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Abstract We consider spherical exact models for compact
stars with anisotropic pressures and a conformal symme-
try. The conformal symmetry condition generates an integral
relationship between the gravitational potentials. We solve
this condition to find a new anisotropic solution to the Ein-
stein field equations. We demonstrate that the exact solution
produces a relativistic model of a compact star. The model
generates stellar radii and masses consistent with PSR J1614-
2230, Vela X1, PSR J1903+327 and Cen X-3. A detailed
physical examination shows that the model is regular, well
behaved and stable. The mass–radius limit and the surface
red shift are consistent with observational constraints.

1 Introduction

Symmetries in spacetime generate substantial interest in the
literature because they provide insight into geometrical prop-
erties of the spacetime and they help in generation of exact
solutions to the field equations. Conformal symmetries are
particularly important as they generate constants of motion
of massless particles, and Lie dragging of the metric along
a congruence of the curves gives a quantity which is pro-
portional to the metric. The presence of a conformal Killing
vector places constraints on the gravitational field and this
simplifies the integration of the Einstein field equations. Con-
sequently, a conformal symmetry is important in relativis-
tic astrophysics and is useful in modelling dense relativistic
stars. Herrera et al. [1] were the first to model a conformally
invariant gravitating sphere. Herrera and Ponce de Leon [2–
4] presented other stellar models with conformal symme-
try. Many of these solutions were not regular at the centre.
Maartens and Maharaj [5] generated models of conformally
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invariant spheres with an anisotropic energy momentum ten-
sor which is regular at the centre of the star.

Conformal Killing vectors have been comprehensively
analysed in static spherical spacetimes by Maartens et al.
[6,7] and Tupper et al. [8]. Manjonjo et al. [9] used the Weyl
tensor to find conformally flat and non-conformally flat static
metrics with conformal symmetries. In a subsequent paper
Manjonjo et al. [10] showed that a conformal symmetry
generates an explicit relationship relating the gravitational
potentials in general; isotropic and anisotropic matter distri-
butions can then be found with a conformal Killing vector.
These studies may be used to model stellar systems in rela-
tivistic astrophysics. Mak and Harko [11] modelled a quark
star with a one-parameter group of conformal motions. Rel-
ativistic stars with a linear equation of state were considered
by Esculpi and Aloma [12]. Rahaman et al. [13] and Shee
et al. [14] studied anisotropic stars with a nonstatic confor-
mal vector, tangential pressures and a specified spacetime
potential. Quintessence fields [15], gravastar models [16] and
braneworld structures [17] have been analysed with a confor-
mal symmetry. These studies show that the assumption of a
conformal symmetry in spacetime is useful in studying exact
solutions of field equations and astrophysical processes in
stars.

We restrict the spacetime geometry or the matter fluid to
solve the Einstein field equations. Here we assume the pres-
ence of a conformal Killing vector in the spacetime man-
ifold. The relationship between the gravitational potentials
established by Manjonjo et al. [9] forms the basis of our
study. We choose the form for one of the gravitational poten-
tials that enables the conformal condition in [9] to be inte-
grated. In this work we present a new anisotropic solution
for a compact star with the use of a conformal Killing vector
in the spherical spacetime geometry. In Sect. 2, we present
the relationship between the gravitational potentials and the
Einstein field equations. A new exact anisotropic solution is
generated in Sect. 3. In Sect. 4, physical requirement con-
ditions for acceptability of the stellar model and the model
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Table 1 Variation of mass, radius and central density in terms of b and n. The parameters b and n are variable

Star b (km−2) n F M
M⊙ R (km) M

R ρc (×1015 g cm−3) Zs

PSRJ1614-2230 0.0032063 1.20921 0.250386 1.97 10.30 0.28230 1.031 0.515

Vela X-1 0.00309987 1.17072 0.297192 1.77 9.99 0.26151 0.997 0.448

PSR J1903+327 0.0030455 1.15320 0.322566 1.667 9.82 0.25056 0.980 0.416

Cen X-3 0.00295072 1.12838 0.308379 1.49 9.51 0.23126 0.949 0.364

Table 2 Variation of mass, radius and central density in terms of b. The parameter b is variable and n is fixed

