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Abstract We evaluate the Abbott–Deser–Tekin (ADT)
mass of the five-dimensional rotating black holes with
squashed horizons on two different on-shell reference back-
grounds, which are the flat background and the boundary
matched Kaluza–Klein (KK) monopole. The mass on the
former, identified with the one on the background of the
asymptotic geometry, differs from the mass on the latter by
that of the KK monopole. However, each mass satisfies the
first law of black hole thermodynamics. To test the results
in five dimensions, we compute the mass in the context of
the dimensionally reduced theory. Finally, in contrast with
the original ADT formulation, its off-shell generalisation is
applied to calculate the mass as well.

1 Introduction

Over the past few years, a special class of black hole solutions
endowed with squashed horizons in five dimensions have
been constructed since Ishihara and Matsuno presented the
static charged one in the context of the Einstein–Maxwell the-
ory [1]. Henceforth the Ishihara–Matsuno solution was gen-
eralised to the theory of five-dimensional Einstein–Maxwell–
dilaton gravity [2]. Apart from these static solutions, by virtue
of the so-called squashing transformation generated by a
function depending only on the radial coordinate, the rotat-
ing black hole solution with squashed horizons in Einstein
gravity [3] and the charged (rotating) ones in the frameworks
of five-dimensional supergravity [4–7] as well as Einstein–
Maxwell–dilaton gravity [8] were found in succession. For
other relevant solutions see [9,10]. Such a class of black
holes possess the universal asymptotical structure, which
is the same as the one of the Kaluza–Klein (KK) mag-
netic monopole, that is, a twisted S1 fiber bundle over the
two-sphere S2 in a four-dimensional Minkowski spacetime.
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Moreover, the existence of the compact direction allows for
the possibility to perform KK dimensional reduction to them.
Doing so, one will find that they turn into exact solutions of
the field equations in the dimensionally reduced theories.
Because of such similar features appearing in KK theory, the
black holes with squashed horizons are sometimes referred
to as the squashed KK black holes in the literature.

Thanks to the universal asymptotic structure arising from
the squashed transformation, the squashed KK black holes
exhibit some very interesting properties in contrast with their
un-squashed counterparts, which can be partially found in
Refs. [11–22]. As a prominent one of them, these black holes
have provided opportunities to test several approaches on
conserved quantities for various gravity theories, such as the
Komar integral, the ADM formalism, the counterterm sub-
traction method, the (off-shell generalised) Abbott–Deser–
Tekin (ADT) formulation and so on [2–4,8,23–31]. For the
sake of better understanding the conserved charges of the
squashed KK black holes, we are going to focus on their
charges in terms of the ADT formalism [32–36] later on.

As is well known, in the framework of the original ADT
formulation, it is assumed that the gravitational field is lin-
earised around a fixed reference background that is on-
shell (i.e. the solution for the Euler–Lagrange equation of
motion). This indicates that such a formalism is background-
dependent. As a consequence, in order to obtain physically
meaningful conserved charges, it is of significant importance
to seek for reference backgrounds with appropriate matching
conditions. For the black holes with squashed horizons, as
demonstrated in the literature [2,3,23–28], the most popular
reference backgrounds adopted to evaluate their conserved
charges are the off-shell asymptotic geometries, which are
not exact solutions of the field equations. However, strictly
speaking, to fully comply with the spirit of the original ADT
formalism, we desire the reference backgrounds to satisfy the
equations of motion. Therefore, apart from the asymptotic
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structures of the squashed KK black holes, it is very neces-
sary to find other on-shell reference backgrounds rendering
the original ADT method successful in the computation of
their charges.

As was already indicated in Ref. [28], there exist two on-
shell reference backgrounds, namely, the flat background
[25] together with the boundary matched KK monopole,
which are appropriate in the evaluation of the usual ADT
mass of the squashed static charged KK black holes within the
theory of five-dimensional Einstein–Maxwell–dilaton grav-
ity. Thereafter, an interesting question that naturally arises is
whether both the reference backgrounds are further applica-
ble for the more general (charged) rotating black holes with
squashed horizons [3–8], although the mass of the rotating
ones has been evaluated on the usual off-shell asymptotic
geometry in [3,26]. If so, we are able to provide universal
on-shell reference backgrounds to make the usual ADT for-
mulation yield physical results of all the squashed KK black
holes.

