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Abstract In the framework of the Einstein–Maxwell-
aether theory we study the birefringence effect, which
can occur in the pp-wave symmetric dynamic aether. The
dynamic aether is considered to be a latently birefringent
quasi-medium, which displays this hidden property if and
only if the aether motion is non-uniform, i.e., when the aether
flow is characterized by the non-vanishing expansion, shear,
vorticity or acceleration. In accordance with the dynamo-
optical scheme of description of the interaction between elec-
tromagnetic waves and the dynamic aether, we shall model
the susceptibility tensors by the terms linear in the covari-
ant derivative of the aether velocity four-vector. When the
pp-wave modes appear in the dynamic aether, we deal with
a gravitationally induced degeneracy removal with respect
to hidden susceptibility parameters. As a consequence, the
phase velocities of electromagnetic waves possessing orthog-
onal polarizations do not coincide, thus displaying the bire-
fringence effect. Two electromagnetic field configurations
are studied in detail: longitudinal and transversal with respect
to the aether pp-wave front. For both cases the solutions
are found, which reveal anomalies in the electromagnetic
response on the action of the pp-wave aether mode.

1 Introduction

The effect of birefringence is well documented in the elec-
trodynamics of continuous media [1–5]. This effect reveals
itself, in particular, when the electromagnetic waves possess-
ing two orthogonal polarizations are forced to move with dif-
ferent phase velocities, thus being converted to the so-called
ordinary and extraordinary waves. The medium behaves as
the birefringent one, when the electric and magnetic suscep-
tibility tensors of the medium are anisotropic, i.e., when these
tensors possess non-coinciding eigen-values (the medium is
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called bi-axial, if all three eigen-values are different, and
uni-axial, when only two of them coincide). The birefringent
property of the medium can be the intrinsic one (e.g., in the
spatially anisotropic crystals [6], in moving uni-axial media
[7]), or they can be induced by external influences (e.g., by an
external electric field [4,5], a magnetic field [8,9], stresses,
anisotropic heating, etc., [6]). When we deal with electro-
magnetic waves propagating under the influence of the grav-
itational field, various versions of the gravitation theory pre-
dict different results. For instance, the pre-metric axiomatic
theory guarantees (see, e.g., [10]) that there is no intrinsic
birefringence. Similarly, the minimal Einstein version of the
theory of gravity excludes birefringence. However, in the
framework of the modified theories of gravity the effect of
birefringence was predicted by many authors. For instance,
the nonminimal Einstein–Maxwell theory admits the bire-
fringence effect since the coupling of photons to the curva-
ture makes the nonminimal susceptibility tensor anisotropic
(see, e.g., [11–13]). Violation of the Lorentz invariance of
the model [14–18], a torsion nonminimally coupled to pho-
tons [19], interactions with strings [20], also can be the origin
of the birefringence effect. These predictions have attracted
the attention to the problem of cosmic birefringence and its
observations [21–25].

Our goal is to study the birefringence induced by the
dynamic aether. We assume that when the motion of the
aether is uniform, the aether is not birefringent, i.e., the effect
we search for is hidden. In other words, when the motion
of the aether is uniform, the test electromagnetic waves do
not display the dependence of the phase on the polariza-
tion; however, when the aether flow is characterized by non-
vanishing acceleration, shear, rotation or expansion, we deal
with the so-called degeneracy removal with respect to the
hidden parameters in analogy with effects described in [26].
The idea of a mathematical description of this degeneracy
removal was disclosed in Ref. [1]; there the corresponding
term dynamo-optical phenomena was introduced. In order
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to describe this effect the authors of [1] have introduced
the terms with derivatives of the medium velocity into the
permittivity tensors, thus rendering these tensors spatially
anisotropic.

Our consideration is based on the Einstein-aether theory
[27–36] and its extension, the Einstein–Maxwell-aether the-
ory [37]. The macroscopic velocity four-vector Ui appears
in the Einstein-aether and Einstein–Maxwell-aether theo-
ries as a dynamic time-like vector field normalized by unity
(gikUiUk = 1). The covariant derivative ∇iUk enters the
basic Lagrangian of the Einstein-aether theory [27], and it
appears in the interaction terms in the Einstein–Maxwell-
aether theory [37]. In this sense, we can indicate our approach
as an extension of the idea of dynamo-optical interactions,
fulfilled in the framework of the Einstein-aether theory. The
Einstein-aether and the Einstein–Maxwell-aether theories
realize the idea of a preferred frame of reference [38–40]
associated with a world-line congruence for which the cor-
responding time-like velocity four-vector Ui is the tangent
vector. In this sense they are characterized by a violation of
Lorentz invariance (see, e.g., [16]). There is also an alter-
native approach to introduce dynamo-optical interactions,
which is based on the analysis of the time-like unit eigen
four-vector of the stress-energy tensor of the cosmic substra-
tum (the vacuum, the aether, the dark fluid and so on) (see,
e.g., [41–43]). Such a velocity field appears algebraically
as an intrinsic vectorial quantity; the velocity field which we
consider now is related to the additional dynamic vector field.

In this paper we consider the birefringence effect, which
is dynamo-optically induced by the aether pp-wave modes.
What does this mean? First, we consider the pp-wave back-
ground formed by the gravitationally self-interacting aether
and fix the constraints on the Jacobson coupling parameters,
which guarantee that the so-called pp-wave modes can exist
in the dynamic aether. Second, we study the propagation of
test electromagnetic waves dynamo-optically coupled to the
pp-wave symmetric background. The modeling of the sus-
ceptibility tensors of such a potentially birefringent aether is
based on the introduction of two coupling constants; the phe-
nomenologically constructed susceptibility tensors describe
some effective bi-axial quasi-medium. Then we analyze the
master equations for the longitudinal and transversal electro-
magnetic field configurations, and we prove that this aether
behaves as a birefringent medium.

The paper is organized as follows. In Sect. 2 we consider
the basic elements of the Einstein–Maxwell-aether theory,
and we describe the background state possessing the pp-
wave symmetry and introduce a specific background state
indicated as pp-wave aether mode. In Sect. 3 we study solu-
tions for electromagnetic waves in the aether with excited
pp-wave modes. In Sect. 4 we discuss the magnitudes of
the birefringence effect and demonstrate that anomalies can
exist in the electromagnetic response on the action of the pp-

wave aether modes. Briefly our conclusions are presented in
Sect. 5.

