δ β

ρ δ γ
σ − δ α

ρ δ β
σ δ γ

ν , (9)

and the additional tensor Wμ
.νσ defined by the following

expression:

Wμ·νσ = Kμ
.νσ + 1

2

(
Qμ·νσ − Q μ

σ ·ν − Q μ
ν·σ

)
, (10)

where Kμ
.νσ is called the contortion tensor,

Kμ
.νσ = Tμ

.νσ − T μ
ν.σ − T μ

σ .ν . (11)

Note that Qρμν is symmetric in the last two indices, while
Tμ·νσ is antisymmetric in these indices. However, the contor-
tion, Kμ

.νσ , is antisymmetric in the first pair of indices. This
property ensures the existence of a metric-compatible con-
nection when the non-metricity tensor vanishes.

Furthermore, it is useful to write the torsion through its
three irreducible components. These are [19]

(i) the trace vector Tμ
.νμ ≡ Tν ;

(ii) the pseudo-trace axial vector Sν ≡ εαβσνTαβσ ;
(iii) the tensor qα

.βσ , which satisfies qα
.βα = 0 and

εαβσνqαβσ = 0.

Thus, the torsion field can be rewritten as

T α·βμ = 1

3
(Tβδα

μ − Tμδα
β) + 1

6
gασ εσβμνS

ν + qα·βμ . (12)

The introduction of these new geometrical degrees of free-
dom leads to the generalisation of the usual definition of the
curvature tensor in the Riemann spacetime, [∇ρ,∇σ ]Vμ =
Rμ·νρσV ν , by the following commutative relations associated
with a connection Γ̃ :

[∇̃ρ, ∇̃σ ]Vμ = R̃μ·νρσV
ν + 2T α·ρσ ∇̃αV

μ, (13)

where the curvature tensor reads

R̃μ·νρσ = ∂ρΓ̃ μ·νσ − ∂σ Γ̃ μ·νρ + Γ̃
μ
·λρΓ̃ λ·νσ − Γ̃

μ
·λσ Γ̃ λ·νρ . (14)

Using Eq. (7), the curvature tensor can be rewritten as

R̃μ·νρσ = Rμ·νρσ + ∇ρW
μ·νσ − ∇σW

μ·νρ + Wμ
·λρW

λ·νσ

−Wμ
·λσW

λ·νρ, (15)

with Rμ·νρσ the curvature tensor of the Riemann spacetime,
commonly called the Riemann tensor, and ∇ the covariant
derivative constructed from the Levi-Civita connection.

On the other hand, the generalisation of the two Bianchi
identities can be computed from Eq. (14). Taking into account
Eq. (3), the new Bianchi identities are

R̃μ
·[νρσ ] = 2∇̃[ρTμ

·νσ ] − 4T λ·[νρT
μ
·σ ]λ, (16)

∇̃[μ| R̃α·β|νρ] = −2T λ·[μν| R̃α·β|ρ]λ . (17)

Moreover, it is well known that not all the components of
the curvature tensor (14) are independent. By definition, this
tensor is antisymmetric in the last pair of indices R̃μ·νρσ =
R̃μ

·ν[ρσ ]. A simple calculation using Eq. (15) shows that

R̃(μν)ρσ = ∇[ρQσ ]μν + T λ·ρσ Qλμν. (18)

Thus, when the connection is set to be metric-compatible,
the curvature tensor is also antisymmetric in the first pair
of indices. The symmetry of the curvature tensor under the
exchange of pair of indices depends on the torsion and non-
metricity tensors. In general, for non-trivial values for those
tensors, this symmetry does not hold. However, there are
particular conditions under which the exchange symmetry is
recovered for non-trivial values.

From now on we consider a metric-compatible connec-
tion, focusing our attention only on curvature and torsion.
We denote by a hat the objects constructed from a metric-
compatible connection with torsion:

Γ̂ ≡ Γ̃

∣∣∣
Q=0

. (19)

123



755 Page 4 of 16 Eur. Phys. J. C (2017) 77 :755

All the conventions and identities that we have already pre-
sented are, of course, still valid. The Ricci tensor and the
scalar curvature are obtained with the usual contractions,
R̂μν = R̂σ·μσν and R̂ = gμν R̂μν . However, the absence of
symmetry in the exchange of pair of indices in Eq. (14) allows
the Ricci tensor R̂μν to be non-symmetric. Indeed, the anti-
symmetric part of this tensor is

R̂[μν] = ∇̂ρ(T ρ·μν + δρ
μTν − δρ

νTμ) − 2TρT
ρ·μν . (20)

In view of this identity, a modified torsion tensor can be
defined

�

T ρ·μν ≡ T ρ·μν + δρ
μTν − δρ

νTμ, (21)

and a modified covariant derivative can be introduced,

∇ρ ≡ ∇̂ρ − 2Tρ. (22)

Hence the antisymmetric part of the Ricci tensor is rewritten
as

R[μν] = ∇ρ

�

T ρ·μν. (23)

It should be stressed the importance of this modified deriva-
tive for vectors, since ∂μ(

√−gAμ) = √−g∇μAμ, for any
vector Aμ.

3 Quadratic theory of gravity

As we have already argued in the introduction, we are going
to consider an action that is quadratic in the curvature tensor,
in order to obtain a theory with propagating torsion [4,6–11].
Excluding parity violating pieces, a total of six independent
scalars can be formed from the curvature tensor (14) and
its contractions. In addition, three other scalars can be con-
structed from the torsion tensor (3). On the other hand, the
Gauss–Bonnet action is known to lead to a total divergence
in a 4-dimensional Riemannian manifold and, therefore, it
does not produce any contribution through the variational
process of the action. It is worth noting that the Gauss–Bonnet
Lagrangian does not contribute to the field equations even in a
Riemann–Cartan geometry [6,21].1 Therefore, the terms R̂2,
R̂νσ R̂σν , and R̂μνρσ R̂ρσμν in the Lagrangian density are not
independent. Throughout this work, we are going to consider
the quadratic Lagrangian density from Poincaré gauge theory
of gravity, as written in Refs. [6,7,10,11]. This is

1 We include the definition of the Gauss–Bonnet action in the presence
of the torsion and check this property in Appendix A, since incompatible
definitions are used throughout the literature.

Lg = −λR̂ + 1

12
(4a + b + 3λ)TμνρT

μνρ

+ 1

6
(−2a + b − 3λ)TμνρT

νρμ

+ 1

3
(−a + 2c − 3λ)T λ·μλT

·μρ
ρ

+ 1

6
(2p + q)R̂μνρσ R̂

μνρσ

+ 1

6
(2p + q − 6r)R̂μνρσ R̂

ρσμν

+ 2

3
(p − q)R̂μνρσ R̂

μρνσ

+ (s + t)R̂νσ R̂
νσ + (s − t)R̂νσ R̂

σν , (24)

with λ,a, b, c, p,q, r , s and t the free parameters of the theory.
The particular combinations of the parameters that appear in
the Lagrangian density have been chosen for convenience
without loss of generality. Note that the scalar curvature is
also included, which is the only term present in the Einstein–
Cartan theory. The procedure to obtain the field equations
of this Lagrangian density is summarized in Sect. 3.1. In
addition, parity violating pieces can also be assumed in a
natural way in the Lagrangian density leading to interesting
results; see Refs. [8,22].