Inspired by Ref. [28], our purpose here is to look for on-
shell reference backgrounds instead of the off-shell asymp-
totic structure in [3,26], on which the usual ADT mass of the
squashed rotating KK black holes [3] can be computed. As
we shall see below, the flat background and the KK monopole
adopted in the static cases also hold for these rotating black
holes through a few modifications. Besides, to examine the
five-dimensional results, we modify the usual ADT formu-
lation by including the contributions from gauge fields as
well as scalars and then deal with the mass on two reference
spacetimes in the context of the four-dimensional reduced
theory. Finally, as a comparison, the off-shell generalisation
of the usual ADT formalism [37] is applied to calculation of
the mass as well. It should be emphasised that both reference
spacetimes can also be adopted to evaluate the ADT angular
momentum of the squashed rotating black holes, although
we merely take into consideration of their mass.

The outline of this work is as follows. In Sect. 2, the mass
of the squashed rotating KK black holes is computed on the
flat background in the framework of the usual ADT formal-
ism. In Sect. 3, the mass of these black holes is evaluated on
the boundary matched KK monopole. In Sect. 4, the mass
in five dimensions is examined in the context of the four-
dimensional reduced theory. In comparison with the original
ADT formalism, its off-shell generalisation is applied to cal-
culate the mass of these black holes in Sect. 5. The last section
is for our conclusions.

2 ADT mass on the flat background and the first law of
black hole thermodynamics

In this section, our main goal is to apply the conventional
ADT formalism to calculate the mass of the rotating black

holes with squashed horizons in the theory of Einstein gravity
on the flat reference background. The solution for these black
holes was first found by Dobiasch and Maison [49–51] and it
was regenerated via performing the squashing transformation
to the solution of the usual five-dimensional rotating black
holes with two equal angular momenta by Wang [3]. For the
concrete relation between the two forms of the solutions see
Ref. [29].

For the neutral squashed rotating KK black holes in five
dimensions, their line element can be written in a general
form as follows [3]:

ds2
(5) = −��i

��i
dt2 + r2HK2

�
dr2 + HK

4

(
dθ2 + sin2 θdφ2)

+ �

4H

(
dψ + cos θdφ − 2maωdt

)2
, (2.1)

in which

ω =
√

�i

�i

( 1

�
− 1

�i

)
,

H = r2 + a2, � = H2 + ma2, � = � − mH, (2.2)

�i = �|r=r∞ , �i = �|r=r∞ , K = �i

(r2 − r2∞)2 .

In the above equations, the constant r∞ relates to the size
of an S1 fiber at spatial infinity, playing a pivotal role in the
asymptotic behaviour of the solution, while we shall see in a
moment that the two integral constants m and a are related
to the mass and angular momentum, respectively. Besides,
the Euler angles (θ , φ, ψ) take the values (0 < θ < π ,
0 < φ < 2π , 0 < ψ < 4π ), and the radial coordinate
r is located in the interval (0, r∞). To see the asymptotic
structure of the squashed rotating KK black holes, as usual,
we introduce a new radial coordinate ρ by

ρ = ρ0
r2

r2∞ − r2 , ρ2
0 = �i

4

r2∞ + a2

r4∞
. (2.3)

Such a transformation maps the radial coordinate r ∈ (0, r∞)

into ρ ∈ (0,∞). Subsequently, in the ρ → ∞ limit, corre-
sponding to the situation r → r∞, the metric ansatz (2.1)
approaches the following form:

ds2
asym = −dt2 + dρ2 + ρ2(dθ2 + sin2 θdφ2)

+ r̃2∞
4

(
dψ + cos θdφ

)2
, (2.4)

where the parameter r̃∞, which can be seen as the radius of
the compactified direction at infinity, is given by

r̃2∞ = �i

Hi
= (r2∞ + a2)2 + ma2

r2∞ + a2 (2.5)

with Hi = H |r=r∞ . The asymptotic structure (2.5) possesses
the same form as the generic asymptotic topology of the
squashed KK black holes, that is, a twisted S1 bundle over
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a four-dimensional Minkowski spacetime. Thus the metric
(2.1) is asymptotically locally flat. In [29], a new equiva-
lent form for the five-dimensional rotating black holes with
squashed horizons was directly expressed in the coordinates
(t, ρ, θ, φ,ψ), in which the asymptotic structure (2.5) natu-
rally emerges.