2 The formalism

2.1 Action functional of the Einstein-aether theory

The Einstein-aether theory [27–34] uses the action functional

S(0) =
∫

d4x
√−g

1

2κ
[R + λ(gmnU

mUn − 1)

+ Kabmn(∇aUm)(∇bUn)], (1)

which describes the interaction between the gravitational
field and the unit vector field Ui attributed to the velocity of
some hypothetic medium, the dynamic aether. In the func-
tional (1), the quantity g = det(gik) is the determinant of
the metric; R is the Ricci scalar; κ is the Einstein constant.
The term λ (gmnUmUn−1) ensures that theUi is normalized
to one; the function λ is the Lagrange multiplier. The term
Kabmn ∇aUm ∇bUn is quadratic in the covariant derivative
∇aUm of the vector fieldUi . The tensor Kabmn is constructed
using the metric tensor gi j and the velocity four-vector Uk

only (see, e.g., [27]):

Kabmn = C1g
abgmn + C2g

amgbn

+C3g
angbm + C4U

aUbgmn . (2)

Here C1, C2, C3, and C4 are phenomenologically intro-
duced coupling constants [27–29]. In order to interpret the
coupling constants C1, C2, C3, C4, one uses the standard
decomposition of the tensor ∇iUk into the sum

∇iUk = Ui DUk + σik + ωik + 1

3
�ik�. (3)

The acceleration four-vector DUi , symmetric trace-free
shear tensor σik , anti-symmetric vorticity tensor ωik , and the
expansion scalar � are given by the formulas

DUk ≡ Um∇mUk,

σik ≡ 1

2
�m

i �n
k (∇mUn + ∇nUm) − 1

3
�ik�,

ωik ≡ 1

2
�m

i �n
k (∇mUn − ∇nUm),

� ≡ ∇mU
m, �i

k = δik −UiUk . (4)

In these terms the scalar

K ≡ Kabmn(∇aUm)(∇bUn) (5)

in the action functional (1) can be rewritten as follows:

K = CDDUkDU
k + Cωωikω

ik + Cσ σikσ
ik + 1

3
C��2. (6)
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Here we used the notations

CD = C1 + C4, Cω = C1 − C3,

Cσ = C1 + C3, C� = C1 + 3C2 + C3. (7)

As shown in [28], the Einstein-aether theory admits waves of
three types, which can be classified formally as scalar, vecto-
rial, and tensorial; respectively, one can speak of waves with
spin zero, spin one, and spin two. The parameters CD , Cω, Cσ ,
and C� are connected with velocities of the corresponding
waves, denoted as S(0), S(1), and S(2). For weak waves on
the Minkowski background these velocities of the waves are
found to be (compare with [28])

S2
(0) = (C� + 2Cσ )(2 − CD)

3CD(1 − Cσ )(2 + C�)
, (8)

S2
(1) = Cσ + Cω(1 − Cσ )

2CD(1 − Cσ )
, S2

(2) = 1

(1 − Cσ )
. (9)

Our ansatz is that the tensorial mode propagates with the
velocity coinciding with the speed of light in vacuum, i.e.,
S(2) = 1; this quantity also coincides with the standard veloc-
ity of propagation of the weak gravitational waves on the
Minkowski background [44]. According to (9) this means
that Cσ = 0. Also, we assume that the {g,U } model is
pure vectorial-tensorial, and the scalar modes cannot prop-
agate at all, S(0) = 0; then according to (8) we obtain
C� = 0. The velocity S(1) is free of restrictions; now we

obtain S(1) =
√

Cω

2CD
, and the coupling constants Cω and CD

are assumed to be of the same signs. Below we will show
that these phenomenological motives lead to the same result
as the strict definition of the pp-wave aether modes.

2.2 Master equations describing the background state

2.2.1 Equations for the unit dynamic vector field

The aether dynamic equations are known to be found by
varying the action (1) with respect to the Lagrange multiplier
λ and to the unit vector field Ui . The variation with respect
to λ gives the equation

gmnU
mUn = 1, (10)

which is the normalization condition of the time-like vector
field Uk . Variation of the functional (1) with respect to Ui

shows that Ui itself satisfies the standard balance equation

∇aJ aj = I j + λ U j , (11)

where the auxiliary quantities J aj and I j are defined as
follows:

J aj ≡ Kabjn(∇bUn), I j = C4(DUm)(∇ jUm). (12)

The Lagrange multiplier λ can be obtained by convolution
of (11) with Uj ; it has the following form:

λ = Um[∇aJ am − Im]. (13)

In more detail, using the constitutive tensor (2) and the sym-
bols �ik ≡ ∇iUk , � ≡ ∇kUk , we obtain

J am = C1�
am + C2g

am� + C3�
ma + C4U

aDUm,

Im = C4(DUn)�
mn . (14)

2.2.2 Equations for the gravitational field

The variation of the action (1) with respect to the metric gik

yields the gravitational field equations:

Rik − 1

2
R gik = λUiUk + T (U)

ik . (15)

The term T (U)
ik describes the stress-energy tensor associated

with the self-gravitation of the vector field Ui :

T (U)
ik = 1

2
gikJ am∇aUm

+∇m[U(iJk)m] − ∇m[Jm(iUk)] − ∇m[J(ik)U
m]

+C1[(∇mUi )(∇mUk) − (∇iUm∇kU
m)]

+C4(U
a∇aUi )(U

b∇bUk). (16)

As usual, the symbol p(i qk)≡ 1
2 (piqk + pkqi ) denotes the

procedure of symmetrization. As will be shown below, the
trace of this tensor,

T (U) = 2[C1�
am�am + C3�

ma�am]
+ (C1 + C4 − C3)∇mDUm − (C1 + 4C2 + C3) D�

− (C1 + 2C2 + C3)�2 + 3C4DU
kDUk, (17)

has to be equal to zero for the model with the pp-wave sym-
metry.

2.3 Master equations reduced to the case with pp-wave
symmetry

2.3.1 Metric and Killing’s vectors

We consider space-times, which possess the G5 group of
isometries [45], with five Killing vectors {ξ i(1), ξ

i
(2), ξ

i
(3), ξ

i
(4),

ξ i(5)}, three of which, {ξ i(1), ξ
i
(2), ξ

i
(3)}, form the Abelian sub-

group G3, and the first of them, ξ i(1), is the null covariantly
constant four-vector. Mathematically, this means that, first,
the Lie derivative of the metric is equal to zero, £ξ l

(a)
gik = 0

(a = 1, 2, 3, 4, 5); second, gikξ i(1)ξ
k
(1) = 0, and third,

∇kξ
i
(1) = 0.
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The geometrical properties of space-times with this so-
called pp-wave symmetry are well documented (see, e.g.
[45]). We use the metric in the TT-gauge

ds2 = 2dudv − L2(e2βdx22 + e−2βdx32
), (18)

which describes plane gravitational waves in the standard
theory of gravity, and we choose for simplicity the wave
with the first polarization (see, e.g., [44] for details). Here
u = 1√

2
(ct − x1) and v = 1√

2
(ct + x1) are the retarded and

advanced times, respectively. The functions L(u) and β(u)

are assumed to depend on the retarded time u only, and to
satisfy the conditions L(0) = 1, L ′(0) = 0, β(0) = 0, on
the initial front plane u = 0. The five Killing vectors in this
representation are known to be of the form

ξ i(1) = δiv, ξ i(2) = δi2, ξ i(3) = δi3,

ξ i(4) = x2δiv + G(u)δi2, ξ i(5) = x3δiv + F(u)δi3, (19)

where

G(u) =
∫ u

0
du′L−2(u′)e−2β(u′),

F(u) =
∫ u

0
du′L−2(u′)e2β(u′). (20)

The four-vectors {ξ i(1), ξ
i
(2), ξ

i
(3)} forming the Abelian sub-

group G3 are orthogonal one to another.