In this work we are interested in the stability of theories
of gravity with dynamical torsion that avoid large deviations
from the predictions of GR where this theory is satisfactory.
In this spirit, we focus on quadratic theories, because that
is the minimal modification leading to dynamical torsion,
and we will not assume that all the components obtained
by the irreducible decomposition of the torsion necessarily
propagate. In order to study the stability of the theory, we will
focus on two regimes where the metric and torsion degrees
of freedom completely decoupled from each other through
the consideration of the following conditions:

(a) GR must be recovered when the torsion vanishes.
(b) The theory must be stable in the weak-gravity regime.

Note that condition (a) implies both that the general relativis-
tic predictions will be recovered when the torsion is small and
that the theory is stable at least when the torsion vanishes.
This condition will be imposed in Sect. 3.2 by means of the
geometrical structure of the manifold, whereas the second
condition will be investigated in Sect. 3.3 considering the
propagation of the torsion modes in a Minkowki space. Both
conditions have been studied separately in the literature using
different approaches; see Refs. [6–8].

3.1 Field equations

The field equations of the Lagrangian density (24) have to
be obtained, as usual, from a variational principle where the
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action is extremised with respect to the dynamical variables.
However, different sets of dynamical variables can be chosen
and different field equations will be obtained accordingly. On
one hand, the metric and the affine connection can be taken
as completely independent variables. Then the field equa-
tions are obtained from varying the action with respect gμν

and Γ̃ σ·μν . This is called the Palatini formalism.2 On the other
hand, the connection can be taken to be metric-compatible
from the beginning. Hence, the field equations are obtained
varying with respect to g and T , or to g and K . This pro-
cedure is sometimes called the metric or Hilbert variational
method. The Palatini and Hilbert methods are known to differ
only on the constraint on the symmetric part of the connec-
tion Γ̃(s)

σ·μν = Γ σ·μν − T μ
ν.σ − T μ

σ .ν ; that is, they differ on
a Lagrange multiplier for the metricity condition, see Refs.
[23,24]. Therefore, the two methods coincide without impos-
ing the Lagrange multiplier when after solving the field equa-
tions the related quantity turns out to be zero. In addition, a
third method consists in treating the theory as a gauge theory.
This may be seen as being more natural, since the variables
are the gauge potentials (e a

μ ,w ab
μ ). The field equations in

this formalism can been found in Refs. [8,10].
Let us use the Palatini formalism with the metricity con-

dition implemented as a constraint via a Lagrange multiplier
Λ to obtain the field equations. The total Lagrangian density
of the theory can by written as

L = Lg + LM + Λ ρ
νμ· ∇̃ρg

μν, (25)

withLg from Eq. (24),LM the Lagrangian density for matter
fields minimally coupled to gravity, and Λ

ρ
νμ· a Lagrange

multiplier. The use of the Lagrange multipliers in theories of
gravity has been studied in Refs. [20,25,26]. For the sake of
simplicity, we rewrite the Lagrangian density Lg as

Lg = −λ δ γ
α gβδ R̃α·βγ δ + f ηρβγ

T λα T λ·ηρT α·βγ

+ f ηρσβγ δ

R λα R̃λ·ηρσ R̃
α·βγ δ, (26)

with the permutation tensors f ηρβγ

T λα and f ηρσβγ δ

R λα defined

in Appendix B. This decomposition factorizes Lg in parts
depending purely on the metric and parts depending on the
connection—those are the permutation tensors, and the cur-
vature tensors and the torsion tensors, respectively; thus, the
application of the Euler–Lagrange equations is straightfor-
ward. The field equations for the Lagrangian density (25)
are

2 It should be stressed that, for the Palatini method, the general con-
nection Γ̃ should be considered. Then the conditions of metricity and
of being torsion-free must be implemented via Lagrange multipliers.

Ẽμν − (∇̃κ − 2Tκ)Λ κ
νμ· − 1

2
Λ κ

μν·gαβ∇̃κgαβ = τ̃μν, (27)

P̃ ·μν
τ + 2Λ·μν

τ = Σ̃ ·μν
τ , (28)

∇̃ρg
μν = 0. (29)

Note that the metricity condition is obtained as a field equa-
tion from the variation of the action with respect to the
Lagrange multiplier. The definitions used in the above equa-
tions are

Ẽμν ≡ 1√−g

∂
√−gLg

∂gμν
, (30)

P̃ ·μν
τ ≡ ∂Lg

∂Γ̃ τ·μν

− 1√−g
∂κ

(
√−g

∂Lg

∂(∂κ Γ̃ τ·μν)

)
. (31)

The tensor Ẽμν could be considered as the generalisation of
the Einstein tensor for the Lagrangian density Lg , as it con-
tains the dynamical information of the metric. Analogously,
the tensor P̃ ·μν

τ is the generalisation of the Palatini tensor.
The source tensors are the energy-momentum tensor

τ̃μν ≡ − 1√−g

∂
√−gLM (g, Γ̃ , Ψ )

∂gμν
, (32)

and the hypermomentum tensor

Σ̃ ·μν
τ ≡ − ∂LM (g, Γ̃ , Ψ )

∂Γ̃ τ·μν

, (33)

as defined in Refs. [20,27].
Now, taking into account the expression of Lg in Eq. (26),

the generalized Einstein and Palatini tensors are

Ẽμν = −λG̃(μν) +
⎛

⎝
∂ f ηρβγ

T λα

∂gμν
− 1

2
gμν f

ηρβγ

T λα

⎞

⎠ T λ·ηρT α·βγ

+
⎛

⎝
∂ f ηρσβγ δ

R λα

∂gμν
− 1

2
gμν f

ηρσβγ δ

R λα

⎞

⎠ R̃λ·ηρσ R̃
α·βγ δ,

(34)

where G̃(μν) is the symmetric part of the Einstein tensor, and

P̃ ·μν
τ = −2λ

[
�

T νμ·
σ + δ ν

σ

(
∇̃λg

μλ + 1

2
gαβ∇̃μgαβ

)

− ∇̃σ g
μν − 1

2
gμνgαβ∇̃σ gαβ

]

+2 f ηρβγ

T λα T λ·ηρ
∂T α·βγ

∂Γ̃ τ·μν

+ 2 f ηρσβγ δ

R λα R̃λ·ηρσ

∂ R̃α·βγ δ

∂Γ̃ τ·μν

− 2√−g
∂κ

⎛

⎝√−g f ηρσβγ δ

R λα R̃λ·ηρσ

∂ R̃α·βγ δ

∂
(
∂κ Γ̃ τ·μν

)

⎞

⎠ ,

(35)
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respectively. The full expressions of these tensors in terms
of the free parameters of the Lagrangian density are shown
in Appendix B.

As the metricity condition has arisen as a field equation,
from now on we can consider a metric-compatible connection
Γ̂ . Then the field equations (27) and (28) reduce to

Êμν − ∇κΛ κ
νμ· = τ̂μν (36)

P̂ ·μν
τ + 2Λ·μν

τ = Σ̂ ·μν
τ . (37)

To obtain the final expression for the field equations, the
Lagrange multiplier Λ must be solved from Eqs. (36) and
(37). To this end, note that a generic third rank tensor A can
always be written as

Aαβγ = Δ
μνρ
βαγ

(
Aμ(νρ) − A[μν]ρ

)
(38)

where Δ
μνρ
βαγ is defined in Eq. (9). As Λ

ρ
νμ· is symmetric in

the first two indices, we can solve from Eq. (36)

Λμνρ = 1

2
Δαβγ

νμρ

(
Σ̂α(βγ ) − P̂α(βγ )

)
. (39)

Thus, the field equations become

Êμν − 1

2
Δαβγ

νμκ∇κ (
Σ̂α(βγ ) − P̂α(βγ )

) = τ̂μν , (40)

Δαβγ
νμκ

(
Σ̂[αβ]γ − P̂[αβ]γ

) = 0. (41)

