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Abstract In a multidimensional Kaluza–Klein model with
Ricci-flat internal space, we study the gravitational field in
the weak-field limit. This field is created by two coupled
sources. First, this is a point-like massive body which has
a dust-like equation of state in the external space and an
arbitrary parameter Ω of equation of state in the internal
space. The second source is a static spherically symmetric
massive scalar field centered at the origin where the point-like
massive body is. The found perturbed metric coefficients are
used to calculate the parameterized post-Newtonian (PPN)
parameter γ . We define under which conditions γ can be very
close to unity in accordance with the relativistic gravitational
tests in the solar system. This can take place for both massive
or massless scalar fields. For example, to have γ ≈ 1 in
the solar system, the mass of scalar field should be μ �
5.05×10−49g ∼ 2.83×10−16eV. In all cases, we arrive at the
same conclusion that to be in agreement with the relativistic
gravitational tests, the gravitating mass should have tension:
Ω = − 1/2.

1 Introduction

Any physical theory is viable only when it does not contradict
the experimental data. Theories of gravity are not an excep-
tion to this rule. It is well known that general relativity (GR)
successfully passed the test by the gravitational experiments,
e.g. the relativistic gravitational tests in the solar system: the
deflection of light, the time delay of radar echoes and the per-
ihelion precession of Mercury. Consequently, any modified
theories of gravity must satisfy these observations with an
accuracy not less than GR. Multidimensional Kaluza–Klein
(KK) models are among such modified theories of gravity.

a e-mail: a.chopovsky@yandex.ru

Therefore, in Refs. [1–3], we investigated this problem
for multidimensional KK models with compact Ricci-flat (or
toroidal, as a particular example) internal spaces. We con-
sidered the post-Newtonian gravitational field generated by
discrete massive sources with negligible (in comparison to
c) velocities. We assumed that massive bodies possess zero
pressure in the external (our) space. Here, the pressure is
understood as a characteristic of a gravitating body. It is well
known that the pressure inside the non-relativistic astrophys-
ical bodies (such as our Sun) is much less than the energy
density. Therefore, we can neglect it. This is a natural assump-
tion in general relativity [4] accepted for calculation of the
parameterized post-Newtonian (PPN) parameters [5]. It is
natural to assume that in the internal space the gravitating
mass also has a dust-like equation of state. However, since
we do not know the equation of state in the internal space,
we assumed for generality some non-zero parameter Ω in
this equation. Next, for such a KK model we investigated the
PPN parameter γ . This parameter is well defined from the
Shapiro time-delay experiment: γ = 1 + (2.1 ± 2.3)× 10−5

[6–8]. To our surprise, in the case of KK models with Ricci-
flat internal spaces, we found that to get γ close to unity, the
equation of state parameter Ω should be very close to − 1/2.
Strictly speaking, to have γ = 1 (as in general relativity), Ω
should be exactly equal to − 1/2. This value is well known
for black strings and black branes [9–14]. For KK models
with Ricci-flat internal spaces, this result does not depend on
the size of the extra dimensions [15].1

1 It is a common knowledge that KK theory reduces to general rel-
ativity if the compact radii go to zero. Really, the compactness and
smallness of the internal spaces is a necessary condition for KK models
to be in agreement with the observations. However, this is not a suffi-
cient condition. Since the variations of the volume of internal spaces
contribute to the perturbations of the metric, then this results in the
fifth force/radions. Such a fifth force contradicts the observations. In
the case of background Ricci-flat internal spaces, radions are massless,
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Since up to now there is no a physically motivated expla-
nation of the origin of such an essentially non-zero value of
the parameter Ω , we are asking about the possibility of con-
structing the KK models, for which, on the one hand, the PPN
parameter γ will satisfy the experimental constraints (i.e. will
be very close to 1), and, on the other hand, the parameter Ω

will be 0. This is the main aim of the present paper. To achieve
this goal, we include into consideration a static spherically
symmetric massive scalar field coupled with the gravitating
body. Unfortunately, we demonstrate that to have the param-
eter γ ≈ 1 in the considered model, we should still demand
Ω = − 1/2.