2.3.2 Ansatz about inheritance of the pp-wave symmetry

We assume that the vector fieldUi inherits the pp-wave sym-
metry. This assumption can be formulated using the follow-
ing requirements:

£ξ l
(a)
Uk = 0, a = 1, 2, 3, (21)

i.e., the Lie derivatives of the vector field along three Killing
vectors forming the Abelian subgroup vanish. These relations
require that the vector field has to depend on the retarded time
only, Ui (u). Also, we find automatically that (21) leads to

£ξ l
(a)

[∇iUk] = 0, a = 1, 2, 3. (22)

For the metric (18) the Ricci tensor has only one component
Ruu , and the Ricci scalar vanishes, R = 0. This means that

ξ i(α)

[
Rik − 1

2
Rgik

]
= 0, (23)

leaving us with the following consequences:

ξ i(a)

[
λUiUk + T (U)

ik

]
= 0 ,

ξ i(a)ξ
k
(b)

[
λUiUk + T (U)

ik

]
= 0,

ξ i(a)U
k
[
λUiUk + T (U)

ik

]
= 0. (24)

2.3.3 Aether vector field and the associated geodesic lines

We assume that there exists a global reference frame based
on the family of geodesic lines associated with the aether
vector field. This means that

dxi

dτ
= Ui ,

d2xi

dτ 2 + i
kl

dxk

dτ

dxl

dτ
= 0. (25)

Clearly, this is possible when the vector field satisfies the
condition

Um∇mU
i = 0, (26)

i.e., the acceleration vector vanishes, DUi = 0. For the met-
ric (18) the solution to Eq. (26) is known (see, e.g., [46]).
Indeed, (26) can be rewritten as

Uv∂uUi = 1

2
δui g

′
mn(u)UmUn, (27)

providing the solution to be of the form

Uv = ξ k(1)Uk = Ev, U2 = ξ k(2)Uk = E2,

U3 = ξ k(3)Uk = E3, Uu = 1 − gαβEαEβ

2Ev

, (28)

with integration constants Ev , E2 and E3. Here and below
the prime denotes the derivative with respect to the retarded
time u, and the Greek indices take two values α, β = 2, 3.
For such a velocity four-vector, the covariant derivative is the
symmetric tensor. Indeed,

�ik = ∇iUk = −δui δuk
EαEβ

2Ev

(gαβ(u))′ + 1

2
Evg

′
ik(u)

−g′
22(u)

2g22
E2(δ

2
i δ

u
k + δui δ2

k ) − g′
33(u)

2g33
E3(δ

3
i δ

u
k + δui δ3

k ),

(29)

thus the skew-symmetric vorticity tensor ωik is equal to zero
identically. The corresponding expansion scalar is

� ≡ gik�ik = 2Ev

L ′(u)

L
. (30)

Clearly, the symmetric shear tensor σik is also non-vanishing.
For our purposes, it is sufficient to choose the constants of
integration in the following form:

Ev = 1√
2

, E2 = 0, E3 = 0, (31)
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providing that

Uu = Uv = 1√
2

, Ui = δi0. (32)

This assumption means that in the chosen frame of refer-
ence the aether is in the state of rest. Now we find that the
tensor �ik has only two non-vanishing components �22 and
�33:

� k
i = 1√

2

[
δ2
i δ

k
2

(
L ′

L
+ β ′

)
+ δ3

i δ
k
3

(
L ′

L
− β ′

)]
, (33)

and thus the quadratic invariant �mn�
mn takes the form

�mn�
mn =

(
L ′

L

)2

+ (β ′)2. (34)

The expansion scalar reads now

� =
√

2 L ′(u)

L
, (35)

and the shear tensor can be written as

σ k
i = �

2

(
1

3
�k

i − δ1
i δ

k
1

)
+ β ′

√
2

(
δ2
i δ

k
2 − δ3

i δ
k
3

)
. (36)

2.3.4 Reduced equations for the vector field

The requirement of the pp-wave symmetry in the absence of
acceleration, DUi = 0, yields

I j = C4(DUm)(∇ jUm) = 0, (37)

J am = (C1 + C3)�
am + C2g

am�. (38)

Then the equation ∇aJ am = λUm gives

δmv [C2�
′ − √

2(C1 +C3)�ab�
ab] = 1√

2
λ(δmv + δmu ). (39)

The two nontrivial equations (39) for m = v and m = u are
compatible if and only if λ = 0 and

(C1 + C2 + C3)

[(
L ′

L

)2

+ (
β ′)2

]
= C2

[
L ′′

L
+ (β ′)2

]
.

(40)

2.3.5 Reduced equations for the gravitational field

For the space-time with pp-wave symmetry the Ricci scalar
vanishes; in the case when λ = 0 we have to state that the
trace of the stress-energy tensor is vanishing, T (U) = 0. Thus,
we obtain from (17)

2(C1 + C3)�
am�am − 1√

2
(C1 + 4C2 + C3)�

′

−(C1 + 2C2 + C3)�
2 = 0, (41)

or in more detail

(C1 + C2 + C3)

[
2

(
L ′

L

)2

+ 3
(
β ′)2

]
+ C2

(
β ′)2

= (C1 + 4C2 + C3)

[
L ′′

L
+ (

β ′)2
]

. (42)

Combination of the two equalities (42) and (40) requires that

C1 + C3 = 0, C2 = 0 ⇒ Cσ = 0, C� = 0. (43)

In other words, we can consider the aether to possess pure
pp-wave modes, if and only if the velocity of tensorial mode
coincides with the speed of light in vacuum, S(2) = 1, and
the scalar modes are stopped, S(0) = 0 (see (8) and (9)). In
this case we immediately obtain from (14) and (16)

J am = 0, T (U)
ik = 0. (44)

Thus, the gravity field equations reduce to one equation,
Ruu = 0, which has the well-known form

L ′′

L
+ β ′2 = 0. (45)

The parametersC4 andC1 −C3 = Cω remain hidden param-
eters of the model.