These are the general expressions of the field equations of
any theory of gravity with metricity and torsion. This set of
equations is obviously equivalent to the equations obtained
from a Hilbert variational principle over the variables (g, K )

or (g, T ), as can easily be checked. Now, taking into account
the calculations showed in Appendix B for the Lagrangian
density (24), these equations are

−λ

(
Ĝ(μν) − 2∇κ �

T (μν)κ

)

+ 1

12
(4a + b + 3λ)

(
2TαβμT

αβ·
ν − TμαβT

·αβ
ν

− 1

2
gμνTαβρT

αβρ

)

+ 1

6
(−2a + b − 3λ)

(
TαβμT

βα·
ν − 1

2
gμνTαβρT

βρα

)

+ 1

3
(−a + 2c − 3λ)

(
TμTν − 1

2
gμνTαT

α

)

+ 1

6
(2p + q)

[
2R̂αβλμ R̂

αβλ·
ν − 1

2
gμν R̂αβλσ R̂

αβλσ

− 4∇κ
(
∇λ

R̂κ(μν)λ + T · λβ

(μ R̂ν)κλβ

)]

+ 1

6
(2p + q − 6r)

[
2R̂α(μ|βλ R̂

βλα·
|ν)

−1

2
gμν R̂αβλσ R̂

λσαβ

− 4∇κ
(
∇λ

R̂λ(μν)κ + T · λβ

(μ| R̂λβ|ν)κ

)]

+ 2

3
(p − q)

[
2R̂α(μ|βλ R̂

αβ·λ
|ν) + R̂αλσμ R̂

ασλ
ν

− R̂μαλσ R̂
·λασ
ν − 1

2
gμν R̂αβλσ R̂

αβλσ

− 2∇κ
(
∇λ

R̂κ(μν)λ − 2T ·λβ
κ R̂β(μν)λ

+ 2T ·λβ
(μ R̂ν)βλκ − 2T ·λβ

(μ| R̂κβλ|ν)

)]

+ (s + t)

[
R̂ λ

μ· R̂νλ + R̂λ·μ R̂λν − 1

2
gμν R̂αβ R̂

αβ

+∇κ
(
gμν∇λ

R̂κλ + ∇κ R̂(μν) − ∇(μ R̂ν)κ

−∇(μ| R̂κ|ν) + 1

2
T λ

(μ|κ· R̂|ν)λ − 1

2
T λ

κ(μ· R̂ν)λ

− 1

2
T λ

(μν)· R̂κλ

)]

+ (s − t)

[
R̂ λ

μ· R̂λν + R̂λ·μ R̂νλ − 1

2
gμν R̂αβ R̂

βα

+∇κ
(
gμν∇λ

R̂λκ

+∇κ R̂(μν) − ∇(μ R̂ν)κ

−∇(μ| R̂κ|ν) + 1

2
T λ

(μ|κ· R̂λ|ν)

− 1

2
T λ

κ(μ|· R̂λ|ν) − 1

2
T λ

(μν)· R̂λκ

)]

= τ̂μν + 1

2
Δαβγ

νμκ ∇κ
Σ̂α(βγ ) (42)

and

−2λ
�

T νμτ + 1

6
(4a + b + 3λ)T[τμ]ν

− 1

6
(−2a + b − 3λ)

(
T[μτ ]ν + Tνμτ

)

+ 1

3
(−a + b − 3λ)gν[τTμ]

+ 2

3
(2p + q)

(
∇κ

R̂τμνκ − T ·λκ
ν R̂τμλκ

)

+ 2

3
(2p + q − 6r)

(
∇κ

R̂νκτμ − T ·λκ
ν R̂λκτμ

)

+ 4

3
(p − q)

(
∇κ

R̂κ[τμ]ν − ∇κ
R̂ν[τμ]κ − 2T ·λκ

ν R̂κ[τμ]λ
)

+ (s + t)
(

2gν[τ∇κ
R̂μ]κ − 2∇[τ R̂μ]ν + T λ

ν·[τ R̂μ]λ
)

+ (s − t)
(

2gν[τ |∇κ
R̂κ|μ] − 2∇[τ | R̂ν|μ] + T λ

ν·[τ | R̂λ|μ]
)

= Σ̂[τμ]ν . (43)

For an interpretation of the right sides of both field equa-
tions, see Appendix C.
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3.2 Reduction to GR

We want to obtain a theory which reduces to GR when the
torsion vanishes. Thus, the theory will not only be stable in
this regime, but it will also deviate only slightly from the
predictions of GR when the torsion is small. Note that when
the torsion is set to zero, the usual Riemannian structure is
recovered. Therefore, the Riemann tensor is now symmetric
under the exchange of the first and the second pair of indices
and the Ricci tensor is symmetric. From the first Bianchi
identity (16), it follows that

Rμνρσ

(
Rμνρσ − 2Rμρνσ

) = 0 for T α·βγ = 0. (44)

Then, when T = 0, the Lagrangian density (24) becomes

Lg
∣∣
T=0 = −λ R+(p−r) Rμνρσ R

μνρσ +2 s RμνR
μν . (45)

From this expression, it is clear that GR is recovered when
T = 0 if and only if p = r and s = 0. This is the only choice
of parameters that leads to GR when the torsion vanishes.

Note that the same conclusion can be extracted from a
different and longer approach. That is, considering the field
equations (42) and (43), it can be concluded that this is the
only choice of parameters that produce the Einstein equations
of GR when the torsion vanishes. The same conclusion was
reached in Ref. [8].

3.3 Stability in Minkowski spacetime

It is well known that the Lagrangian density (24) contains,
along with the usual graviton 2+, up to six new modes or
torsions. These are 2+, 2−, 1+, 1−, 0+ and 0−, in the repre-
sentation SP where S is the spin and P is the parity of the
mode. A physically meaningful restriction is to demand the
theory to be stable in all the SP sectors; see Refs. [6,7,28–
30]. Quadratic theories in the curvature and torsion tensors
are usually treated as a gauge theory, hence the variables
considered are the gauge potentials of the Poincaré group
(e a

μ ,w ab
μ ). Then the stability analysis is made through the

construction of the spin projection operators.
In this work, however, we consider the metric formula-

tion. We will examine the decoupling limit between the tor-
sion and curvature degrees of freedom. Thus, in view of Eq.
(15), we focus on the case where gμν = ημν , with ημν

the Minkowski metric. For the sake of simplicity, we do
not consider the purely tensor component of the torsion in
Eq. (12). As the only torsion components compatible with a
Friedmann–Lemaître–Robertson–Walker (FLRW) universe
are the vectorialT i and pseudo-vectorial Si components [31],
we assume that they are the minimum non-vanishing compo-
nents that should be taken into account in this framework. In
the spirit of investigating only slight modifications of GR, we

assume that they are the only non-vanishing torsion compo-
nents for a minimal modification over the FLRW background.
Under these considerations, we will now impose the absence
of ghost and tachyon instabilities for the theory given by the
Lagrangian density (24). The quadratic Riemann and torsion
terms that appear in this Lagrangian density are computed in
Appendix D.