As demonstrated in Ref. [3,26], the mass of the squashed
rotating KK black holes was evaluated in the ADT formu-
lation on the reference background with the asymptotical
spacetime (2.4), which is not an exact solution of the vac-
uum Einstein equation. That is to say, the background metric
is off-shell. However, strictly speaking, the original ADT cur-
rent requires that the background metric is on-shell although
the potential corresponding to such a current is in agreement
with the off-shell generalised one in [37–40]. Thus, in order
to fully obey the spirit of the usual ADT formalism [32–36],
here we shall look for an appropriate on-shell reference met-
ric to recalculate the ADT mass of these black holes. Before
doing this, we first present the definition of the ADT con-
served charge related to the D-dimensional Einstein–Hilbert
Lagrangian Lgr = √−gR, that is,

Q = 1

16πG(D)
N (D − 2)!

∫

∂�

√−ḡQμν
gr εμνμ1μ2···μ(D−2)

dxμ1

∧ · · · ∧dxμ(D−2) , (2.6)

where the completely antisymmetric Levi-Civita tensor
density εμνμ1μ2···μ(D−2)

is defined through the equation

εμ1μ2···μD = D!δ0[μ1
δ1
μ2

· · · δD−1
μD ] , while G(D)

N stands for
the gravitational constant in D dimensions. The conventional
ADT potential associated with the Killing vector ξμ is read
off as

Qμν
gr = ξσ ∇̄[μhν]σ − hσ [μ∇̄σ ξν] + 1

2
h∇̄[μξν]

− ξ [μ∇̄σ h
ν]σ + ξ [μ∇̄ν]h. (2.7)

Here the perturbations of the gravitational field hμν are
defined through the divergence between the original metric
gμν and the fixed background one ḡμν , namely, hμν = gμν −
ḡμν , rather than determined by the infinitesimal changes of
the solution parameters like in the off-shell generalised ADT
method [37], which inherits the way of fluctuating various
fields proposed in [44–46]. In general, for the asymptotically
non-rotating black holes, the timelike Killing vector associ-
ated with the mass is chosen as ξμ = −δ

μ
t [41].

Next, we proceed to calculate the ADT mass of the
squashed rotating KK black holes on the reference metric
with the line element

ds2
flat = − dt2 + dρ2 + ρ2(dθ2 + sin2 θdφ2)

+ r̃2∞
4

dψ2, (2.8)

which is an exact flat solution to the five-dimensional Ein-
stein gravitational field equation with a zero matter tensor.
For convenience, in the above, this reference metric has been
mentioned as the flat background like in Ref. [25], where it
was emphasised already that the metric (2.8) with the param-
eter r∞ instead of r̃∞ is appropriate for the reference back-
ground in the evaluation of the mass of the squashed static
charged KK black holes. Quite recently, the same flat back-
ground was successfully applied to compute the ADT mass
of the static charged dilaton black holes with squashed hori-
zons in [28]. In fact, we demonstrate here that the metric
(2.8) is applicable for the squashed rotating KK black holes
as well. Further employing Eq. (2.6) to calculate the mass M
on the flat reference background (2.8), we get

M = π

4G(5)
N

(�i + 2mHi )(�i − 2ma2)

Hi
√

�i�i

= π

4G(5)
N

r̃2
s (r̃2∞ + m)

r̃∞
√
r̃2∞ − m

, (2.9)

in which r̃2
s = √

r̃4∞ − 4ma2. The mass M coincides with
the ADT one computed on the asymptotical spacetime (2.4)
in [3,26] and the mass through the counterterm method [3,
29]. Further computing the angular momentum Jψ along the
ψ direction on the flat background (2.8), we obtain Jψ =
πma/4, agreeing with the one via the Komar integral.

With the help of the angular velocity �H of the event
horizon r+, the temperature T and the entropy S, given by

�H = 2maω(r+), T = (r+ − r−)K(r−)

2πH(r+)

√
�i

�i
,

S = π2

2
mr+K(r+),

(2.10)

respectively, where the outer horizon r+ and the inner horizon
r− are read off as r2± = (

m − 2a2 ± √
m2 − 4ma2

)
/2, we

find that the ADT mass M satisfies the first law of black hole
thermodynamics [26,29]

dM = T dS + �HdJψ + IdL∞,

2M = 3T S + 3�H Jψ + IL∞.
(2.11)

In the above equation, the gravitational tension I and the
length L∞ of the compactified fifth dimension at infinity are
presented by

I = 1

8G(5)
N

(�i + �i )(�i − 2ma2)

�i
√
Hi�i

, L∞ = 2π r̃∞,

(2.12)

respectively, which can be thought of as thermodynamic vari-
ables resulting from the contribution from the extra dimen-
sion of the KK-type black holes [53–57]. When r∞ → 0,
Eq. (2.11) smoothly transforms to the usual expressions for
the first law of the ordinary five-dimensional black holes with