2.3.6 Resume: definition of the aether pp-wave mode

To conclude, we can define the aether pp-wave mode as a
state of the {g,U } field configuration, for which the metric
gik (18) which relates to G5 group of isometries, satisfies
Eq. (45), and for which the unit vector field is characterized
by Eqs. (32) and (33). This state of the aether, the pp-wave
mode, is presented by the exact solution to the total coupled
system of equations for the vector and gravity fields in the
framework of the truncated Einstein-aether model with two
arbitrary coupling constants (C1 and C4) and two fixed ones
(C2 = 0 and C3 = −C1). In the approximation of weak
fields, this exact solution corresponds to the particular case of
the Einstein-aether waves [28], for which the scalar mode is
stopped and the tensorial mode propagates with the velocity
equal to the speed of light in the standard vacuum.

2.4 Extended theory including the Maxwell field

2.4.1 Extended action functional

In [37] the Einstein-aether theory was extended by including
all admissible terms with the Maxwell tensor Fik . Now we

123



699 Page 6 of 14 Eur. Phys. J. C (2017) 77 :699

consider a particular Einstein–Maxwell-aether model, which
is based on the action functional

S(total) = S(0) + S(EMA), (46)

where the additional functional is of the form

S(EMA) = 1

4

∫
d4x

√−g
[
FmnFmn

+X pqikmn∇pUq Fik Fmn

]
. (47)

The tensor X pqikmn describes the coupling of electromag-
netic field to the non-uniformly moving aether; it was recon-
structed in [37] using the metric gik , the covariant constant
Kronecker tensors (δik , δikab and higher order Kronecker ten-
sors), the Levi-Civita tensor εikab, and the unit vector field
Uk itself. In the context of our study we extract the two-
parameter version of the tensor X pqikmn :

Xlsikmn = 1

4
UpUq [α(giklpgmnsq + gmnlpgiksq)

−γ (εiklpεsmnq + εikspεlmnq)]. (48)

This tensor contains two coupling constants, α and γ ,
describing the dynamo-optical interactions. Comparing this
version with the total one presented in [37], one can see that
we put

α = α6 = 3α1, γ = γ6 = 3γ1. (49)

Also, we use the auxiliary tensor

gikmn ≡ gimgkn − gingkm . (50)

As follows from [37], this choice of the set of phenomeno-
logical parameters relates to the following extensions of the
permittivity tensors:

εik = �ik + α�ik, (μ−1)
ik = �ik + γ�ik, νik = 0. (51)

Here �ik = gik − UiUk is the projector, and α and γ are
two new independent dynamo-optical coupling constants.
The term α�ik describes electric susceptibility induced in
the aether by the pp-wave mode; the term γ�ik relates to the
inverse magnetic susceptibility. When the aether flow is uni-
form, �ik = 0, the coupling of photons to the aether remains
latent, thus the parameters α and γ are hidden. It seems to
be interesting to mention that generally the tensors εik and(
μ−1

)ik
become anisotropic, when �ik �= 0. Taking into

account (33) one can say that these tensors have three dif-
ferent eigen-values and the electromagnetically active aether
behaves as a bi-axial quasi-medium.

2.4.2 Electrodynamic equations

The extended system of electrodynamic equations contains
two subsets [37]:

∇k[Fik + X pqikmn∇pUq Fmn] = 0, (52)

∇k F
∗ik = 0. (53)

The first subset is the result of variation of the extended action
functional (46) with respect to the potential of the electro-
magnetic field Ai , which defines the Maxwell tensor

Fik = ∇i Ak − ∇k Ai . (54)

The second subset is the standard consequence of (54) written
in terms of the dual Maxwell tensor F∗ik ≡ 1

2εikmn Fmn

(εikmn = 1√−g
Eikmn with E0123 = 1). As usual, we consider

the Lorentz gauge for the potential four-vector, ∇k Ak = 0.
Now we are ready for an extended analysis of the solutions
to the electrodynamic equations.

3 Analysis of solutions to the electrodynamic equations
in the model with the pp-wave symmetry of the aether
flow

3.1 Preamble

3.1.1 General solutions for the electromagnetic waves in
the absence of coupling to the aether pp-wave modes

Let us recall, first, the results known for the model with the
pp-wave symmetry for the case when the photon–aether inter-
actions are absent, i.e., α = 0, γ = 0. For this purpose we
can use the results of Ref. [13], which describes the influence
of a gravitational pp-wave on the electromagnetic wave with
arbitrary direction of propagation. Of course, in that work
we did not consider the aether, however, the basic gravity
field equation was used in the form coinciding with (45). As
shown in [13] for the minimal case, the equations for the
components Au , Av = ξ i(1)Ai , A2 = ξ i(2)Ai , A3 = ξ i(3)Ai of
the electromagnetic potential four-vector can be decoupled
taking three steps.
First, the equation for the component Av is self-closed,

DAv + 2
L ′

L
∂vAv = 0, (55)

where we use the following operator:

D ≡ 2∂u∂v + gαβ(u)∂α∂β. (56)

The solution to this equation is

Av = 1

L
Bv(W ) + B∗

v (u), (57)
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W = W0 + kvv + k2x
2 + k3x

3 − kαkβ

2kv

∫ u

0
dzgαβ(z).

(58)

Here Bv(W ) is an arbitrary function of its argument, the
phase function W ; the constants kv , k2, k3 play the roles
of components of the corresponding wave vector; W0 is the
constant of integration; B∗

v (u) is an arbitrary function of the
retarded time u. The wave four-vector

Km ≡ ∇mW = −δum
kαkβ

2kv

gαβ(u)+δv
mkv+δ2

mk2+δ3
mk3 (59)

is the null four-vector, KmKm= 0.
Second, the equations for the components A2 and A3 contain
the component Av already known:

DA2 − 2β ′∂vA2 + 2

(
L ′

L
+ β ′

)
∂2Av = 0, (60)

DA3 + 2β ′∂vA3 + 2

(
L ′

L
− β ′

)
∂3Av = 0. (61)

The corresponding solutions are

A2 = eβ(u)B2(W ) + k2

kvL
Bv(W ) + B∗

2 (u), (62)

A3 = e−β(u)B3(W ) + k3

kvL
Bv(W ) + B∗

3 (u), (63)

where B2(W ) and B3(W ) are arbitrary functions of the phase
W given by (58), and B∗

2 (u), B∗
3 (u) are arbitrary functions

of the retarded time only.
Third, we obtain the component Au from the Lorentz gauge
condition ∇k Ak = 0 rewritten as

∂vAu + ∂u Av − e−2β

L2 ∂2A2 − e2β

L2 ∂3A3 + 2Av

L ′

L
= 0 . (64)

The corresponding solution is of the form

Au = B∗
u (u) + 1

kvL2 [e−βk2B2(W ) + eβk3B3(W )]

− v

L2

d

du
[L2B∗

v (u)] − L ′

kvL2

∫
dWBv(W )

+ 1

2k2
vL

3 Bv(W )[k2
2e

−2β + k2
3e

2β ]. (65)

Below we extract two examples from the general solution
presented in this section, since they will play the important
role in our further analysis.