As we consider only the vector and pseudo-vector tor-
sion components in Minkowski spacetime, the Lagrangian
density (24) reduces in this regime to an ordinary vector
and pseudo-vector field theory in flat spacetime. A general
quadratic action for a vector Aμ in flat spacetime comes from
[32–34]

L = α∂μAν∂
μAν +β∂μAν∂

ν Aμ + γ ∂μA
μ∂ν A

ν −V, (46)

where V is a possible potential for Aμ. However, not all the
kinetic terms are independent from each other. The terms
with factors β and γ are related by
∫ √−g d4x (∇μA

μ)2 =
∫ √−g d4x

(∇μAν∇ν Aμ

+Rμν A
μAν

)
, (47)

as can be seen from Eq. (13). Thus, in flat spacetime these
terms are related by a total derivative. On the other hand, as is
well known, the Hamiltonian density of a system is obtained
by performing a Legendre transformation. For this vector
system, it is

H = πμ Ȧμ − L, (48)

where Ȧμ ≡ ∂0Aμ are the generalized velocities and πμ the
canonical momenta defined as πμ ≡ ∂L

∂ Ȧμ . The canonical
momenta of the Lagrangian density (46) are

πμ = 2α Ȧμ + 2βημν∂ν A
0 + 2γ ημ0∂αA

α, (49)

or written in terms of the components of the four-vector,

π0 = 2(α + β + γ ) Ȧ0 + 2γ ∂i A
i , (50)

π i = 2α Ȧi − 2βδi j∂ j A
0 . (51)

Then, performing the Legendre transformation (48), the
Hamiltonian density reads

H = (π0 − 2γ ∂i Ai )2

4(α + β + γ )
− (π i + 2β∂i A0)

2

4α
+ β

2
Fi j F

i j

+α(∂i A0)
2 − (α + β)(∂i A j )

2 − γ (∂i A
i )2 + V , (52)

with Fi j = 2∂[i A j]. Unfortunately, the kinetic energy of
this system is unbounded from below and, therefore, suffers
from ghost-type instabilities whatever the signs of α, β and γ

are. This behaviour confirms that vector theories suffer from
ghost-type instabilities if all the degrees of freedom of the
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four-vector Aμ propagates (see Refs. [32,33]). Hence, a nec-
essary condition for the absence of this kind of instabilities
is to make the scalar mode non-dynamical. Alternatively, the
vector degrees of freedom can be frozen and propagate only
the scalar mode, but this corresponds to a scalar theory rather
than a vectorial one. To remove the scalar mode, the free
parameters of the theory must be chosen in such a way that
the canonical momenta given in Eq. (50) vanish. Since ∂0A0

and ∂i Ai are independent quantities, the only possibility to
cancel out the contribution of ∂i Ai to the canonical momenta
of the scalar mode is to set γ = 0. In addition, α + β = 0 is
also needed to remove the contributions of the two remaining
kinetic terms in the Lagrangian density (46) to the dynamics
of the scalar mode. With these conditions, the kinetic terms
in the vector Lagrangian density becomes a Maxwell-type
FμνFμν that only propagates the spatial degrees of freedom
of the four-vector Aμ. This conclusion is in agreement with
the well-known fact that the only ghost-free vector theory
in flat spacetime is the Maxwell–Proca Lagrangian density.
Then the Hamiltonian density can be positive-defined with
α = −β < 0. For a more detailed discussion on this item
see Ref. [34].

Back to the Lagrangian density (24), when the metric cor-
responds to the Minkowski spacetime the expression reduces
to

Lg = 16

9
(p + s + t)∂μTν∂

μT ν + 16

9
(p − 2r)∂μTν∂

νTμ

+ 16

9
(p − r + 5s − t)∂μT

μ∂νT
ν − 1

9
t∂μSν∂

νSμ

+ 1

9
(2r + t)∂μSν∂

μSν + 1

18
(3q − 4r)∂μS

μ∂νS
ν

+ 8

27
(p − q − 3t)εμνρσ ∂ρTμ∂νSσ − V(T, S), (53)

where V(T, S) are potential-type terms of the torsion fields;
see Appendix D. As discussed previously, the free parameters
p, q, r , s and t must be carefully selected to produce ghost-
free kinetic terms, i.e. Maxwell-type kinetic terms for the
trace four-vector Tμ and pseudo-trace four-vector Sμ. After
suitable integrations by parts the expression above simplifies
to

Lg = 8

9
(p + s + t)Fμν(T )Fμν(T )

+ 1

18
(2r + t)Fμν(S)Fμν(S) + 1

6
q∂μS

μ∂νS
ν

+ 16

3
(p − r + 2s)∂μT

μ∂νT
ν − V(T, S) . (54)

Since we have two dynamical fields, there are two canonical
momenta. These are

π
μ
T ≡ ∂Lg

∂(∂0Tμ)
= 32

9
(p + s + t)F0μ(T )

+ 32

3
η0μ(p − r + 2s)∂αT

α, (55)

π
μ
S ≡ ∂Lg

∂(∂0Sμ)
= 2

9
(2r + t)F0μ(S) + 1

3
η0μq∂αS

α . (56)

Written in terms of the scalar and vectorial degrees of free-
dom of the four-vectors we have

π0
T = 32

3
(p − r + 2s)∂αT

α , (57)

π i
T = 32

9
(p + s + t)

(
Ṫ i − ∂ i T 0

)
, (58)

π0
S = 1

3
q ∂αS

α, (59)

π i
S = 2

9
(2r + t)

(
Ṡi − ∂ i S0

)
. (60)

As here we have two fields with their own kinetic terms, we
need to ensure that neither of them introduces a ghost. Thus,
to remove the scalar T 0 and pseudo-scalar S0 degrees of
freedom, we consider p−r+2s = 0 and q = 0, respectively.
Then the Hamiltonian density reads

Hg = − 9

64

(π i
T )2

(p + s + t)
− 8

9
(p + s + t)Fi j (T )Fi j (T )

− 9

4

(π i
S)

2

2r + t
− 1

18
(2r + t)Fi j (S)Fi j (S)

+π i
T ∂i To + π i

S∂i So + V(T, S) . (61)

The kinetic energy can be bounded from below with the extra
conditions of p + s + t < 0 and 2r + t < 0 for the vecto-
rial and pseudo-vectorial torsion fields, respectively. These
conditions are summarised in Table 1.

On the other hand, we now require the absence of tachyon
instabilities. In the first place, we consider the weak torsion
fields regime, that is, the regime where the quadratic terms
in torsion fields lead the evolution of the potential. Thus, the
potential in the Lagrangian density (54) takes the form

V(T, S) = −2

3
(c + 3λ)TμT

μ − 1

24
(b + 3λ)SμS

μ + O(3);
(62)

see Appendix D. Note that the mass terms in an action
for a vector field comes from a potential of type V (φ) ∝
1
2m

2φμφμ. Hence, the roles of the masses m2 for the vector
and pseudo-vector torsion fields are played by the combina-
tions of the coupling constants b, c and λ. For these combi-
nations, the correct sign must be taken for the spatial compo-
nents to avoid tachyon-like instabilities. In our convention,
φμφμ = φ2

0 − φ 2, then the combinations c+ 3λ and b+ 3λ

must be positive to ensure a well-behaved vector and pseudo-
vector sector, respectively (see Table 1). In summary, with
these simple arguments we have found a set of conditions
for the ghost and tachyon stability of the Lagrangian density
(24) at the decoupling limit and the weak torsion regime,
summarized in Table 1.
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Table 1 Conditions over the free parameters of the Lagrangian density (24) for stability and reduction to GR when the torsion vanishes

Tμ Sμ Description

Ghost-free p − r + 2s = 0 q = 0 To remove the scalar/pseudo-scalar mode and to ensure a
well-posed kinetic termp + s + t < 0 2r + t < 0

Tachyon-free (Weak torsion) c + 3λ > 0 b + 3λ > 0 To have a positive-defined quadratic potential V(2)