The paper is structured as follows. In Sect. 2, we describe
the model and present basic equations. In Sect. 3, we calculate
the perturbed metric coefficients. This coefficients enable us
to estimate the PPN parameter γ in Sect. 4. The main results
are briefly summarized in the concluding Sect. 5.

2 The model and basic equations

The background spacetime is supposed to have a (1 + D) =
(1 + 3 + d)-dimensional block-diagonal metrics of the form

ĝ = ĝMNdxM ⊗ dxN = ημνdxμ ⊗ dxν + ĝmndxm ⊗ dxn,

(2.1)

where ημν = diag(+1,−1,−1,−1) is Minkowski metric
of the visible (external) 4-dimensional spacetime, and ĝmn is
Ricci-flat metric of the compact d-dimensional extra (inter-
nal) subspace. Hereafter, capital Latin indices run from 0 to
D, Greek indices run from 0 to 3, small Latin ones run from 4
to D = 3+d; index 0 is reserved for the time coordinate; hats
denote background/unperturbed quantities. We also suppose
that coordinates xμ, xm have dimension of length. Therefore,
the metric coefficients are dimensionless.

Footnote 1 continued
and this property does not depend on the size of the internal space. If
the gravitating masses are the only matter sources perturbing the back-
ground geometry, to eliminate such massless radions (i.e. to eliminate
the contributions of the fluctuations of the volume of internal spaces
to the metric perturbations) the gravitating masses should have tension
Ω = − 1/2 in the internal space. This is the black branes/strings case.
These models satisfy the gravitational tests in the solar system at the
same level of accuracy as general relativity. In the case of curved internal
spaces we have a different picture. Here, we can also eliminate radions
if Ω = − 1/2. However, for such models radions are massive with
masses inversely proportional to the volume of the internal space, and
the contributions of the fifth force have a Yukawa type form. Therefore,
for an arbitrary value of Ω such a KK theory reduces to general relativ-
ity in the limit of large masses (i.e. small internal space volume) where
the Yukawa contributions are exponentially small. These aspects of KK
models are discussed in detail in Refs. [15,16].

The background spacetime is perturbed by a matter source.
In the weak-field limit, the perturbed metric coefficients

gMN ≈ ĝMN + hMN , |hMN | � 1. (2.2)

We consider a matter source consisting of two components.
The first component is a compact body of mass m and with
mass density ρ. We assume that this compact body corre-
sponds to ordinary astrophysical objects. It is well known
that the pressure inside these objects (e.g., inside our Sun)
is much less than the energy density. Therefore, we can
neglect it. However, we do not know the pressure of these
bodies in the internal space. So, we keep it and Ω is the
equation of state parameter in the internal space. We should
note that the corresponding pressure is not connected with
motion of gravitating masses, i.e. Ω is the parameter of
a body. The value of Ω should be restricted from obser-
vations. Since we are going to define the parameterized
post-Newtonian (PPN) parameter γ , it is sufficient in this
case to calculate perturbations hMN (originating with the
gravitating mass) up to O(1/c2) [1]. To do it, we need to
keep the energy-momentum tensor (EMT) components up
to O(c2) terms only, and for the non-zero components we
get [16]

T00 ≈ ρc2, Tmn ≈ −Ωρc2 ĝmn,

T ≈ TMN ĝ
MN = ρc2(1 − Ωd). (2.3)

Hereinafter, the energy-momentum tensor related to the grav-
itating body will be denoted by sans typeface.

The conservation equation for this tensor takes the form
∇MTM

N = ∇̂MTM
N + o(c2) = 0 where o(c2) denotes terms

which are proportional to cn with n < 2. We should drop
such terms within the adopted accuracy. Then the gravitat-
ing body is static:2 ∇̂MTM0 = ∂0T0

0 = c2∂0ρ = 0 and
is uniformly distributed/smeared over the internal space:
∇̂MTM

n = ∇̂mTm
n = −Ωc2∂nρ = 0 unless Ω = 0. In

what follows, we will assume that the gravitating body is
localized at the origin in the external space and is smeared
over the internal space: ρ = mδ(r)/Vd , where Vd is
the volume of the unperturbed internal space and r =
(x1, x2, x3). Then, within the adopted accuracy, both mat-
ter source components satisfy the conservation equations
separately.