3.1.2 Basic example I: longitudinal configuration

Let the guiding parameters and arbitrary functions be chosen
as follows: k2 = k3 = 0, W0 = 0, and Bv(W ) = 0, B∗

v (u) =

B∗
u (u) = 0. Then we find from (57), (58), (62), (63), and (65)

that

A2 = eβ(u)B2(kvv) + B∗
2 (u),

A3 = e−β(u)B3(kvv) + B∗
3 (u), Av = Au = 0. (66)

This solution describes the electromagnetic waves with
the front parallel to the gravitational wave front. The so-
called co-moving electromagnetic wave is described by two
arbitrary functions of the retarded time,

A2 = B∗
2 (u), A3 = B∗

3 (u). (67)

If the electromagnetic wave propagates towards the gravita-
tional wave, we deal, respectively, with the potentials

A2 = eβ(u)B2(kvv), A3 = e−β(u)B3(kvv). (68)

Clearly, for this wave configuration there is no birefrin-
gence induced by a pp-wave gravitational field [13].

3.1.3 Basic example II: transversal configuration

Let arbitrary functions be chosen so that

B2(W ) = 0, B∗
v (u) = 0, B∗

2 (u) = 0,

B∗
3 (u) = 0, B∗

u (u) = 0. (69)

In addition, we choose the constants kv, k2, k3 as follows:

kv = k√
2
, k2 = −k, k3 = 0. (70)

Then we find immediately from (57), (58), (62), (63), and
(65) that

Au = 1

L3 Bv(W )e−2β −
√

2L ′

kL2

∫
dWBv(W ), (71)

Av = 1

L
Bv(W ), A2 = −

√
2

L
Bv(W ), A3 = e−βB3(W ),

(72)

W = W0 + k

[
v + u√

2
−x2 + 1√

2

∫ u

0
du

(
e−2β

L2 −1

)]
.

(73)

When β = 0 and L = 1, the phase (73) transforms into
W = W0 + k(t − x2), and we deal with the electromagnetic
wave propagating along 0x2. The first polarization of this
electromagnetic wave is associated with the direction 0x3 and
is described by the function B3(W ); the second polarization
is described by the function Bv(W ). Thus, in the field of pure
gravitational wave (without aether), there is no birefringence,
since the phase W relates to both polarizations.
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3.2 Analysis of solutions to the extended electrodynamic
equations

3.2.1 Equations to be solved

When the phenomenological coupling parameters α and γ

are non-vanishing, we have to solve the extended system
of electrodynamic equations. To be more precise, instead of
Eqs. (55), (60), and (61) we deal, respectively, with the equa-
tions

DAv + 2
L ′

L
∂vAv = Xv , (74)

DA2 − 2β ′∂vA2 + 2

(
L ′

L
+ β ′

)
∂2Av = X2, (75)

DA3 + 2β ′∂vA3 + 2

(
L ′

L
− β ′

)
∂3Av = X3, (76)

and only Eq. (64) remains unchanged. The new terms in the
right-hand sizes of Eqs. (74), (75), and (76) have, respec-
tively, the form

Xv = Xαβuσmn�αβ∂σ Fmn, (77)

X2 ≡ −e2β [∂u(L2Xls2umn�ls Fmn)

+ ∂v(L
2Xls2vmn�ls Fmn)], (78)

X3 ≡ −e−2β [∂u(L2Xls3umn�ls Fmn)

+ ∂v(L
2Xls3vmn�ls Fmn)]. (79)

In more detail, we can present these terms as follows:

Xv = e−2β

L2 ∂2
2 (h1Av + h2Au) + e2β

L2 ∂2
3 (h3Av + h4Au)

− e−2β

L2 (h1∂v + h2∂u)∂2A2

−e2β

L2 (h3∂v + h4∂u)∂3A3, (80)

X2 = −2h1∂u∂vA2 − h2(∂
2
u + ∂2

v )A2

+ 2β ′(h1∂v + h2∂u)A2 − (h′
1∂v + h′

2∂u)A2

+ ∂2{h1[∂u Av + ∂vAu] + h2[∂u Au + ∂vAv]
− 2β ′[h1Av + h2Au] + [h′

1Av + h′
2Au]}, (81)

X3 = −2h3∂u∂vA3 − h4(∂
2
u + ∂2

v )A3

− 2β ′(h3∂v + h4∂u)A3 − (h′
3∂v + h′

4∂u)A3

+ ∂3{h3[∂u Av + ∂vAu] + h4[∂u Au + ∂vAv]
+ 2β ′[h3Av + h4Au] + [h′

3Av + h′
4Au]}. (82)

The auxiliary functions h1(u), h2(u), h3(u), h4(u) are

h1(u) = 1

2
√

2

[
L ′

L
(α + γ ) + β ′(α − γ )

]
,

h2(u) = 1

2
√

2

[
L ′

L
(α − γ ) + β ′(α + γ )

]
,

h3(u) = 1

2
√

2

[
L ′

L
(α + γ ) − β ′(α − γ )

]
,

h4(u) = 1

2
√

2

[
L ′

L
(α − γ ) − β ′(α + γ )

]
. (83)

Since the term Xv contains Au , A2, A3, when the interaction
of electromagnetic waves with the pp-wave aether modes
exists, the component Av is not decoupled, as in the case
α = γ = 0 (see (55)). Now the solution is much more
sophisticated.