Tachyon-free (General torsion) p + 3s = 0 p + 3s = 0 To cancel V(4) and to make V(2) positive-defined

c + 3λ > 0 b + 3λ > 0

Reduction to GR when T α·μν = 0 p − r = 0

s = 0

In Refs. [6,7], Sezgin and Nieuwenhuizen provided a
detailed analysis of the stability of the Lagrangian density
(24) for the weak torsion field regime. These two articles were
the first systematic stability analysis of this kind of theories,
made with the spin projectors formalism, and they are a key
reference point in this issue. The conclusions they showed
for the 1− torsions are compatible with those obtained here.
Their ghost-free condition is the same we have obtained
here, and the tachyon-free condition is compatible. On the
other hand, for the 1+ sector both conclusions are, how-
ever, incompatible. While the condition obtained for a well-
defined kinetic term for Sμ in this section is 2r + t < 0, they
claim that 2r + t > 0 is needed. It is worth noting that other
authors have suggested that the analysis carried out by Sez-
gin and Nieuwenhuizen is not restrictive enough to ensure a
ghost- and tachyon-free spectrum; see Refs. [28,29]. In fact,
in Ref. [28] the authors pointed out that they even obtain
a different expression of the spin projector operator for the
pseudo-vector mode. Furthermore, they argue the relevance
of considering the additional condition for the absence of
p−4 poles in all spin sectors, which is not done in the anal-
ysis of Refs. [6,7]. In Ref. [35], Fabbri analyses the stabil-
ity of the most general quadratic gravitational action with
torsion and Dirac fields by demanding, in addition, a con-
sistent decoupling between curvature and torsion that pre-
serves continuity in the torsionless limit, concluding that the
only non-vanishing component of the torsion is given by the
pseudo-vector mode and that parity-violating terms are not
allowed in the Lagrangian density. Nevertheless, due to some
lack of clarity in the existing literature, a deeper analysis of
the origins of these differences is not available yet.

Let us now go beyond the weak torsion regime when
analysing the potentialV . Thus, higher orders in the potential
can dominate its evolution. The highest order that appears in
the potential is quartic, symbolically V(4),

V(4)(T, S) = −64

27
(p − r + 2s)TαT

αTβT
β

− 1

108
(p − r + 2s)SαS

αSβ S
β

− 8

81
(2p + 3q − 4r + 2s)TαS

αTβ S
β

− 8

81
(p + r + 4s)TαT

αSβ S
β. (63)

As there are terms mixing the vector and pseudo-vector fields,
we note that the potential can be diagonalized in the following
basis:

V(4) =
⎛

⎝
TαT α

SαSα

TαSα

⎞

⎠V
(4)

(
TαT α SαSα TαSα

)
, (64)

with V
(4) a 3 × 3 matrix. The eigenvalues of V(4) are

λ1 = − 8

81
(2p + 3q − 4r + 2s), (65)

λ2 = −79

72

(
p − r + 2s + √

A
)

, (66)

λ3 = −79

72

(
p − r + 2s − √

A
)

, (67)

with

A = 1

7112

(
586249p2 − 1168402pr + 586249r2

+ 2349092ps − 2332708rs + 2357284s2
)

. (68)

For a positive-defined quadratic form, the three eigenvalues
must be positive. Since we are only interested in the vec-
tor and pseudo-vector torsion degrees of freedom, we can
assume p − r + 2s = 0 and q = 0, which are the conditions
found for making the scalar and pseudo-scalar mode non-
dynamic, respectively. Then the expressions of the eigenval-
ues reduce to

λ1 = 16

81
(p + 3s), (69a)

λ2 = − 8

81
(p + 3s), (69b)

λ3 = 8

81
(p + 3s). (69c)
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Table 2 Compatibility of the stability conditions studied in this paper.
In the first column we show necessary conditions for a theory propagat-
ing vector or pseudo-vector torsion to be stable. Those conditions have
to be implemented (at least) by the inequality contained in the second
column when the vector mode propagates and by the conditions of the
last column when the pseudo-vector also propagates

Summary Tμ Sμ

p = r = s = 0 c + 3λ > 0 q = 0

t < 0 b + 3λ > 0

It is easy to see that these eigenvalues cannot be positive at the
same time for any combination of p and s. Hence, the quartic
order in the potential in Eq. (61) is unstable and, therefore,
this order must be removed to obtain a stable theory. This
can be done taking 3s + p = 0. Furthermore, the third order
in the potential is not present once we consider that GR is
recovered when the torsion vanishes. Therefore, when we
take p = r , s = 0 and 3s + p = 0, there are only quadratic
terms in the potential. Thus, the potential is stable under the
same conditions as those obtained in the weak torsion field
approximation with the additional constraint of p + 3s = 0;
see Table 1.

On the other hand, we should stress that the stability anal-
ysis developed in the literature is usually made using a weak
curvature approximation for the metric. However, our stabil-
ity analysis is made in the limit where the degrees of freedom
of the torsion are completely decoupled from those of the
metric. For this purpose, we have considered that GR is recov-
ered when T = 0 and we have investigated the stability of
the torsion in Minkowski flat spacetime, assuming that only
the vector and pseudo-vector modes propagate. These con-
ditions are combined and summarized in Table 2. Therefore,
we expect that the conditions obtained, which are found to
be necessary and sufficient for the stability in this regime, are
necessary but no longer sufficient conditions for the stability
of the theory when both curvature and torsion are present.

4 Summary

In this work we have investigated a quadratic and parity pre-
serving action with curvature and torsion [6,7,10,11] in order
to obtain a stable theory of gravity with dynamical torsion.
For this purpose, we have analysed two regimes where the
degrees of freedom of the metric and those of the torsion
are completely decoupled. The assumptions made in those
regimes are also motivated by looking for theories of which
the predictions are expected not to be in great disagreement
with those of GR.

On the one hand, we have assumed that the theory reduces
to GR when the torsion vanishes. This implies the stability of

the metric degrees of freedom in the regime where there are
no torsion modes. Therefore, we have imposed the require-
ment that the only term independent of the torsion is con-
tained in the scalar curvature R̂, obtaining two conditions for
the parameters of the general quadratic Lagrangian.

On the other hand, we have investigated the stability of the
torsion when the metric is flat, following an approach that dif-
fers from the usual techniques used in the literature. We have
focussed attention on the stability of the vector and psuedo-
vector torsion components in Minkowski because they are the
only components that propagate in a FLRW spacetime [31]
from the torsion irreducible decomposition. Therefore, it is
not necessary to consider the purely tensor component if we
are interested in “minimal” modifications of the predictions
of GR. We have studied the stability of these fields analysing
the Hamiltonian formulation of the theory to ensure a ghost
and tachyon-free spectrum in this regime. Thus, we have
obtained several conditions for the parameters of the gen-
eral quadratic action with propagating torsion that we have
summarized in Table 1. Moreover, we have contrasted the
conditions obtained in the weak torsion limit of this regime
with those already presented in the literature [6,7,28,29]. As
we have discussed in detail, the disagreement with the con-
clusions of Ref. [6,7] regarding the pseudo-vector field may
be due to the arguments exposed in Refs. [28,29]. It should
be stressed that, after the first approach, we have gone beyond
the weak torsion approximation, obtaining the general condi-
tions for the stability of the vector and pseudo-vector torsion
fields in Minkowski spacetime.