123



706 Page 4 of 9 Eur. Phys. J. C (2017) 77 :706

two equal rotations in spite of the divergence for the quantities
M , I and L∞. However, it should be stressed that neither the
gravitational tension I nor the length L∞ of the extra dimen-
sion can be regarded as a natural thermodynamical variable
with respect to the Komar mass MK of the squashed rotat-
ing KK black holes, given by MK = M − IL∞/2 [5,26],
since MK fails to fulfill the differential form of the first
law in Eq. (2.11) although it satisfies the integral expression
2MK = 3T S + 3�H Jψ . It turns out that this problem can
be resolved by adopting a pair of new variables (W∞, �∞)

like in [24,25], where the natural variable W∞ is expressed
as W∞ = I(2cψ L∞)−1 in terms of the constant cψ , while
the conjugate one �∞ is defined through �∞ = cψ L2∞.
Consequently, we obtain the first law involving the Komar
mass

dMK = T dS + �HdJψ − �∞dW∞, (2.13)

which takes a different form from the one in Eq. (2.11).
Moreover, in the light of the new variables (W∞, �∞), one
observes that both the ADT mass and the Komar mass are
associated with each other through the Legendre transforma-
tion M = MK + W∞�∞, giving rise to another differential
expression for the first law dM = T dS+�HdJψ +W∞d�∞
relative to M . This further demonstrates that the first law
associated with the ADT mass is non-unique.

3 ADT mass in terms of the KK monopole background
and the comparison between different masses

Besides the flat background in the previous section, as we will
see shortly, the boundary matched KK monopole is appro-
priate for being the reference background in the evaluation
of the ADT mass of the rotating black holes with squashed
horizons in this section.

To seek another suitable background spacetime that we
anticipates, we now solve Eq. (2.5) to obtain

r2∞ = 1

2
(r̃2∞ + r̃2

s − 2a2). (3.1)

Substituting the above equation into the quantities �i , �i

and K given by Eq. (2.2) to replace the parameter r∞ in them
with r̃∞, we convert them into the forms

�̃i = 1

2
r̃2∞(r̃2∞ + r̃2

s ), �̃i = 1

2
(r̃2∞ − m)(r̃2∞ + r̃2

s ),

K̃ = 2(r̃2∞ − m)(r̃2∞ + r̃2
s )

(2r2 + 2a2 − r̃2∞ − r̃2
s )2 ,

(3.2)

respectively. With the help of Eq. (3.2), the line element (2.1)
can be further brought into the following form:

ds̃2
(5) = ds2

(5)(�i → �̃i , �i → �̃i ,K → K̃). (3.3)

This equivalent form for the squashed rotating KK black
holes tells us that they are characterised by the three inde-
pendent parameters (m, a, r̃∞).

In the absence of the parameters m and a, the metric (3.3)
is smoothly transformed to the one for the KK monopole,
which is described by the following five-dimensional Ricci-
flat metric:

ds2
mon = ds̃2

(5)|m,a=0

= −dt2 + dρ2

V 2 + ρ2

V 2 (dθ2 + sin2 θdφ2)

+ r̃2∞V 2

4
(dψ + cos θdφ)2, (3.4)

where V = (
1 + r̃∞

2ρ

)−1/2 and we have performed the coor-
dinate transformation r = r̃∞V to get the last equality. As
ρ → ∞, the KK monopole asymptotes to the spacetime
(2.4). Consequently, its boundary matches with that of the
squashed rotating KK black hole.

In terms of the flat reference background (2.8), one can
obtain the ADT mass of the monopole presented by Eq. (3.4),
which is read off as

Mmp = π

4G(5)
N

r̃2∞. (3.5)

The mass Mmp agrees precisely with the one via the coun-
terterm method [47] and satisfy the first law of black hole
thermodynamics dMmp = ImpdL∞ and 2Mmp = ImpL∞
by virtue of the gravitational tension Imp = r̃∞/

(
4G(5)

N

)

[24,25]. Here the gravitational tension Imp, as well as I, is
evaluated through the counterterm method [47] or the method
based on the Hamiltonian formalism [53]. Actually, they can
also be computed in the ADT formalism. As was shown in
Refs. [37,40], within the context of the Einstein gravity the-
ory described by the Lagrangian Lgr = √−gR, the ADT
formalism completely agrees with the ADM one. Hence the
gravitational tensions defined by using both formalisms coin-
cide. That is to say, the expression for the gravitational ten-
sion based on the ADT formulation takes the same form as
the ADM-type formula [54–57] given by Eq. (3.2) or Eq.
(3.4) in [53]. Further making use of this expression to com-
pute the gravitational tensions Imp and I, we obtain the same
results as those in the counterterm method or the Hamiltonian
approach.