Star b (km−2) n F M
M⊙ R (km) M

R ρc (×1015 g cm−3) Zs

PSRJ1614-2230 0.0032063 1.20921 0.250386 1.97 10.30 0.28230 1.031 0.5155

Vela X-1 0.0039718 1.20921 0.250386 1.77 9.25 0.28243 1.28 0.5160

PSR J1903+327 0.0043699 1.20921 0.250386 1.667 8.82 0.27898 1.41 0.5040

Cen X-3 0.0055950 1.20921 0.250386 1.49 7.80 0.28232 1.80 0.5143

parameter constraints are discussed. In Sect. 5, we generate
masses and radii for selected pulsars PSR J1614-2230, Vela
X-1, PSR J1903+327 and Cen X-3. The results are presented
in Tables 1 and 2, and graphical plots of matter variables for
PSR J1614-2230 are displayed. A detailed analysis of the
physical features is presented. A brief conclusion is drawn
in Sect. 6.

2 The model

The line element for static spherically symmetric spacetimes
can be written in the form

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2), (1)

in coordinates (xa) = (t, r, θ, φ). The quantities ν(r) and
λ(r) are the gravitational potentials. The fluid 4-vector is
comoving, unit and timelike. It has the form ua = e−νδa0 . The
matter distribution is anisotropic so that the energy momen-
tum tensor has the form

Tab = diag (−ρ, pr, pt, pt) , (2)

where ρ, pr and pt are the energy density, radial pressure and
tangential pressure, respectively. The difference pr − pt =
Δ defines the anisotropy. When the anisotropy Δ vanishes,
pr = pt and the pressure is isotropic. From (1) and (2) we
find that the Einstein field equations are given by

1

r2

[
r(1 − e−2λ)

]′ = 8πρ, (3a)

e−2λ

[
2ν′

r
+ 1

r2

]

− 1

r2 = 8πpr, (3b)

e−2λ

[

ν′′ + ν′2 + ν′

r
− λ′

r
− ν′λ′

]

= 8πpt, (3c)

where primes denote differentiation with respect to the coor-
dinate r . In the above we are using units where G = c = 1.

The field equations (3) are difficult in general. In this inves-
tigation we assume that the spacetime admits a conformal
symmetry to find an exact solution. For a conformal Killing
vector X to exist the metric tensor field gab is Lie dragged
such that

LXgab = 2ψgab (4)

is satisfied. HereLX is the Lie derivative operator and ψ(xa)
is the conformal factor. Static spherically symmetric space-
times with conformal motions have been comprehensively
studied by Manjonjo et al. [9] by extending earlier treatments
of Maartens et al. [6,7] and Moopanar and Maharaj [18,19].
They assumed the presence of a spherically symmetric con-
formal Killing vector

X = α(t, r)
∂

∂t
+ β(t, r)

∂

∂r
, (5)

with the nonstatic conformal factor ψ = ψ(t, r). The exis-
tence of the conformal Killing vector X given by (5) leads
to a specific relationship between the gravitational potentials
e2λ(r) and e2ν(r). We find that the analysis in Manjonjo et al.
[9] leads to the condition

eν = Br cosh

(√
1 + k

∫
eλ

r
dr + l

)

, (6)

where B, k and l are constants. When k = 0 then the space-
time is conformally flat, and k �= 0 will lead to a non-
conformally flat model. We impose condition (5) to find a
gravitating anisotropic star.
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The condition (6) allows us to rewrite the field equations
(3) in the form

8πρ = 1 − e−2λ

r2 + 2λ′e−2λ

r
, (7a)

8πpr = 3e−2λ − 1

r2

+
2e−λ

√
1 + k tanh

(√
1 + k

∫ eλ

r dr + l
)

r2 , (7b)