In summary, we have found the most general subfamily of
the Lagrangian density (24) that is stable in both decoupling
regimes. This is described by

Lg = −λR̂ + 1

12
(4a + b + 3λ)TμνρT

μνρ

+ 1

6
(−2a + b − 3λ)TμνρT

νρμ

+ 1

3
(−a + 2c − 3λ)T λ·μλT

·μρ
ρ + 2t R̂μν R̂

[μν] , (70)

where b+3λ > 0, c+3λ > 0, and t < 0, and we restrict our
study to theories where only the vector and pseudo-vector
torsion components of the irreducible decomposition propa-
gate.
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Appendices

Appendix A: The Gauss–Bonnet term in Riemann–
Cartan geometries

We have noted that there is no agreement about the expression
of the Gauss–Bonnet term in a Riemann–Cartan manifold
throughout the literature, probably due to several misprints.
Therefore, in this appendix, we present the correct expression
for the Gauss–Bonnet action. This is

SGB =
∫

d4x
√−g

(
R̂2 − 4R̂νσ R̂

σν + R̂μνρσ R̂
ρσμν

)
.

(A.1)

One can easily check that this is the correct order of
the indices focussing attention on the vectorial and pseudo-
vectorial torsion fields in the weak curvature approximation.
In this regime we have

gμν = ημν + hμν,

gμν = ημν − hμν . (A.2)

Let us now prove that, order by order in the fields hαβ, Tα and
Sα , the term (A.1) leads to a total divergence. The expressions
of Rμ·νρσ , Rνσ and R in terms of h are well known in linearized
gravity [36]. These are

Rμ·νρσ = 1

2

(
∂ρ∂νh

μ
σ + ∂μ∂σ hνρ − ∂ρ∂μhνσ

− ∂σ ∂νh
μ
ρ

)
, (A.3)

Rνσ = 1

2

(
∂μ∂νh

μ
σ + ∂σ ∂μh

μ
ν − �hσν − ∂σ ∂νh

)
, (A.4)

R = ∂μ∂νh
μν − �h , (A.5)

with � = ∂μ∂μ. Then, from Eq. (15), it is clear that in
the action (A.1) will appear a Gauss–Bonnet term for the
Levi-Civita connection, terms quadratic in torsion and a term
mixing torsion and h terms. This action can be expressed as

SGB = S(1)
GB(∂h) + S(2)

GB(∂T, ∂S, T, S)

+ S(3)
GB(∂h, ∂T, T, S). (A.6)

The first term on the r.h.s. of this equation is known to be
invariant. Nevertheless, this invariance can be proven with
an explicit calculation from Eqs. (A.3), (A.4) and (A.5) with
the appropriate boundary conditions on h. The second term
is calculated with the results of Appendix D. It can be seen
that

S(2)
GB =

∫
d4x

√−g

[
32

9
(∂ρTν∂

νT ρ − ∂αT
α∂βT

β)

− 2

9
(∂αS

α∂β S
β − ∂αSβ∂β Sα) + 64

27
∂α

(
T αTβT

β
)

+ 4

27
∂α

(
T αSβ S

β + 2SαTβ S
β
)

+ 8

9
εμνρσ ∂νSσ ∂μTρ

]
. (A.7)

After integration by parts, the expression above leads to a
total divergence. Taking the torsion to be zero at the boundary
of U4, S(2)

GB is identically zero. Finally, the third term on the

r.h.s. of Eq. (A.6), S(3)
GB(∂h, ∂T, T, S), is analysed using Eqs.

(D.27), (D.28) and (D.29) for the torsion part and (A.3), (A.4)
and (A.5) for the metric dependent part. Thus,

S(3)
GB =

∫
d4x

√−g
[
4�h∂αT

α − 4∂μ∂νh
μν∂αT

α

+ 32

3

(
∂σ ∂μh

σμ∂αT
α − �h∂αT

α
)

+ 8

3

(
∂ρ∂νh∂ρT ν − ∂μ∂νh

μσ ∂σ T
ν
)]

. (A.8)

Note that there are no mixing terms between ∂h and ∂S or ST ,
as expected from parity conservation. After some algebraical
manipulations and integration by parts, the equation for S(3)

GB
vanishes. Hence, we have checked the invariance of an action
upon addition of the action (A.1) in the weak curvature limit.
As was pointed by Nieh [21], the Gauss–Bonnet term will
remain invariant even in a curved non-flat metric gμν . But,
for this work, the invariance in weak field limit is sufficient.

Appendix B: Variations in the Palatini formalism

The Palatini formalism for varying the action consists in tak-
ing the metric gμν and the generic connection Γ̃ σ·αβ as the
dynamical variables. So, it is useful to rewrite the action in
terms of those variables. Some useful well-known relations
for considering that variation are

gμαδgαν = −gανδgμα, δ
√−g = −1

2
gμνδg

μν . (B.9)

Thus, one can easily obtain

∂μ

√−g = 1

2

√−ggαβ∇̃μgαβ + √−gΓ̃ α·αμ . (B.10)

Let us know consider the variation of the action written in
terms of the Lagrangian density (26). This is

Lg = −λ δ γ
α gβδ R̃α·βγ δ + f ηρβγ

T λα T λ·ηρT α·βγ

+ f ηρσβγ δ

R λα R̃λ·ηρσ R̃
α·βγ δ, (B.11)
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where the permutation tensors are

f ηρβγ

T λα = 1

12
(4a + b + 3λ)gλαg

ηβgργ

+ 1

6
(−2a + b − 3λ)δ

γ
λ δ η

α gρβ

+ 1

3
(−a + 2c − 3λ)δ

ρ
λ δ γ

α gηβ, (B.12)

f ηρσβγ δ

R λα = 1

6
(2p + q)gλαg

ηβgργ gσδ

+ 1

6
(2p + q − 6r)δ γ

λ δ ρ
α gηδgσβ

+ 2

3
(p − q)gλαg

ηγ gρβgσδ

+ (s + t)δ ρ
λ δ γ

α gηβgσδ

+ (s − t)δ ρ
λ δ γ

α gηδgσβ. (B.13)

In order to compute the complete generalized Einstein
tensor in Eq. (34), the following expressions are needed:

∂ f ηρσβγ δ

R λα

∂gμν
= 1

6
(2p + q)

(
δ η
μ δ β

ν gλαg
ργ gσδ

+ δ ρ
μ δ γ

ν gλαg
ηβgσδ + δ σ

μ δ η
ν gλαg

ηβgργ

− gαμgλνg
ηβgργ gσδ

)

+ 1

6
(2p + q − 6r)

(
δ η
μ δ δ

ν δ
γ

λ δ ρ
α gσβ

+ δ σ
μ δ β

ν δ
γ

λ δ ρ
α gηδ

)

+ 2

3
(p − q)

(−gλμgανg
ηγ gρβgσδ

+ δ η
μ δ γ

ν gλαg
ρβgσδ + δ ρ

μ δ β
ν gλαg

νγ gσδ

+ δ σ
μ δ δ

ν gλαg
νγ gρβ

)

+ (s + t)
(
δ η
μ δ β

ν δ
ρ

λ δ γ
α gσδ

+ δ σ
μ δ δ

ν δ
ρ

λ δ γ
α gηβ

)

+ (s − t)
(
δ η
μ δ δ

ν δ
ρ

λ δ γ
α gσβ

+δ σ
μ δ β

ν δ
ρ

λ δ γ
α gηδ

)
, (B.14)

∂ f ηρβγ

T λα

∂gμν
= 1

12
(4a + b + 3λ)

(−gλμgανg
ηβgργ

+ δ η
μ δ β

ν gλαg
ργ + δ ρ

μ δ γ
ν gλαg

ηβ
)

+ 1

6
(2p + q − 6r)δ γ

λ δ η
α δ ρ

μ δ β
ν

+ 1

3
(−a + 2c − 3λ)δ

ρ
λ δγ

α δ η
μ δβ

ν . (B.15)

For the calculation of the generalized Palatini tensor in Eq.
(35), we need the following expressions:

∂ R̃α·βγ δ

∂Γ̃ τ·μν

= Γ̃ α·τγ δ
μ

β δ ν
δ − Γ̃ α·τδδ

μ
β δ ν

γ + Γ̃
μ
·βδδ

α
τ δ ν

γ

− Γ̃
μ
·βγ δ α

τ δ ν
δ , (B.16)

∂T α·βγ

∂Γ̃ τ·μν

= 1

2

(
δα
τ δ

μ
β δν

γ − δα
τ δν

βδμ
γ

)
, (B.17)

∂ R̃α·βγ δ

∂
(
∂κ Γ̃ τ·μν

) = δκ
γ δα

τ δ
μ
β δν

δ − δκ
δ δα

τ δ
μ
β δν

γ . (B.18)

Then, taking into account the definition of the torsion and
curvature tensors, Eqs. (3) and (14), respectively, the general-
ized Einstein and Palatini tensors of the quadratic Lagrangian
density (24) read

Ẽμν = −λG̃(μν) + 1

12
(4a + b + 3λ)

(
2TαβμT

αβ·
ν

− TμαβT
·αβ
ν − 1

2
gμνTαβρT

αβρ

)

+ 1

6
(−2a + b − 3λ)

(
TαβμT

βα·
ν

− 1

2
gμνTαβρT

βρα

)

+ 1

3
(−a + 2c − 3λ)

(
TμTν − 1

2
gμνTαT

α

)

+ 1

6
(2p + q)

(
2R̃αβλμ R̃

αβλ·
ν − R̃μαλσ R̃

·αλσ
ν

+ R̃αμλσ R̃
α·λσ
ν − 1

2
gμν R̃αβλσ R̃

αβλσ

)

+ 1

6
(2p + q − 6r)

(
2R̃α(μ|βλR̃βλα·

|ν)

− 1

2
gμν R̃αβλσ R̃

λσαβ

)

+ 2

3
(p − q)

(
2R̃α(μ|βλ R̃

αβ·λ
|ν) + R̃αλσμ R̃

ασλ
ν

− R̃μαλσ R̃
·λασ
ν − 1

2
gμν R̃αβλσ R̃

αλβσ

)

+ (s + t)

(
R̃ λ

μ· R̃νλ + R̃λ·μ R̃λν − 1

2
gμν R̃αβ R̃

αβ

)

+ (s − t)

(
R̃ λ

μ· R̃λν + R̃λ·μ R̃νλ − 1

2
gμν R̃αβ R̃

βα

)
,

(B.19)

P̃ ·μν
τ = −2λ

[
�

T νμ·
σ + δ ν

σ

(
∇̃λg

μλ + 1

2
gαβ∇̃μgαβ

)

−∇̃σ g
μν − 1

2
gμνgαβ∇̃σ gαβ

]

+ 1

6
(4a + b + 3λ)T ·μν

τ

+ 1

6
(−2a + b − 3λ)

(
Tμν·

τ − T νμ·
τ

)

+ 1

3
(−a + b − 3λ)

(
δ ν
τ Tμ − δ μ

τ T ν
)

+ 2

3
(2p + q)

[(
∇̃κ − 2Tκ
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+ 1

2
gαβ∇̃κgαβ

)
R̃·μνκ

τ − T ν·λκ R̃
·μλκ
τ

]

+ 2

3
(2p + q − 6r)

[(
∇̃κ − 2Tκ

+ 1

2
gαβ∇̃κgαβ

)
R̃[νκ]·μ

τ − T ν·λκ R̃
[λκ]·μ

τ

]

+ 8

3
(p − q)

[(
∇̃κ − 2Tκ + 1

2
gαβ∇̃κgαβ

)
R̃·[κν]μ

τ

− T ν·λκ R̃
·[κλ]μ
τ

]

+ (s + t)

[
2δ ν

τ

(
∇̃κ − 2Tκ + 1

2
gαβ∇̃κgαβ

)
R̃μκ

− 2

(
∇̃τ − 2Tτ + 1

2
gαβ∇̃τ gαβ

)
R̃μν + T ν·λτ R̃

μλ

]

+ (s − t)

[
2δ ν

τ

(
∇̃κ − 2Tκ + 1

2
gαβ∇̃κgαβ

)
R̃κμ

− 2

(
∇̃τ − 2Tτ + 1

2
gαβ∇̃τ gαβ

)
R̃νμ + T ν·λτ R̃

λμ

]
.

(B.20)

Appendix C: Source tensors

In order to understand the r.h.s. of the field equations (42) and
(43), it is necessary to make a distinction between the Hilbert
definition of the energy-momentum tensor and the definition
carried through in Eq. (32). Hilbert’s definition is made in a
Riemannian V4 spacetime and, therefore, there is a depen-
dence of the matter Lagrangian density on ∂g introduced by
the Levi-Civita connection. This definition is

τμν ≡ − 1√−g

δ
√−gLM (g, ∂g, Ψ )

δgμν

= − 1√−g

(
∂
√−gLM

∂gμν
− ∂κ ∂

√−gLM

∂(∂κgμν)

)
. (C.21)

Nevertheless, in the Palatini formalism this dependence on
∂g does not exist, since the matter Lagrangian depends on
g and Γ̃ as independent variables. Therefore, the energy-
momentum tensor is as in Eq. (32). This is

τ̃μν ≡ − 1√−g

∂
√−gLM (g, Γ̃ , Ψ )

∂gμν
. (C.22)

There is a clear difference between the two definitions.
However, when the metricity condition is implemented,

the connection Γ̃ becomes Γ̂ = Γ + K and, therefore, there
appears a dependence on ∂g in the definition (32). The term
Δ

αβγ
νμκ ∇κ

Σ̂α(βγ ) in the r.h.s. of Eq. (42) takes into account
this new dependence, which is not present in the original
definition of τ̂μν . To check the consistency of this argument,

let us take

δ
√−gLM (g, ∂g, T, Ψ )

δgμν
=

(
∂
√−gLM

∂gμν
− ∂κ ∂

√−gLM

∂(∂κgμν)

)

=
(

∂
√−gLM

∂gμν

−∂κ ∂
√−gLM

∂Γ̂
·(βγ )
α

∂Γ̂
·(βγ )
α

∂(∂κgμν)

)
,

(C.23)

where different tensors have been defined in Eqs. (8), (32)
and (33). This leads to

− 1√−g

δ
√−gLM (g, ∂g, T, Ψ )

δgμν
= τ̂μν+1

2
Δαβγ

νμκ ∇κ
Σ̂α(βγ ) .

(C.24)

The r.h.s. of Eq. (C.24) is exactly the expression on the
r.h.s. of Eq. (42), while the l.h.s. is similar to Hilbert’s
definition of the energy-momentum tensor (C.21). Indeed
τ̂μν + 1

2Δ
αβγ
νμκ∇κ

Σ̂α(βγ ) is the generalisation of Hilbert’s
definition of the energy-momentum tensor to the Riemann–
Cartan U4 spacetime.

On the other hand, Σ[τμ]ν is related to the contortion ten-
sor, which is the remaining part of the connection, see Ref.
[27]. Thus, the r.h.s. of Eq. (43) corresponds to the spin dis-
tribution tensor

S·μν
σ ≡ −∂LM (g, ∂g, T, Ψ )

∂K σ·μν

, (C.25)

as defined in Refs. [4,27].

Appendix D: Vector and pseudo-vector torsion in the
weak-gravity regime

In this appendix we are going to take the vector Tμ and
pseudo-vector Sμ torsion components as the only non-
vanishing torsion fields and calculate the expressions needed
for the analysis carried out in Sect. 3.3.