3.2.2 Electromagnetic waves with the front parallel to the
front of the pp-wave aether mode

We start the analysis with the case for which the solutions
depend neither on x2, nor on x3. The corresponding electro-
magnetic wave propagates along x1. For such a model we
obtain from (80) that Xv = 0. Consequently, Av = 0 is the
solution to Eq. (74), and Au = 0 is now the solution to (64).
As a result, we are faced with two decoupled equations for
two unknown functions A2 and A3:

2(1 + h1)∂u∂vA2 + h2[∂2
u + ∂2

v ]A2

= (2β ′h2 − h′
2)∂u A2 + [2β ′(1 + h1) − h′

1]∂vA2, (84)

2(1 + h3)∂u∂vA3 + h4[∂2
u + ∂2

v ]A3 =
− (2β ′h4 + h′

4)∂u A3 − [2β ′(1 + h3) + h′
3]∂vA3. (85)

Let us focus on the first one, and make the following
remark concerning the co-moving electromagnetic wave:
when h2(u) = 0, there exists the solution A2(u) = B∗

2 (u),
where B∗

2 (u) is an arbitrary function of the retarded time;
when h2(u) �= 0, an arbitrary co-moving wave is not admis-
sible, there is only a very specific solution of this type, namely
A2(u) = K1 + K2

∫
due2βh−1

2 . From the physical point of
view, this means that the phase velocity of the electromag-
netic wave in the aether differs from the speed of light in
vacuum, and thus, both retarded and advanced times, u and
v, have to form the argument of the potential, A2(u, v). The
equation of the characteristics associated with (84) is of the
form

h2(dv2 + du2) − 2(1 + h1)dudv = 0. (86)

When h2 = 0, this equation converts into dudv = 0,
providing the characteristics to be in the form u = const ,
v = const . When h2(u) �= 0, the two first integrals of Eq.
(86) are

v −
∫

du

H21

(
1 ±

√
1 − H2

21

)
= K(±), (87)

where the auxiliary function is introduced as

H21(u) = h2(u)

1 + h1(u)
. (88)

Equation (84) is of the hyperbolic type, when |H21| < 1.
Thus we obtain two characteristics in the form
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ξ2 ≡ v −
∫

du

H21

(
1 +

√
1 − H2

21

)
,

η2 ≡ v −
∫

du

H21

(
1 −

√
1 − H2

21

)
. (89)

(The superscript 2 in ξ2 and η2 relates to the polarization
along 0x2.) In the limit α → 0, γ → 0, we obtain η2 → v.
As for the first characteristic, in the limit α → 0, γ →
0 the integral tends to infinity; this means that there is no
continuous transition between the characteristics u = const
and ξ2 = const.

The same result can be obtained using the eikonal equa-
tion. Indeed, when A2 → a2ei[kvv+σ(u)] with large phase and
slowly varying amplitude a2, we obtain the following leading
order equation:

2(1 + h1)kvσ
′ + h2(σ

′2 + k2
v) = 0. (90)

Clearly, the solution to this equation,

σ ′
(±) = kv

H21

(
−1 ±

√
1 − H2

21

)
, (91)

covers the results displayed in (89). When we consider
Eq. (85) searching for the component A3, we obtain simi-
lar results:

ξ3 ≡ v −
∫

du

H31

(
1 +

√
1 − H2

31

)
,

η3 ≡ v −
∫

du

H31

(
1 −

√
1 − H2

31

)
, (92)

where the function

H31(u) = h4(u)

1 + h3(u)
(93)

can be obtained from H21(u) with the replacement β → −β.
Clearly, the phases of two components, A2 and A3, do not
coincide, we deal with the manifestation of birefringence.

3.2.3 Searching for an analog of transversal
electromagnetic wave

Our assumption is now that the electromagnetic potentials
do not depend on the variable x3. We are faced now with
the fact that the system of master equations splits into two
subsystems. The equation for the component A3 is decoupled
and has the following form:

2(1 + h3)∂u∂vA3 + h4[∂2
u + ∂2

v ]A3 − e−2β

L2 ∂2
2 A3

= −(2β ′h4 + h′
4)∂u A3 − [2β ′(1 + h3) + h′

3]∂vA3.

(94)

The equations for Au , Av and A2 remain coupled

∂vAu + ∂u Av − e−2β

L2 ∂2A2 + 2Av

L ′

L
= 0, (95)

2∂u∂vAv − e−2β

L2 (1 + h1)∂
2
2 Av + 2

L ′

L
∂vAv

= e−2β

L2 [h2∂
2
2 Au − (h1∂v + h2∂u)∂2A2], (96)

2(1 + h1)∂u∂vA2 − e−2β

L2 (1 + h1)∂
2
2 A2

+h2[∂2
u + ∂2

v ]A2 − h2∂2(∂u Au + ∂vAv)

= (2β ′h2 − h′
2)∂u A2 + [2β ′(1 + h1) − h′

1]∂vA2

−
[

2(1 + h1)

(
L ′

L
+ β ′

)
−h′

1

]
∂2Av−(2β ′h2−h′

2)∂2Au .

(97)

In order to study the birefringence effect, we can use the
eikonal approximation and consider the potentials as follows
(compare with (71)–(73)):

Au → aue
i�, Av → ave

i�, A2 → a2e
i�, A3 → a3e

i�,

� =k

[
v√
2

− x2 + ψ(u)

]
, �=k

[
v√
2

− x2 + φ(u)

]
.

(98)

We analyze, first, the decoupled equation (94) for the com-
ponent A3. The eikonal equation

h4

(
φ′2 + 1

2

)
+ √

2(1 + h3)φ
′ − e−2β

L2 = 0 (99)

gives two phase functions

φ(±)(u) =
∫ u

0

du√
2H31

⎡
⎣−1 ±

√
1 + H2

31

(
2
e−2β

h4L2 −1

) ⎤
⎦ .

(100)

When we apply the eikonal formalism to the coupled system
of equations for Au , Av , A2, (95), (96), (97), we are faced
with the algebraic system, which it is convenient to present
in the following “1 + 2” form:

au = −√
2

[
ψ ′av + e−2β

L2 a2

]
,

av[1 + h1 − √
2L2e2βψ ′ − √

2h2ψ
′]

+ a2

[
1√
2
h1 + ψ ′h2 − √

2h2
e−2β

L2

]
= 0,

av

h2√
2
[1 − 2ψ ′2] + a2

[
h2

(
ψ ′2 + 1

2
− √

2ψ ′ e−2β

L2

)

+ (1 + h1)

(√
2ψ ′ − e−2β

L2

)]
= 0. (101)
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The system of last two equations admits a nontrivial solution,
when the Cramer determinant vanishes, and the function ψ ′
satisfies the following cubic equation:

−ψ ′3[√2h2L
2e2β ] + ψ ′2[h2 − 2(1 + h1)L

2e2β ]
+ψ ′√2

[
(1 + h1)(2 + h1) − h2

2 − 1

2
h2L

2e2β

]

+
{

1

2
h2 + e−2β

L2 [h2
2 − (1 + h1)

2]
}

= 0. (102)

When the electromagnetic wave does not interact with the
aether, i.e., α = γ = 0, this cubic equation transforms into
the quadratic one

[√
2ψ ′Leβ − e−β

L

]2

= 0, (103)

thus providing the solution to be the double and to have the
form (compare with (73))

ψ ′
(0) = e−2β

√
2L2

. (104)

When α �= 0 and/or γ �= 0, surprisingly, the root ψ ′
(0) (104)

is again one of the roots of the cubic equation (102), and for
this root we obtain au = av

e−2β

L2 , and a2 = −√
2av .