The second material component is a static spherically
symmetric scalar field φ with mass μ centered at the ori-
gin (see the footnote 3). We assume that this scalar field is in
its ground state in the internal space (there is no dependence
on the extra spatial coordinates xm). This field satisfies the

2 We consider only one gravitating mass placed at the origin of a refer-
ence frame. That is, in such a comoving frame, we disregard the spatial
velocity of a body. Such a simplification does not affect the main results
of our paper.
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linearized Klein–Gordon equation ∂2
r φ + (2/r)∂rφ −μ2φ +

O(hφ) = 0 with the following solution:3

φ(r) = Ce−μr/r. (2.4)

Here, the mass μ has dimension length −1, C is some dimen-
sional constant and r ≡ √

(x1)2 + (x2)2 + (x3)2.
The EMT (which we denote with fraktur) of the scalar

field reads

TMN = ∂Mφ∂Nφ − 1

2
ĝMN

[
∂Lφ∂Lφ − μ2φ2

]
+ O(hφ2),

(2.5)

T = −d + 2

2
∂Lφ∂Lφ + 1

2
(d + 4) μ2φ2 + O(hφ2). (2.6)

It can easily be realized that terms O(hφ2) result in correc-
tions of second order for the metric coefficients. Therefore,
we should drop such terms within the adopted accuracy.

Taking into account the explicit form of φ (2.4), and intro-
ducing the spherical coordinates in the external space, we
find that ∂Lφ∂Lφ = ĝrr (∂rφ)2 = −φ2(μr + 1)2/r2, where
ĝrr = − 1. Then the non-zero components of TMN take the
form

T00 ≈ φ2

r2

(

μ2r2 + μr + 1

2

)

, (2.7)

Tμ̄μ̄ ≈ (∂rφ)2(∂μ̄r)
2 − T00, (∂μ̄r)

2 = (x μ̄)2

r2 , (2.8)

Tμ̄ν̄ ≈ (∂μ̄φ)(∂ν̄φ) = x μ̄x ν̄

r2 (∂rφ)2, μ̄ �= ν̄, (2.9)

Tmn ≈ ĝmnT00 = φ2

r2

(

μ2r2 + μr + 1

2

)

ĝmn . (2.10)

Hereinafter, μ̄, ν̄ = 1, 2, 3 denote external space compo-
nents. The trace T, after substitution of the expression for
∂Lφ∂Lφ into (3), immediately takes the form

T ≈ φ2

2r2

[
(d + 2)(μr + 1)2 + (d + 4)μ2r2

]
. (2.11)

Both matter components result in the spacetime pertur-
bations (2.2) where hMN can be found from the linearized

3 To provide a condition for the gravitating massive body and scalar
field to stay at the same place (i.e. to be coupled), we can introduce
an interacting term ∼ ρφ into action. Since ρ(r) ∼ δ(r), this results
in a delta function in the rhs of the Klein–Gordon equation. Then the
solution (2.4) is valid in any point of the space, and the integration
constant C is defined by a coupling constant. Moreover, the terms ∼ ρφ

will appear also in the EMT. They describe the energy of interaction
of a massive body with scalar fields localized at other massive bodies.
As we can see from (2.4), such fields are exponentially suppressed for
sufficiently large distances. Therefore, we will drop such interaction
terms in the EMT. In other words, we consider a one-body problem.

Einstein equation:

δRMN = κ

[

TMN − 1

d + 2
T ĝMN

]

≡ SMN , (2.12)

where

TMN = TMN + TMN (2.13)

is the total energy-momentum tensor and

δRMN ≈ 1

2

[
−∇̂L ∇̂LhMN + ∇̂L ∇̂MhLN

+ ∇̂L ∇̂Nh
L
M − ∇̂N ∇̂MhLL

]
(2.14)

is the perturbation of the Ricci tensor up to linear (with
respect to hMN ) terms (see Eqs. (A.5)–(A.6) in [2]). The
prefactor κ stands for 2SDG(D+1)/c4, with SD being the total
D-dimensional solid angle and G(D+1) being the constant of
gravitational interaction in (D + 1)-dimensional spacetime.
It is worth noting that the combination κφ2 is dimension-
less. Since Eq. (2.12) is linear with respect to hMN , the two
material components TMN and TMN perturb the background
geometry independently in the considered approximation.
Therefore, we can split hMN into the two contributions:

hMN = hMN + hMN , (2.15)

where hMN is engendered by

SMN ≡ κ
[
TMN − TĝMN/(d + 2)