Moreover, if the boundary matched KK monopole (3.4)
is chosen as the reference background to compute the ADT
mass M̃ of the five-dimensional squashed rotating KK black
holes described by the line element in Eq. (2.1) or (3.3), we
have

M̃ = M − Mmp

= π

4G(5)
N

[ r̃2∞ + m

r̃∞

( r̃4∞ − 4ma2

r̃2∞ − m

) 1
2 − r̃2∞

]
. (3.6)
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Here the mass M̃ , which is still the desired thermodynamical
quantity in fulfillment of the requirements for the first law of
black hole thermodynamics

dM̃ = T dS + �HdJψ + ĨdL∞,

2M̃ = 3T S + 3�H Jψ + ĨL∞,
(3.7)

where the gravitational tension computed on the KK
monopole background Ĩ = I− Imp. Particularly, in the limit
r∞ → ∞, Ĩ vanishes and the first law (3.7) becomes that of
the usual five-dimensional black holes with two equal rota-
tions. Furthermore, with the help of the gravitational tension
Ĩ, we establish the relation between the ADT mass M̃ and
the Komar mass MK through the Legendre transformation
M̃ = MK + W̃∞�∞, where the new natural variable W̃∞
is given by W̃∞ = Ĩ(2cψ L∞)−1 = W∞ − (16πcψG

(5)
N )−1,

which differs from the variable W∞ only by a constant. In
the light of W̃∞, the first law (2.13) relative to the Komar
mass can be reexpressed in the alternative form

dMK = T dS + �HdJψ − �∞dW̃∞. (3.8)

In comparison with the mass M obtained on the asymptot-
ical spacetime or the flat background, the mass M̃ has some
remarkable features. First, if the two parameters (m, a) are
set zero, the squashed rotating KK black hole goes to its
“empty” state, which is just the KK monopole (3.4). In this
limit, M̃ vanishes, behaving like the mass of the Kerr–AdS
black holes [41,46] and the five-dimensional charged rotat-
ing Gödel-type black holes [48] in the absence of all the mass
and rotation parameters, as well as the electric charge param-
eter. But M → Mmp in the limit (m, a) → 0, demonstrating
that M incorporates the mass of the KK monopole as its value
in the “vacuum” state. Second, when r∞ goes to infinity, the
metric (2.1) reduces to that of the ordinary five-dimensional
rotating black holes with two equal angular momenta, while
M̃ tends to the mass of these black holes at the same time,
that is, M̃ → 3πm/8. However, in such a situation, M is
divergent. Third, the KK monopole (3.4), exactly satisfying
the Einstein field equation in vacuum, is an on-shell reference
background, and it has the same asymptotic structure as that
of the squashed rotating KK black hole. By contrast, the flat
background (2.8) fails to match the boundary of these black
holes. As a consequence of the above-mentioned characters
for the mass M̃ , the boundary matched KK monopole may
be a more natural reference background in the computation
of the ADT mass.

In addition, comparing the ADT mass M̃ with the Komar
mass MK that was evaluated without the requirement to pre-
set any reference background, one observes that both of them
behave consistently in the above-mentioned limits. Neverthe-
less, it should be advisable for us to distinguish M̃ from MK

from the perspective of thermodynamics. As illustrated in
Eqs. (3.7) and (3.8), there exist two different natural vari-

ables L∞ and W̃∞ within the differential forms of the first
law related to the ADT mass and the Komar one. Accord-
ing to this, M̃ and MK can be interpreted as thermody-
namic potentials in thermodynamic environments described
by different sets of natural variables. For M̃ , the surround-
ings are described by the set of variables (S, Jψ, L∞) or
(S, Jψ,�∞), while those related to MK are characterised by
(S, Jψ, W̃∞). At the end of this section, it should be pointed
out that evaluations on the background (3.4) of the boundary
matched KK monopole still give rise to the angular momen-
tum Jψ .

4 The ADT mass under KK reduction

In this section, thanks to the appearance of the compact direc-
tion ψ in the metric (2.1) of the squashed rotating KK black
hole, we may reconsider its mass by reducing the dimensions
to four ones. If this is feasible, it will provide an effective
approach to examining the mass obtained in five dimensions.