The other two roots of the cubic equation, and the corre-
sponding amplitudes, can be written as follows:

ψ ′
(±) = 1√

2H21

⎧⎨
⎩−1 ±

√
(1 − H2

21)

[
1 + 2h2

e−2β

L2

]⎫⎬
⎭ ,

(105)

a(±)
2 = −√

2av

[
1 + h1 − √

2ψ ′
(±)

(
L2e2β + h2

)]
[
h1 + √

2h2

(
ψ ′

(±) − √
2 e−2β

L2

)] , (106)

a(±)
u = √

2av

[
h1 + √

2h2

(
ψ ′

(±) − √
2
e−2β

L2

)]−1

×
[√

2
e−2β

L2 (1 + h1)−
√

2h2ψ
′
(±)

2−(2 + h1)ψ
′
(±)

]
.

(107)

Based on the solutions obtained we consider below the bire-
fringence effect and symptoms of anomalous behavior of the
electromagnetic response.

4 Discussion

4.1 Phase velocities of polarized electromagnetic waves in
the excited aether

We have shown that the dynamical aether, being excited by
the pp-wave modes, can manifest properties of a bi-axial

medium, when the test electromagnetic wave propagates in
the aether. A possible anisotropy of the dielectric and mag-
netic susceptibility tensors can appear in a dynamo-optical
manner, i.e., it can be produced by the shear and expansion
of the aether flow. Since the pp-wave aether mode is consid-
ered as a provider of such anisotropy, we can identify three
eigen-axes with the direction of the aether mode propagation
(0x1) as well as with directions of the first and second polar-
izations of the tensorial mode (0x2 and 0x3, in our model).
For instance, when we deal with the dielectric properties of
the aether with the metric (18) and Killing vectors (19), we
can use the ellipsoid

(x1)2

ε1
+ (x2)2

ε2
+ (x3)2

ε3
= 1,

ε1 = 1, ε2 = 1 + α

(
L ′

L
+ β ′

)
,

ε3 = 1 + α

(
L ′

L
− β ′

)
, (108)

as the characteristic surface of this quasi-medium (see, e.g.,
[6]). Clearly, when β(u) �= 0, there are no coinciding eigen-
values, ε1 �= ε2 �= ε3. In the classical electrodynamics of
bi-axial media, there is a prediction as regards the existence
of one ordinary and two extraordinary waves. In fact, when
the wave falls on the boundary of the bi-axial medium, it
splits into two waves displaying the birefringence effect,
however, the pair of waves (one ordinary plus one extraor-
dinary) can be realized in two variants. These waves are
characterized by different phase velocities, which depend
on the direction of the wave propagation and on the wave
polarization. In order to define the phase velocity we cal-
culate, first, the wave four-vector Ki as a four-gradient of
the phase Ki = ∇iW , and its square Ki K i ; then we find
the wave frequency as the projection of this four-vector on
the aether velocity four-vector, � = KiUi (for definite-
ness, we choose the positive value of this projection in all
cases considered below). The next step in our procedure
(see [47]) is the calculation of the spatial wave four-vector
K ∗
i = �

j
i K j , and of its modulus K ∗. Finally, we obtain the

phase velocity according to the ruleV(ph) = �
K ∗ . Let us apply

the described procedure to both longitudinal and transversal
submodels.

4.1.1 Phase velocities of the electromagnetic waves with
the front parallel to the pp-wave front

Taking into account Eqs. (89), (91), and (92), we see that

Ki = δui σ ′ + δv
i kv, KmK

m = 2kvσ
′,

� = KiU
i = 1√

2

(
kv + σ ′) ,

K 2∗ = −�mnKmKn = 1

2

(
kv − σ ′)2

. (109)
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Thus, the phase velocities for the electromagnetic waves with
the polarizations along 0x2 and 0x3 are given, respectively,
by the formulas

V (2)
(ph) =

√
1 − H21

1 + H21
, V (3)

(ph) =
√

1 − H31

1 + H31
. (110)

Clearly, V (2)
(ph) �= V (3)

(ph), when β ′ �= 0. Mention should be

made that the phase velocity V (2)
(ph) does not depend on the

plus or minus signs in the solution (91) (for V (3)
(ph) the situation

is similar). For small values of the coupling parameters α and
γ we obtain

V (2)
(ph) 
 1−h2 = 1− 1

2
√

2

[
L ′

L
(α−γ ) + β ′(α + γ )

]
, (111)

V (3)
(ph) 
 1−h4 = 1− 1

2
√

2

[
L ′

L
(α−γ )−β ′(α + γ )

]
, (112)

so that the difference between the phase velocities of the
orthogonally polarized electromagnetic waves

V (2)
(ph) − V (3)

(ph) = h4 − h2 = − 1√
2

β ′(α + γ ) (113)

is linear in the factor β ′(u) and proportional to the sum of
the coupling parameters.

4.1.2 Phase velocities of the electromagnetic waves with
the front orthogonal to the pp-wave front

Based on Eqs. (98) and (100), we obtain for the wave with
polarization along 0x3

Ki = k

(
δui φ′ + δv

i
1√
2

− δ2
i

)
,

KmK
m = k2

(√
2φ′ − e−2β

L2

)
,

� = k

2

(
1 + √

2φ′) ,

K 2∗ = k2

2

[
2
e−2β

L2 +
(

φ′ − 1√
2

)2
]

. (114)

There are two phase velocities describing the electromagnetic
waves with this polarization

V (±)
(ph)

=

[
H31 − 1 ±

√
1 + H2

31

(
2 e−2β

h4L2 − 1
) ]

√[
H31 + 1 ∓

√
1 + H2

31

(
2 e−2β

h4L2 −1
)]2

+ 4H2
31

e−2β

L2

.

(115)

These velocities depend on the choice of the sign, in contrast
with the longitudinal case. For small values of the coupling
parameters α and γ Eq. (115) gives

V (+)
(ph) 
 1−

[
h4

(
1 + e−4β

L4

)
+ 2h3

e−2β

L2

] [
1 + e−2β

L2

]−2

,

V (−)
(ph) 
 1−h4. (116)

For the electromagnetic wave with orthogonal polarization
we find that the ordinary wave with ψ(u) = ψ(0) propagates
with the phase velocity equal to speed of light in vacuum,
V (0)

(ph) = 1. For the pair of extraordinary waves we obtain

Ṽ (±)
(ph)

=

[
H21−1 ±

√(
1−H2

21

) (
1 + 2h2

e−2β

L2

) ]
√[

H21 + 1 ∓
√(

1−H2
21

) (
1 + 2h2

e−2β

L2

)]2

+ 4H2
21

e−2β

L2

.