]
(2.16)

while hMN is produced by

SMN = κ
[
TMN − TĝMN/(d + 2)

]
, (2.17)

respectively.
It can easily be recognized that, for the mass density

ρ = mδ(r)/Vd and the scalar field of the form (2.4), the com-
bination SMN is static (∂0SMN = 0), smeared over the inter-
nal space (∇̂mSMN = 0) as well as spherically symmetric
in the external space (SMN (r, xm) = SMN (r, xm)). There-
fore, the corresponding metric perturbation hMN must pos-
sess the same properties, that is, hMN (xM ) = hMN (r, xm).
Moreover, it is natural to suppose that static and smeared
matter sources preserve the block-diagonal structure of the
spacetime:

h =
3∑

μ=0

hμμdxμ ⊗ dxμ + hmndxm ⊗ dxn . (2.18)

Further, since Sμν (μ, ν = 0, 1, 2, 3) does not depend on
the internal coordinates, hμν also must not depend on xm
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(∂mhμν = 0, m = 4, . . . , D = 3 + d). Additionally, for the
given matter sources, the EMT components Tmn may depend
on xm via ĝmn only. Therefore, we may suppose that hmn

have the form hmn(r, xm) = ξ(r)ĝmn(xm) (i.e. the metric on
the internal space experiences a conformal perturbation). We
will see below that such prescriptions for the metric perturba-
tions hMN are in full agreement with the linearized Einstein
equations.

Similar to the splitting (2.13), we can distinguish in
hmn(r, xm) = ξ(r)ĝmn contributions from different matter
sources:

hmn = hmn + hmn ≡ ξ f (r)ĝmn + ξm(r)ĝmn. (2.19)

Obviously, ξ f + ξm = ξ .
Taking all this into account, we can simplify (2.14) sig-

nificantly:

δR00 ≈ 1

2
	3h00(r), (2.20)

δRμ̄μ̄ ≈ 1

2

⎡

⎣	3hμ̄μ̄ − 2∂2
μ̄hμ̄μ̄

− ∂2
μ̄(h00 −

∑

λ̄

hλ̄λ̄ + ξd)

⎤

⎦ , (2.21)

δRμ̄ν̄ ≈ −1

2

⎡

⎣∂μ̄∂ν̄hν̄ν̄ + ∂μ̄∂ν̄hμ̄μ̄

+ ∂μ̄∂ν̄(h00 −
∑

λ̄

hλ̄λ̄ + ξd)

⎤

⎦ , μ̄ �= ν̄, (2.22)

δRmn ≈ 1

2
ĝmn	3ξ, (2.23)

where 	3 ≡ ∑3
μ̄=1 ∂2

μ̄.
Now, let us calculate SMN = SMN + SMN . Since SMN

(defined by (2.16)) is already known (see Eq. (2.3)), we need
to find SMN only:

S00 ≡ κ

[

T00 − 1

d + 2
Tĝ00

]

= −κ
μ2φ2

d + 2
, (2.24)

Sμ̄μ̄ = κ

[
(x μ̄)2

r2 (∂rφ)2 + μ2φ2

d + 2

]

, (2.25)

Sμ̄ν̄ = κ

[
x μ̄x ν̄

r2 (∂rφ)2

]

, μ̄ �= ν̄, (2.26)

Smn = ĝmnS00 = −κ
μ2φ2

d + 2
ĝmn . (2.27)

3 Metric coefficients

Combining (2.20)–(2.23) with (2.24)–(2.27), we get the sys-
tem of equations for hMN (for the moment we set the con-
stants C = κ = 1 to simplify the formulas):