As a warm-up, let us briefly introduce the KK dimen-
sional reduction for the Einstein gravity theory. Generally
speaking, in the framework of the KK reduction theory, it
is assumed that the (D + 1)-dimensional solution of the
Einstein gravity allows a compactified direction to exist so
that the metric ansatz can be decomposed as ds2

(D+1) =
e−2λϕ/(D−1)ds2

(D) + eϕ/λ(dz + A)2, where the parameter

λ = −√
(D − 1)/2/(D − 2) and all the D-dimensional

fields gμν , ϕ and Aμ are independent of the compactified
direction z. Through a KK dimensional reduction along the
z direction, the higher-dimensional solution can be seen
as the one in the context of the D-dimensional Einstein–
Maxwell–dilaton theory with a particular dilaton coupling,
whose Lagrangian has the following form:

LEMD = √−g

(
R − 1

2
∇μϕ∇μϕ − 1

4
e2λϕFμνFμν

)
, (4.1)

where the 2-form field strength for the KK gauge potentialAν

is given byFμν = 2∂[μAν]. The equations of motion derived
from the variation of the Lagrangian (4.1) with respect to the
fields (gμν,Aμ) are given by

2Rμν = (∇μϕ
)(∇νϕ

) + e2λϕFμσF σ
ν − e2λϕgμνF2

2(D − 2)
,

2∇μ∇μϕ = λe2λϕF2, ∇μ

(
e2λϕFμν

) = 0. (4.2)

Now, we can proceed with the explicit dimensional reduc-
tion of the line element (2.1) for the five-dimensional black
hole with squashed horizons along the ψ direction. After
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some computations, we obtain the four-dimensional solution
that fully obeys the field equations (4.2) with the metric form

ds2
(4) = −1

4

��i

U�i
dt2 + r2UK2

�
dr2 + KU

4

(
dθ2 + sin2 θdφ2)

,

A = −2maωdt + cos θdφ, e2λϕ = U�

4H2 , (4.3)

where U = √
H�/2 and λ = −√

3/2 in the D = 4 case.
In the remainder of this section, we shall focus on evaluating
the ADT mass of the squashed black holes in terms of the
four-dimensional metric (4.2).

As is well known, within the context of the conventional
ADT formalism, it is usually assumed that the matter fields,
such as the gauge field and the scalar field, fall off very fast so
that their contributions to the total conserved charges can be
neglected. However, for the completeness and universality of
this formalism, it is of great necessity to simultaneously take
into consideration of the effects of the matter fields. In this
work, we attempt to treat the gravitational field and the mat-
ter fields on an equal footing. For the Lagrangian (4.1), the
potentials associated with the U(1) gauge field and the scalar
field, derived in terms of the off-shell ADT method in Refs.
[38,40,42,43], are suitable for the desired ones of the fields
Aμ and ϕ in the conventional ADT formalism. As a result,
we directly present the total ADT potential Qμν

EMD relevant
to the Lagrangian (4.1) on the fixed reference background
(ḡμν, Āμ, ϕ̄) in the following form:

Qμν
EMD = Qμν

gr + Qμν
ed ,

Qμν
ed = e2λϕ̄

4

[
ϑ

(
hF̄μν + 2 f μν + 4h[μ

σ F̄ν]σ )
+ 6aσ ξ [σ F̄μν]]

+ e2λϕ̄

2λ

(
2λ2ϑF̄μν − ξ [μ∇̄ν]e−2λϕ̄

)
�ϕ, (4.4)

in which ϑ = Āσ ξσ and fμν = 2∂[μaν], while the quantities
(aμ,�ϕ) are defined through the perturbations of the mat-
ter fields (Aμ, ϕ) around their background fields (Āμ, ϕ̄),
respectively, that is,

aμ = Aμ − Āμ, �ϕ = ϕ − ϕ̄, (4.5)

rather than through the infinitesimal changes of the solution
parameters like in the off-shell generalised ADT approach.
In terms of the above potential, one is able to obtain the on-
shell ADT current through Jμ

EMD = ∇̄νQ
μν
EMD. It should be

stressed that the background fields (ḡμν, Āμ, ϕ̄) are required
to fulfill the equations of motion in Eq. (4.2) in order to
guarantee that the potential Qμν

EMD fully inherits the spirit of
the original ADT formulation. To the best of our knowledge,
here the potential Qμν

EMD might be the first one that naturally
incorporates the contributions from the matter fields at the
level of obeying the rules of the original ADT formalism.