(117)

When α → 0 and γ → 0, this formula gives

Ṽ (+)
(ph) 
 1−

[
h2

(
1 + e−4β

L4

)
+ 2h1

e−2β

L2

] [
1 + e−2β

L2

]−2

,

Ṽ (−)
(ph) 
 1 − h2. (118)

To conclude, one can confirm that electromagnetic waves in
the dynamic aether excited by pp-wave modes manifest the
effect of birefringence; the proof of this statement is that the
corresponding phase velocities depend on polarization and
on the propagation direction. Below we consider the birefrin-
gence effect in terms of phase shifts for the case when the
coupling parameters α and β are small enough.

4.2 On regularity of ordinary and extraordinary waves

We indicate the electromagnetic wave in the dynamic aether
as the regular one, if its phase and amplitude tend to finite
values in the limit α → 0, γ → 0; the wave can be called
anomalous, if at least one of these two quantities tends to
infinity. Using Eq. (91) with the plus sign and the minus sign
we obtain, respectively,

σ ′
(+) 
 − kv

4
√

2

[
L ′

L
(α − γ ) + β ′(α + γ )

]
,

σ ′
(−) 
 − 4

√
2kv[

L ′
L (α − γ ) + β ′(α + γ )

] . (119)

Using Eq. (100) with the plus sign and the minus sign we see
that

φ′
(+)(u) 
 e−2β

√
2L2

− 1

2
√

2

[
h4

(
1 + e−4β

L4

)
+ h3

e−2β

L2

]
,
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ψ ′
(−)(u) 
 −

√
2

h4
. (120)

Similarly, (105) gives

ψ ′
(+)(u) 
 e−2β

√
2L2

− 1

2
√

2

[
h2

(
1 + e−4β

L4

)
− 2h1

e−2β

L2

]
,

ψ ′
(−)(u) 
 −

√
2

h2
. (121)

As for the amplitude functions (106) and (107) with the sign
minus, they behave as

a(−)
2 


√
2av

h2
L2e2β , a(−)

u 
 −av

(
e−2β

L2 + h1

h2

)
. (122)

This means that the function a(−)
2 is large, when the coupling

parameters α and γ are small; the corresponding double limit
at α → 0, γ → 0 exists but gives infinity as a result (we deal
with the simple pole in standard terminology). The function
a(−)
u remains finite, however, the double limit α → 0, γ → 0

does not exist, since the term h1
h2

depends on the guiding tra-
jectory on the plane α0γ . These are typical symptoms of
the existence of an anomaly in the electromagnetic response
(see, e.g., [43,48–51] for details). Thus, for the electromag-
netic waves indicated by the minus sign the phase functions
are irregular in the limit α → 0, γ → 0. In other words, we
are faced with an anomalous behavior of the electromagnetic
response on the action of the pp-wave aether mode. A sim-
ilar anomalous behavior of the electromagnetic response on
the action of the gravitational pp-wave we have described in
Refs. [43,48–51] by the examples of initially static magnetic
and electric fields in media with refraction index n close to
one, n2 → 1. Now we have found examples of anomalous
behavior of the phase of the waves propagating in the elec-
tromagnetically active dynamic aether.

4.3 Estimations of the effect magnitude

In the experiment, the phase of the electromagnetic wave is
not a detectable quantity, however, the phase difference of
two waves with orthogonal polarizations can be found, e.g.,
in laser-interferometric systems. For instance, one can try to
find the phase differences of the following five wave config-
urations: first, when one wave is ordinary, another wave is
regular extraordinary; second, when one wave is ordinary,
another wave is irregular extraordinary; third, when both
waves are regular extraordinary; fourth, when both waves
are irregular extraordinary; fifth, when one wave is regu-
lar extraordinary, another wave is irregular extraordinary. In
order to estimate the magnitude of the birefringence effect,
we consider two examples of the third and fourth types in our
classification, calculating the phase differences for the waves
with the front parallel to the front of the aether pp-wave mode.

According to (89) they are, respectively,

�W(A) = kv(ξ2 − ξ3)

= kv

∫ u

0
du

⎡
⎣ (1 +

√
1−H2

31)

H31
−

(1 +
√

1−H2
21)

H21

⎤
⎦ ,

(123)

�W(R) = kv(η2 − η3)

= kv

∫ u

0
du

⎡
⎣ (1−

√
1−H2

31)

H31
−

(1−
√

1−H2
21)

H21

⎤
⎦ .

(124)

When the coupling parameters α and γ are small, we obtain
the approximate expressions

�W(A) 
 2kv

∫ u

0
du

(H21 − H31)

H21H31

= 8
√

2kv

∫ u

0
du

(α + γ )β ′(u)[(
L ′
L

)2
(α − γ )2 − β ′2(α + γ )2

] ,

(125)

�W(R) 
 1

2
kv

∫ u

0
du(H31 − H21) = − (α + γ )

2
√

2
kvβ(u).

(126)

Clearly, the quantity �W(R) is small, so the superscript (R)

relates to the term regular, while the phase difference �W(A)

is anomalously large, thus explaining the usage of the super-
script (A). From the physical point of view, the parameter
� ≡ (α+γ )

2
√

2
is the correlation radius of the electromagnetic

interactions attributed to the aether; it has the dimensional-
ity of length. The quantity β is in fact the amplitude of the
pp-wave aether mode; it can be estimated using the analogy
with pure gravitational waves emitted by binary black hole
systems, as |β|(max) ∝ 10−21 (the amplitude on the Earth
surface). The quantity kv for light is of the order 107m−1,
so that the regular phase difference (126) is of the order
∝ � · 10−14rad. Of course, the magnitude of the birefrin-
gence effect for the regular case seems to be extremely small,
while the corresponding estimate for the anomalous case (see
(125)) happens to be extremely optimistic.

5 Conclusions

1. An electromagnetically active dynamic aether is shown to
behave as an anisotropic birefringent medium, when the
aether is excited by a pp-wave; ordinary electromagnetic
wave and extraordinary electromagnetic waves of two
types can propagate in the dynamic aether.

2. Electromagnetic waves with orthogonal polarizations,
coupled to the pp-wave aether mode, propagate with dif-
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ferent phase velocities, thus revealing the birefringence
effect induced by the dynamic aether.

3. For one of two extraordinary electromagnetic waves,
which can be generated in the dynamic aether excited
by the pp-wave mode, an anomalous behavior of the
phase is predicted; the phase difference calculated for two
waves with orthogonal polarizations inherits this anoma-
lous feature.
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