	3h00 = −2μ2φ2

d + 2
, 	3ξ f = −2μ2φ2

d + 2
⇒ h00 = ξ f ,

(3.1)

	3hμ̄μ̄ − 2∂2
μ̄hμ̄μ̄ − ∂2

μ̄(h00 −
∑

λ̄

hλ̄λ̄ + ξ f d)

= 2
(x μ̄)2

r2 (∂rφ)2 + 2
μ2φ2

d + 2
, (3.2)

and

∂μ̄∂ν̄

⎡

⎣hν̄ν̄ + hμ̄μ̄ + (h00 −
∑

λ̄

hλ̄λ̄ + ξ f d)

⎤

⎦

= −2
x μ̄x ν̄

r2 (∂rφ)2, μ̄ �= ν̄. (3.3)

We denote the expression in square brackets in the lhs of
(3.3) by fμ̄ν̄ . It can easily be seen that fμ̄ν̄ is a function of r
only. Then we can rewrite the lhs as follows:

∂μ̄∂ν̄ fμ̄ν̄ (r) = x μ̄x ν̄

r2

[

∂2
r fμ̄ν̄ − 1

r
∂r fμ̄ν̄

]

, μ̄ �= ν̄, (3.4)

where we have used the evident relations of the form
∂μ̄ f (r) = (d f/dr)x μ̄/r . Hence, (3.3) results in

∂2
r fμ̄ν̄ − 1

r
∂r fμ̄ν̄ = −2 (∂rφ)2, ∀ (μ̄ �= ν̄). (3.5)

From (3.5) we conclude that all fμ̄ν̄ are equal. This is possible
only provided that h11 = h22 = h33, as follows directly from
the definition of fμ̄ν̄ . Therefore, after summing over μ̄ in
(3.2) and taking into account Eq. (3.1) for h00 we obtain

	3h11 = 1

2
(∂rφ)2 − 1

2

d − 2

d + 2
μ2φ2

= 1

2

[
(μr + 1)2

r2 − d − 2

d + 2
μ2

]
e−2μr

r2 . (3.6)

The general solution of this equation has the form

h11 = C1 + C2

r

d

2(d + 2)

μ

r
e−2μr

− + e−2μr

4r2 − d

d + 2
μ2Ei(−2μr), (3.7)

where Ei(x) is the exponential integral (see [17], chapter 37).
The natural boundary condition limr→∞ h11(r) = 0 implies
C1 = 0. Because there is no delta-like source in the rhs of
(3.6), C2 is also zero.
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Next, Eqs. (3.1), rewritten as

	3h00 = 	3ξ f = − 2μ2

d + 2

e−2μr

r2 , (3.8)

under the same boundary conditions as for h11, admit the
solution

h00 = ξ f = − 1

d + 2

μ

r
e−2μr − 2

d + 2
μ2Ei(−2μr). (3.9)

To restore κ �= 1 and C �= 1, we should multiply the right-
hand sides of (3.7) and (3.9) by the combination κC2 which
has the dimension of length2. It can easily be verified that
these metric coefficients together with the expressions (2.4)
for φ satisfy Eq. (3.5). Taking into account Eq. (2.19), we
obtain also the expression for hmn :

hmn = ξ f ĝmn . (3.10)

The solutions for hMN were already obtained in [2] (see
Eqs. (11) and (12)):

h00 = − 2

c2

SDG(D+1)

2π V̂d

1 + (1 + Ω)d

d + 2

m

r
, (3.11)

hμ̄ν̄ = 1 − Ωd

1 + (Ω + 1)d
h00δμ̄ν̄ , (3.12)

ξm = − 2Ω + 1

1 + (Ω + 1)d
h00, ⇒ hmn = ξmĝmn . (3.13)

Finally, the total perturbations of metric coefficients are
given by formulas (2.15) and (2.19).