With the help of the potential in Eq. (4.5), we are able to
compute the mass of the five-dimensional squashed rotating
KK black holes in terms of the four-dimensional gravitational

field g(4)
μν , the KK vector Aμ and the dilaton ϕ presented

in Eq. (4.3) on appropriate reference spacetimes. In fact, by
performing KK reduction, one can obtain two ones to achieve
this. The first reference background, arising from the KK
reduction of the flat background metric (2.8) along the ψ

direction, takes the form

ds̄2
(1) = r̃∞

2

[ − dt2 + dρ2 + ρ2(dθ2 + sin2 θdφ2)],

e2λϕ̄(1) = r̃3∞
8

, Ā(1) = 0.

(4.6)

After performing the coordinate transformation r → ρ in
Eq. (2.3) to reexpress the four-dimensional reduced metric
(4.3) into the form in the coordinate system (t, ρ, θ, φ), we
make use of the ADT potential Qμν

EMD to evaluate the mass
M(1) on the background metric (4.6) and obtain

M(1) = M, (4.7)

which precisely equals the mass evaluated on the five-
dimensional flat reference spacetime in Eq. (2.9). To arrive at
the above equation, one should bear in mind that the standard
relation G(5)

N = 4πG(4)
N has been employed.

On the other hand, we can also choose the following ref-
erence background:

ds̄2
(2) = r̃∞

2

[
− V dt2 + dρ2

V
+ ρ2

V

(
dθ2 + sin2 θdφ2)

]
,

e2λϕ̄(2) = 1

8
r̃3∞V 3, Ā(2) = cos θdφ (4.8)

in the evaluation of the mass, which satisfies the field equa-
tions in Eq. (4.2) and coincides with the KK monopole (3.4)
by lifting it back to five dimensions. From the perspec-
tive of four dimensions, calculating the ADT mass of the
KK monopole (4.8) on the reference background (4.6), one
obtains the same value Mmp as in Eq. (3.5). Furthermore, a
complex calculation on the background metric (4.8) yields
the ADT mass

M(2) = M̃, (4.9)

which is consistent with the mass got on the background of
the boundary matched KK monopole.

A remark is in order here. Unlike the application of the
usual ADT formulation, in addition to the contribution of the
gravitational field, those from the matter fields, such as the
KK gauge potential Aμ and the dilaton ϕ, have been taken
into account in the evaluation of the mass M(1) and M(2)

within the framework of the four-dimensional reduced the-
ory. However, it can be observed that they actually make no
contributions since the KK vector decreases quite quickly
so that its t-component At → 0 and the dilatons e2λϕ =
e2λϕ̄(1) = e2λϕ̄(2) when the radial coordinate ρ → ∞, giving
rise to the vanishing of the (t, r)-component of the poten-
tial Qμν

ed . To this point, there is only a need to compute the
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potential Qμν
gr with respect to the gravitational field for the

sake of obtaining the ADT mass of the rotating black holes
with squashed horizons. As a matter of fact, one can evaluate
the mass M(1) on the on-shell reference background of the
four-dimensional Minkowski metric

ds̄2
4d f lat = −dt2 + dρ2 + ρ2(dθ2 + sin2 θdφ2). (4.10)

Due to the above reference metric in the dimensionally
reduced theory, one is able to see that the extra dimen-
sion in the asymptotic geometry (2.4) and the flat back-
ground (2.8) actually makes no contribution to the ADT mass.
Hence calculations on the two backgrounds yield the same
value M .

5 Mass via the off-shell ADT approach

In this section, to compare with the original ADT formu-
lation, we shall make use of its off-shell generalisation1

recently proposed in [37] and developed in [38–40] to com-
pute the mass of the squashed rotating KK black holes.
In contrast to the original ADT formalism, the off-shell
generalised one possesses the dramatically different feature
that all the fields are linearised about arbitrary background
fields.