8πpt = 1 + k

r2 + (1 − 2λ′r)e−2λ

r2

+
2
√

1 + ke−λ tanh
(√

1 + k
∫ eλ

r dr + l
)

r2 . (7c)

We find that all matter variables depend only on one metric
function, namely e2λ. A particular choice of λ(r) will lead
to an exact solution of the field equations after integration.
We demonstrate the existence of an exact solution in the next
section. The mass of an uncharged compact object contained
within a radius r of the relativistic sphere is

M(r) = 4π

∫ r

0
ρ(ω)ω2dω. (8)

3 Exact solution

We need to choose the function eλ and complete the inte-
gration in (6) to generate a solution to the Einstein system.
We perform this choice so that both metric functions remain
regular at the centre r = 0. We take eλ in the form

eλ = 1√
k + 1 − br2

, (9)

were b is a constant. Then (6) gives the second potential

eν = B

2
√
bel

[(
e2l − 1

)
br2 + √

1 + k
√√

1 + k − br2

]

. (10)

At r = 0 the potentials are regular at the stellar centre.
Then using the potentials (9) and (10), an exact solution

to the Einstein system (7) is given by

ρ = 6b
√

1 + k − 5b2r2

8π
− k

8πr2 , (11a)

pr = 3b3(n − 1)r4 + b2
√

1 + k(7 − 8n)r2

8π
[
(n − 1) br2 + √

1 + k
]

+ (5k + 4)(n − 1)br2 + k
√

1 + k

8πr2
[
(n − 1) br2 + √

1 + k
] , (11b)

pt = 5b3(n − 1)r4 + b2
√

1 + k(9 − 8n)r2

8π
[
(n − 1) br2 + √

1 + k
]

+ 4(k + 1)(n − 1)b

8π
[
(n − 1) br2 + √

1 + k
] . (11c)

In (11) we have set n = e2l for notational convenience. Equa-
tions (11) represent an anisotropic star which is gravitating
in the presence of the conformal Killing vector (5). Note that
the mass function (8) becomes

M(r) = b
√

1 + kr3 − b2

2
r5 − k

2
r, (12)

for the above density.

4 Physical features of the stellar model

4.1 Regularity conditions inside and at the boundary r = R

For physical acceptability, the model should comply with
several requirements throughout the star. These include: the
gravitational potentials e2ν and e2λ and the matter variables
ρ, pr , pt should be positive at the centre and regular through-
out the star; at the centre ρ, pr and pt should be finite:
ρ(r = 0) = ρc, pr(r = 0) = prc and pt(r = 0) = ptc;
the gradients dρ

dr ≤ 0, dpr
dr ≤ 0 and dpt

dr ≤ 0 within the star.
The anisotropy at the centre should vanish: Δ(r = 0) =
pt − pr = 0.

For a stable configuration we require that the speed of
sound must be less than the speed of light. This implies that
0 ≤ v2

r = dpr
dρ

≤ 1 and 0 ≤ v2
t = dpt

dρ
≤ 1 inside the

stellar body. To prevent cracking or overturning of the star
we must have −1 < v2

t −v2
r < 0, 0 < v2

r −v2
t < 1. Another

condition for the stability is the restriction on the adiabatic

index Γ = ρ + pr

pr

dρ

dpr
>

4

3
.