4 PPN parameter γ

It is well known that h00 is related to the gravitational poten-
tial: h00 = 2ϕ/c2 [4]. As directly follows from (3.11) and
(3.12), the functionsh00,hμ̄μ̄ ∼ 1/r represent the pure New-
tonian contributions to the corresponding metric coefficients
g00 and gμ̄μ̄, and the requirement that h00 = 2ϕN/c2 =
−(2/c2)GNm/r leads to a connection between the Newto-
nian GN and multidimensional G(D+1) gravitational con-
stants in the absence of the scalar field [3]:

GN = SDG(D+1)

2π V̂d

1 + (1 + Ω)d

d + 2
. (4.1)

Additionally, if the scalar field is absent, the ratio

γ = hμ̄μ̄

h00
(4.2)

defines the parameterized post-Newtonian (PPN) parameter
γ . In the case of Eqs. (3.11) and (3.12) we obtain

γ = 1 − Ωd

1 + (Ω + 1)d
. (4.3)

According to the experimental data of astronomical obser-
vations in the solar system, γ must be very close to 1 [6–8].
In general relativity, the considered ratio is exactly equal to
unity: γ = 1. For Eq. (4.3), we can achieve this value only in
the case of black string/brane Ω = −1/2 in agreement with
[2,13,14]. That is, the gravitating masses should have tension
in the internal space. However, we do not know a physical
reason for a gravitating body to have tension. The dust-like
value Ω = 0 looks much more reasonable. Therefore, a nat-
ural question arises whether the presence of a scalar field can
provide such functions h00 and hμ̄μ̄ that they, first, contain
contributions demonstrating a pure Newtonian behavior4 at
astrophysical scales and, second, contribute to the total ratio
hμ̄μ̄/h00 in such a way that this ratio will be close to a unity
for Ω = 0. Unfortunately, the answer is negative. To demon-
strate it, we consider two limiting cases.

First, we consider the case of a “heavy” scalar field mass
μ � r−1. Taking into account the asymptotic behavior of the
exponential integral Ei(x) → exp(x)/x when |x | → ∞ (see
[17], chapter 37), we can conclude that in the limit μr � 1
the terms h00, h11 decay much faster (i.e. exponentially) with
distance than h00,h11. Then at distances r � μ−1 the met-
ric coefficients h00 ≈ h00 and hμ̄μ̄ ≈ hμ̄μ̄, and for PPN
parameter γ we obtain Eq. (4.3) which requires the value
Ω = − 1/2 to have the same accuracy as the general rela-
tivity. The relativistic gravitational tests (e.g. the deflection
of light and the time delay of radar echoes) take place at dis-
tances r � R� where R� is the radius of the Sun. Therefore,
at such distances scalar fields with masses μ � 5.05×10−49g
∼ 2.83 × 10−16 eV do not affect these gravitational tests.

Next, we consider the case of ultralight scalar field mass
μ � r−1. Since the exponential integral asymptotically
behaves as Ei(x) ≈ CE + ln(|x |) + x , |x | � 1 (here, CE

stands for Euler’s constant) [17], then in the limit μr � 1
we get

h00 ≈ −κC2 μr

(d + 2)r2

[
1 + 2CEμr − 4(μr)2

+ 2μr ln(2μr)] ≈ − κC2

d + 2

μ

r
, (4.4)

hμ̄μ̄ ≈ κC2 1

r2

(
1

4
− 2

2(d + 2)
μr

)
≈ κC2

4r2 , (4.5)

4 In the PPN formalism, a static spherically symmetric line element in
isotropic coordinates is parameterized in such a way that h00 = −rg/r
and hμ̄μ̄ = −γ rg/r , where rg = 2GNm/c2 [5]. In the relativistic
gravitational tests, γ was estimated for this parametrization. Therefore,
to compare with astronomical limitations, we must find such a range of
parameters where metric coefficients h00 and hμ̄μ̄ behave as 1/r .
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where we have restored the dimensional prefactor κC2. For
the total metric coefficients we obtain

h00 = h00 + h00 ≈ − κc2

2π V̂d

1 + (1 + Ω)d

d + 2

m

r
− κC2

d + 2

μ

r

(4.6)

and

hμ̄μ̄ = hμ̄μ̄ + hμ̄μ̄ ≈ − κc2

2π V̂d

1 − Ωd

d + 2

m

r
+ κC2

4r2 . (4.7)