Assuming that the only non-vanishing components of the
torsion tensor in the decomposition (12) are the vector Tμ and
pseudo-vector Sμ torsion components, the expression for the
contortion tensor (11) can be rewritten as

Kμ
.νσ = 2

3
gμλ(Tνgλσ − Tλgνσ ) + 1

6
gμαεανσγ S

γ . (D.26)
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Under this assumption, the curvature tensor (15) takes the
form

R̂μ
.νρσ = Rμ

.νρσ + 2

3

[∇ρ(δμ
σ Tν − ηνσ T

μ)

− ∇σ (δμ
ρTν − ηνρT

μ)
]

+ 4

9

[
(Tσ Tν − ηνσ TαT

α)δμ
ρ

− (TρTν − ηνρTβT
β)δμ

σ + Tμ(Tρηνσ − Tσ ηνρ)
]

+ 1

6
ημα

(
εανσβ∇ρS

β − εανρβ∇σ S
β
)

+ 1

36
ημαηλδ

(
εαλρτ εδνσγ S

τ Sγ − εαλστ εδνργ S
τ Sγ

)

− 1

9

[
T αSγ (δμ

σ εανργ − δμ
ρεανσγ )

+ 2TμSγ ερνσγ − 2TνS
γ ημαεασργ

+ ημαT λSγ (ηνσ εαλργ − ηνρεαλσγ )
]
. (D.27)

The Ricci tensor is obtained by the usual contraction R̂μ
.νμσ ,

R̂νσ = Rνσ − 2

3

(
2∇σ Tν + ∇αT

αηνσ

)

+ 8

9

(
TνTσ − TβT

βηνσ

) + 1

6
εανσβ∇αSβ

− 1

36
ημαηλδεαλσβεδνμγ S

β Sγ , (D.28)

and the scalar curvature R̂ = ηνσ R̂νσ ,

R̂ = R − 4∇αT
α − 8

3
TβT

β − 1

6
Sβ S

β . (D.29)

As we want to get a set of stability condition on the param-
eters of the theory when gμν = ημν , we take the expression
of the curvature tensors (D.27), (D.28) and (D.29) to compute
the scalars in the Lagrangian density (24). These are

R̂2
∣∣∣
g=η

= 16∂αT
α∂βT

β + 64

3
∂αT

αTβT
β

+ 8

6
∂αT

αSβ S
β + 8

9
TαT

αSβ S
β

+ 1

36
SαS

αSβ S
β + 64

9
TαT

αTβT
β, (D.30)

R̂νσ R̂
νσ

∣∣
g=η

= 16

9
∂μTν∂

μT ν + 32

9
∂αT

α∂βT
β

+ 1

18
(∂αSβ∂αSβ − ∂αSβ∂β Sα)

+ 4

9
εμνρσ ∂μSσ ∂ρTν

+ 160

27
∂αT

αTβT
β − 64

27
∂μTνT

μT ν

+ 10

27
∂αT

αSβ S
β − 4

27
∂μTνS

μSν

+ 64

27
TαT

αTβT
β

+ 1

108
SαS

αSβ S
β + 16

81
TαT

αSβ S
β

+ 8

81
TαS

αTβ S
β , (D.31)

R̂νσ R̂
σν

∣∣
g=η

= 48

9
∂αT

α∂βT
β

− 1

18
(∂αSβ∂αSβ − ∂αSβ∂β Sα)

+ 4

9
εμνρσ ∂μSσ ∂νTρ + 160

27
∂αT

αTβT
β

− 64

27
∂αTβT

βT α + 10

27
∂αT

αSβ S
β

− 4

27
∂μTνS

μSν + 64

27
TαT

αTβT
β

+ 1

108
SαS

αSβ S
β

+ 16

81
TαT

αSβ S
β + 8

81
TαS

αTβ S
β, (D.32)

R̂μνρσ R̂
μνρσ

∣∣
g=η

= 32

9
∂ρTν∂

ρT ν + 16

9
∂αT

α∂βT
β

+ 2

9
∂αSβ∂αSβ + 1

9
∂αS

α∂β S
β

+ 8

9
εμνρσ ∂νSσ ∂ρTμ

− 128

27
∂ρTνT

ρT ν + 128

27
∂αT

αTβT
β

+ 8

27
∂α

(
T αSβ S

β − SαTβ S
β
)

+ 8

9
∂αS

αTβ S
β − 8

9
∂αSβT

αSβ

+ 64

27
TαT

αTβT
β + 1

108
SαS

αSβ S
β

+ 24

81
TαT

αSβ S
β + 48

81
TαS

αTβ S
β, (D.33)

R̂μνρσ R̂
ρσμν

∣∣
g=η

= 32

9
∂ρTν∂

νT ρ + 16

9
∂αT

α∂βT
β

− 2

9
(∂αSβ∂αSβ − ∂αS

α∂β S
β)

− 8

9
εμνρσ ∂νSσ ∂μTρ

− 128

27
∂ρTνT

ρT ν + 128

27
∂αT

αTβT
β

− 8

27
∂αSβT

αSβ + 16

27
∂αTβ S

αSβ

+ 64

27
TαT

αTβT
β + 1

108
SαS

αSβ S
β

− 8

81
TαT

αSβ S
β + 32

81
TαS

αTβ S
β, (D.34)

R̂μνρσ R̂
μρνσ

∣∣
g=η
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= 8

9
∂ρTν∂

νT ρ + 8

9
∂ρTν∂

ρT ν + 8

9
∂αT

α∂βT
β

− 1

6
∂αS

α∂β S
β + 8

9
εμνρσ ∂νSσ ∂ρTμ

+ 32

27
∂αT

αTβT
β − 32

27
∂αTβT

βT α

+ 4

27
∂αT

αSβ S
β − 4

27
∂αTβ S

αSβ

− 12

27
∂αS

αTβ S
β + 32

27
TαT

αTβT
β

+ 1

216
SαS

αSβ S
β − 16

81
TαS

αTβ S
β + 4

81
TαT

αSβ S
β.

(D.35)

Note that there are no terms ∂T ∂S, ∂ST T , or ST T , as
expected from parity conservation. On the other hand, it is
also possible to compute the pure torsion squared terms via
Eq. (12). These are,

TμνρT
μνρ = 2

3
TμT

μ + 1

6
SνS

ν , (D.36)

TμνρT
νρμ = −1

3
TμT

μ + 1

6
SνS

ν , (D.37)

T λ·μλT
·μρ
ρ = TμT

μ . (D.38)

In view of these calculations, the potential that appears in
Eq. (53) is

V(T, S) = −2

3
(c + 3λ)TαT

α − 1

24
(b + 3λ)SαS

α

− 12

27
q∂αS

αTβT
β

− 8

81
(3r − 4p − 2q)∂αSβT

αSβ

− 64

81
(q − 5p + 6r − 6s)∂αTβT

αT β

− 64

81
(5p − q + 6r + 15s)∂αT

αTβT
β

− 8

81
(p + 2q − 3s)∂αTβ S

αSβ

− 4

81
(2p − 2q + 15s)∂αT

αSβ S
β

− 64

27
(p − r + 2s)TαT

αTβT
β

− 1

108
(p − r + 2s)SαS

αSβ S
β

− 8

81
(p + r + 4s)TαT

αSβ S
β

− 8

81
(2p + 3q − 4r + 2s)TαS

αTβ S
β . (D.39)

Note that the parameter t does not appear in the expression of
the potential, since the antisymmetric part of the Ricci tensor

does not give rise to potential-type terms for the vector and
pseudo-vector torsion degrees of freedom.
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