The equilibrium condition for stability is related to the
Tolman–Oppenheimer–Volkoff (TOV) equation. The TOV
equation is given by

dpr

dr
= −ν′(ρ + pr) + 2

r
(pt − pr). (13)

It is convenient to introduce

Fg = −ν′(ρ + pr), Fh = −dpr

dr
, Fa = 2

r
(pt − pr) ,

where Fg, Fh and Fa are known as gravitational, hydrostatic
and anisotropic forces, respectively. Then (13) becomes

Fg + Fh + Fa = 0, (14)

so that the anisotropic gravitating sphere is in equilibrium.
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Within the star, the dominant energy conditions require
that ρ − pr ≥ 0, ρ − pt ≥ 0 and ρ − pr − 2pt ≥ 0. The
metric functions e2λ and e2ν at the boundary r = R should
match smoothly to the Schwarzschild exterior metric:

e2ν(R) = 1 − 2M

R
, e2λ(R) =

(

1 − 2M

R

)−1

. (15)

The radial pressure should vanish at the surface

pr(R) = 0. (16)

The mass–radius ratio and the surface redshift are also impor-
tant physical quantities. The maximum limit of the mass–
radius ratio for an uncharged compact star is given by the
inequality 2M

R < 8
9 proposed by Buchdahl [20]. For a realistic

compact object, the upper bound on the surface redshift is
given by

Zs(R) = 1
√

1 − 2M
R

− 1 ≤ 2. (17)

4.2 Model parameter constraints

The regularity of the model is based on the constraints choice
of the parameters in the physical quantities arising in Sect.
4.1. The parameters are chosen so that the model is well
behaved at the centre and within the stellar structure. There-
fore we use the value k = 0 in the energy density (11a) for
regularity at the centre. Also at the centre (r = 0) we have
the values

ρc = 3b

4π
, (18a)

prc = (n − 1)b

2π
, (18b)

ptc = (n − 1)b

2π
, (18c)

vr
2
c = 1

5
(4n2 − 3), (18d)

vt
2
c = 1

5
(4n2 − 5). (18e)

The central values (18) restrict the parameter n to the range

of
√

5
2 < n <

√
2.

We name a new constant
√
H = B

2
√
bel

and use the

three boundary conditions (15), (16) with five unknowns
M,R, n, b and H . We can express particular parameters in
terms of others. The physically relevant model quantities are
the mass M and the radius R, and the model parameters n
and b of a compact object.

First we can write R, M in terms of n, b. We obtain

R = 0.408248

[
8n

b(n − 1)

−
√

16(n − 1)n + 1

b(n − 1)
− 7

b(n − 1)

]1/2

, (19)

which is the radius of star. In addition we find the quantity

M = bR3
(

1 − bR2

2

)

, (20)

which is the total mass of the star. Equation (20) restricts the
parameter b in the range 0 < b < 2

R2 . The parameter H can
be written in terms of n, b as

H =
(
bR2 − 1

)
(2(bR3 − 0.5b2R5) − R)

R
(
nbR2 − bR2 + 1

)2 , (21)

where H is a constant scaling in our static stellar model. Then
the recipe for physical analysis of our model can be outlined
as follows: select the central density ρc = 3b

4π
and central

pressure prc = (n−1)b
2π

with n in the range
√

5
2 < n <

√
2 and

0 < b < 2
R2 ; calculate R using (19); use (20) to calculate

the mass M ; the parameter H can be found from (21). The
rest of the matter variables then follow.

Secondly, we can write b and n in terms of R and M . We
obtain

b = R3 − √
R5(R − 2M)

R5
, (22)

which is the model parameter linked to the central density.
The parameter n is given by

n = 18M2 − 13MR + 2R2

M(18M − 8R)
− 2

√
R5(R − 2M)

MR(18M − 8R)

+3
√
R5(R − 2M)

R2(18M − 8R)
, (23)

which is the parameter related to the matter variables except
the central density. The parameter H for this case is in the
form

H = −
M2

(
1.125

√
R5(R − 2M) + 1.5R3

)

R4(M − 0.5R)

−0.25R2
√
R5(R − 2M) + 0.25R5

R4(M − 0.5R)

+
M

(
R

√
R5(R − 2M) + 1.25R4

)

R4(M − 0.5R)
. (24)

In Eqs. (22)–(24) we note the mass M < R
2 and M �= 4R

9 .
Now the recipe for the physical analysis of our model can
be outlined as follows: select the radius R and mass M of a
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given star such that M < R
2 and M �= 4R

9 ; calculate b using

(22); use (23) to calculate n checking that
√

5
2 < n <

√
2

and 0 < b < 2
R2 holds; the parameter H can be calculated

from (24). The remaining matter variables then follow.