As we mentioned above, metric coefficients should demon-
strate the Newtonian 1/r behavior. This means that in the
expression (4.7) for hμ̄μ̄ the second term with 1/r2 should
be much less than the first one with 1/r . Then we get the
additional condition for r :

r � π(d + 2)

2

C2V̂d
mc2(1 − Ωd)

. (4.8)

Therefore, hμ̄μ̄ ≈ hμ̄μ̄.
To be in agreement with the relativistic gravitational tests

(i.e. to have γ ≈ 1), we must equate h00 and hμ̄μ̄. This results
in the relation:

−d (1 + 2Ω)mc2 = 2π V̂dC2μ. (4.9)

This equation shows that the mass of scalar field μ is defined
by the mass of the gravitating body. Since the scalar field and
the gravitating body are independent, such condition looks
very artificial. Moreover, the condition of positivity5 of μ:
Ω < −1/2 excludes the sought value Ω = 0. Therefore, we
can satisfy (4.9) only if both the lhs and the rhs are equal to
zero simultaneously. Obviously, this is possible either when
μ = 0 (massless field), or when C = 0 (absence of the field at
all), but in both cases Ω = −1/2. It follows from the above
that a massless scalar field does not affect the gravitational
test for the PPN parameter γ in the solar system subject to
the condition (4.8), where r is replaced by R� and m by M�.

Therefore, the presence of the scalar field (massive or
massless) does not improve the situation with respect to the
parameter Ω . In all cases, we arrive at the same conclusion
that to be in agreement with the relativistic gravitational tests
the gravitating mass should have tension: Ω = −1/2.

5 Conclusion

In this paper, we have considered the effect of a scalar field
on the PPN parameter γ in a multidimensional Kaluza–Klein

5 It is worth noting that in the exotic case of negative mass μ < 0, the
value Ω = 0 is possible.

model with Ricci-flat internal space. In this model, the grav-
itational field is created by two coupled sources. First, this is
a point-like massive body which has a dust-like equation of
state in the external space and an arbitrary parameter Ω of the
equation of state in the internal space. In the static limit and
within the adopted accuracy, the massive gravitating body
is smeared over the internal space. The second source is a
static spherically symmetric massive scalar field centered at
the origin where the point-like massive body is situated. We
have assumed also that this scalar field is in its ground state
in the internal space and does not depend on the extra spa-
tial coordinates. In the linear approximation, we have cal-
culated the perturbed metric coefficients for this model. We
have used these perturbations to calculate the parameterized
post-Newtonian parameter γ . This PPN parameter is well
constrained by the gravitational tests (e.g. the deflection of
light and the time delay of radar echoes) in the solar sys-
tem. According to these tests, γ is extremely close to unity,
which is in very good agreement with the general relativ-
ity prediction [6–8]. In Kaluza–Klein models with Ricci-flat
internal space, the same value of γ as in the general rel-
ativity (i.e. γ = 1), can be achieve only for black brane
value Ω = − 1/2 [1–3]. However, we consider this value as
not very realistic since there is no any physically reasonable
motivation for it up to now. Therefore, in the present paper
we have investigated a possibility with the help of scalar field
to shift Ω to a more natural value Ω = 0. Simultaneously,
we have tried to keep the PPN parameter γ close to unity.
We have shown that we can fulfill the latter condition for
massive as well as massless6 scalar field. For example, in the
solar system to have γ ≈ 1, the mass of scalar field should
be μ � 5.05 × 10−49g ∼ 2.83 × 10−16 eV. Unfortunately,
in all cases, we have arrived at the same conclusion that to
be in agreement with the relativistic gravitational tests, the
gravitating mass should have tension: Ω = − 1/2.
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6 It is well known that massless fields can result in a potentially dan-
gerous situation if they are coupled to matter. This usually leads to the
fifth-force problem. We can see it e.g. from Eq. (4.6) obtained in the
case of light mass scalar field. Here, we get the additional contribu-
tion of the order of 1/r to the gravitational potential. With respect to
the PPN parameter γ , we eliminated this danger by putting μ = 0
and Ω = −1/2. However, such fifth force can manifest itself in other
experiments. This can result in additional restrictions on the constant
of interaction C.
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