5 Physical analysis

For physical acceptability of our model, it is interesting to
investigate whether it can be applied to observed stars for
some range of parameters presented above. To study the
features of the model, we select four pulsars PSR J1614-
2230, Vela X-1, PSR J1903+327 and Cen X-3. We use
Eqs. (22)–(24) with the mass M = 2.91M⊙ and the cor-
responding radius R = 10.30 km for PSRJ 1614-2230.
These values arise in the work of Mafa Takisa et al. [21]
with a linear equation of state and Mafa Takisa et al. [22]
with a quadratic equation of state as input in this inves-
tigation. The values of the constants calculated are b =
0.0032063 km−2, n = 1.20921 and H = 0.250386. Plug-
ging these values in relevant equations, we obtain the cen-
tral density ρc = 1.031 × 1015 g cm−3, the surface density
ρR = 9.70 × 1014 g cm−3 and central radial and tangential
pressures prc = ptc = 1.205 × 1035 dyne cm−2.

Firstly, we allow simultaneously the parameters b and n in
(19)–(21) to vary so that we can generate the masses and radii
of the remaining stars Vela X-1, PSR J1903+327 and Cen X-
3. The resulting values are presented in Table 1. We note that
the central density decreases with the decrease of the mass;
this feature was also reported in the work of Mafa Takisa et al.
[21,22]. Secondly, the parameter n has a fixed value but the
parameter b is allowed to vary. We obtain different masses,
radii and central densities for Vela X-1, PSR J1903+327 and
Cen X-3. These results are given in Table 2. We note that the
central density increases with the decrease of the mass; this
feature is similar to the investigations of Sharma and Ratanpal
[23], Singh et al. [24] and Kileba Matondo et al. [25]. For both
scenarios, the central density is approximately in the order
of 1015g cm−3, which is relevant for an anisotropic compact
relativistic star as pointed out by Ruderman [26]. The surface
density is in the order of 1014 g cm−3 and the redshift is in the
range 0.364–0.515. This range is close to the values found by
Böhmer and Harko [27], Rahaman et al. [28,29] and Kileba
Matondo et al. [25]. Also, we could mention that the required
upper bound of Buchdahl [20] which is equivalent to Zs ≤ 2
for a realistic star has been fulfilled. The value of the stellar
radiusR is in the range of 7.80–10.30 km, and the mass in the
range of 1.49–1.97 M⊙. Similar mass values were obtained
by Gangopadhyay et al. [30] and Mafa Takisa et al. [21,22].
The compactification factor M

R is in the range of neutron stars
and ultracompact stars.

(a)

(b)

(c)

(d)

Fig. 1 Figures for PSRJ1614-2230

To illustrate the behaviour of the matter variables inside
the stellar structure, we have plotted several profiles in
Figs. 1, 2, and 3. All the matter variables are well behaved
throughout the stellar structure. The matter density in Fig. 1a
is decreasing and remains finite. In Fig. 1b we display
the radial and tangential pressures and the anisotropy. We
note that both tangential and radial pressures are monotonic
decreasing outwards although the radial pressure vanishes at
the boundary; the tangential pressure is still positive inside
the star. The anisotropy is finite at the centre and remains pos-
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(a)

(b)

(c)

(d)

Fig. 2 Figures for PSRJ1614-2230

itive within the star, and consequently the anisotropic force
is repulsive in nature as stated by Gokhroo and Mehra [31].
The mass versus radius displayed in Fig. 1c is well behaved
and increasing function throughout the compact object. In
Fig. 1d, the gradients of density, radial pressure and tan-
gential pressure are plotted. All the gradients profiles remain
negative and regular as required for a realistic star. The square
of radial and tangential speed of sound v2

r , v2
t are shown in

Fig. 2a and they satisfy the causality condition. The radial
speed of sound is greater than the tangential speed of sound
within the stellar structure. In Fig. 2b, the quantities v2

t − v2
r

and v2
r −v2

t are plotted, showing that −1 < v2
t −v2

r < 0 and
0 < v2

r − v2
t < 1, which values comply with the cracking

stability requirement; it is also observed that these two quan-

(a)

(b)

(c)

(d)

Fig. 3 Figures for PSRJ1614-2230

tities do not change sign inside the fluid sphere; see Herrera
[32]. The mass versus central density is provided in Fig. 2c.
For the lower bound radius value R = 7.80 km, the mass
increases with central density and reaches the turning point
at the central density value of ρc = 5.29 × 1015g cm−3 with
corresponding value of mass M = 2.642M⊙. For the upper
bound radius value R = 10.30 km, the mass increases with
central density and reaches the turning point at the central
density value of ρc = 3.03 × 1015g cm−3 with correspond-
ing value of mass M = 3.489 M⊙. The stellar masses located
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on the left of these turning points are in the stable region and
the unstable region corresponds to the right side of the turn-
ing point. Note that, for values greater than R = 10.30 km,
the maximum mass for a stable star is at the lower central
density compared to the case for R = 7.80 km.

The adiabatic indices Γr and Γt profiles are shown in
Fig. 2d; indicating that Γr > 4

3 and Γt > 4
3 throughout

the stellar structure. The profiles of gravitational, hydrostatic
and anisotropic forces are plotted in Fig. 3a showing that
anisotropic and hydrostatic forces are positive and balanced
by the negative gravitational force. Interestingly the sum of
all the forces is zero as required for the equilibrium of a static
system. The energy conditions ρ− pr, ρ− pt and ρ− pr −2pt

are plotted in Fig. 3b which remain positive thereby imply-
ing that the energy conditions are not violated in our model.
The matching conditions are presented in Fig. 3c, the metric
potentials e2ν and e2λ are regular within the stellar object,
with smooth matching to the Schwarzschild exterior at the
radius R = 10.30 km. Moreover, at the centre the fluid
sphere satisfies e2ν(r=0)= constant and e2ν(r=0) = 1. The
gravitational redshift is plotted in Fig. 3d, with a monotoni-
cally decreasing profile.

6 Conclusion

In this paper we have used a conformal symmetry to model
compact stars with anisotropic pressure. The presence of
a conformal symmetry leads to an integral relationship
between the potentials; only one choice for the potentials
has to be made. The exact solution exists for all values of
the parameter k. When k = 0 the model is conformally flat
which ensures regularity at the centre. Furthermore, various
parameter constraints are imposed so that the model is well
behaved at the centre and within the star. We obtained differ-
ent masses and radii of four stars, namely PSR J1614-2230,
Vela X-1, PSR J1903+0327 and Cen X-3. We achieved this
for two different scenarios. Firstly, we varied both param-
eters b and n simultaneously. We observe that the central
density decreases with the decrease of the mass. Secondly,
the parameter n was fixed and b was allowed to vary. In
this situation the central density increases with a decrease in
mass. The behaviour of decreasing central density is present
in the investigations of Mafa Takisa et al. [21,22] and Murad
[33]. The behaviour of increasing central density is present in
the work of Sharma and Ratanpal [23], Singh et al. [24] and
Bhar [34]. It is interesting to observe that our model allows
for both scenarios. These two different scenarios arise in the
work of other researchers and we have made reference to
their work. We then plotted the matter variables for the com-
pact object PSR J1614-2230. Our analysis reveals that the
matter variables and the metric potentials are well behaved
within the star. In particular the model is stable and causality

is maintained in the interior of the star. The values for the
mass–radius ratio and surface redshift are consistent with
observed values. In conclusion, the assumption of a confor-
mal symmetry generates a realistic star in general relativity.
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