According to the off-shell ADT formalism, the perturba-
tions of the gravitational field are induced by those of the
solution parameters, such as m, a and r∞. However, it is
worth noting that one cannot naively fix the parameter r∞ but
merely lets the parameters (m, a)vary to fluctuate the gravita-
tional field, as the case of the static black holes with squashed
horizons in [28]. Otherwise, the conserved charge will suf-
fer from the non-integrable problem. Therefore, in order to
avoid such a dilemma, we find that a feasible approach is to
adopt the metric form (3.3) instead of the one (2.1) as well as
to make the parameter r̃∞ rather than r∞ be fixed in the eval-
uation of the mass. That is to say, the perturbations of the
metric form (3.3) are only determined by the infinitesimal
variation of the parameters (m, a) through

m → m + dm, a → a + da. (5.1)

Considering the pattern for the fluctuations of the grav-
itational field induced from Eq. (5.1), we employ Eq. (2.6)
to compute the off-shell ADT charge Q[ξμ

(t)] associated with

the timelike Killing vector ξ
μ

(t) = (−1, 0, 0, 0, 0) and obtain

dQ[ξμ

(t)] = M

2

( (3r̃2∞ − m)dm

r̃4∞ − m2 − 4d(ma2)

r̃4
s

)
, (5.2)

1 Before Ref. [37], in [52], the form of the current has the potential
to construct an off-shell ADT current in the context of pure gravity
theories.

whose integral yields the mass M,

M = M̃ . (5.3)

Here the mass M is in agreement with the one got on the ref-
erence spacetime of the KK monopole in Eq. (3.6). As in the
case for the static squashed black holes [28], this may result
from the manner of parameterising the space of solutions.
Actually, according to the formula of the conserved charges
via the off-shell generalised ADT method, the lower limit of
the integration for the solution parameters (m, a) indicates
that there exists a “hidden” reference background that is just
the KK monopole given by Eq. (3.4). Besides, to guarantee
the integrability of the mass M, it is desired that the parame-
ter r̃∞ be unchangeable, which implies that this parameter is
not able to be treated as a thermodynamical variable from the
viewpoint of the off-shell ADT method and the KK monopole
characterised by r̃∞ should be a fixed background. Hence,
due to the above-mentioned, it might be quite appropriate to
choose the boundary matched KK monopole as the reference
spacetime of the squashed rotating KK black holes when the
original ADT formalism is applied.

Of course, the off-shell generalised ADT method can also
be applied to compute the mass of the rotating black holes
with squashed horizons under KK reduction along the com-
pactified direction. As shown in Ref. [40], one will find that
the mass remains the same before and after the dimensional
reduction. Moreover, evaluating the angular momentum in
terms of the off-shell generalised ADT method, one will find
that it is consistent with the value Jψ of the angular momen-
tum in the original ADT formalism.

6 Summary

In the present work, apart from the asymptotical geometry
(2.4), which was adopted as the common reference back-
ground in the evaluation of the ADT mass for the five-
dimensional rotating black holes with squashed horizons in
[3,26], we have found that there exist another two refer-
ence backgrounds that are appropriate for the calculations
of the ADT mass of these black holes. They are the flat
background (2.8) and the boundary matched KK monopole
(3.4). Both of them satisfy the five-dimensional vacuum
Einstein equation, fulfilling the on-shell requirement of the
reference background in the original ADT formalism, but
the off-shell asymptotical geometry breaks down. Since the
squashed rotating KK black hole (3.3) coincides with the KK
monopole (3.4) in the limit (m, a) → (0, 0) and they have
the same boundaries, it is natural to choose the KK monopole
as the on-shell reference background.

Evaluating the mass on the background spacetimes (2.8)
and (3.4), we obtained the values M and M̃ given by Eqs.
(2.9) and (3.6) respectively, which differ from each other by
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the mass of the KK monopole Mmp and satisfy the first law
with the same natural variables. Nevertheless, since M̃ van-
ishes in the limit (m, a) → (0, 0) and it becomes that of the
usual five-dimensional neutral black holes with two equal
angular momenta in the limit r̃∞ → ∞, we propose that it
might be better to choose M̃ as the ADT mass of the squashed
rotating KK black holes. On the other hand, in spite of the fact
that both the mass M̃ and the Komar one MK behave con-
sistently in such limits, we have demonstrated that they can
be seen as different thermodynamic potentials with different
sets of natural variables due to the expressions of the first
law. However, in order to go deep into study of the relation
between the masses as well as the physical interpretation of
the reference backgrounds, it may be deserved to investigate
other aspects of the squashed rotating KK black holes along
the lines of [25] from the thermodynamical perspective, such
as the calculations of the free energy and Hamiltonian on dif-
ferent backgrounds and the analyses of the thermodynamic
stability in various environments.

For the sake of examining the ADT mass in five dimen-
sions, with the help of the KK reduction theory, we recom-
puted it from the perspective of the dimensionally reduced
theory. Within the context of the four-dimensional reduced
theory, to take into consideration of the contributions from
the KK vector and the dilaton, we modified the potential by
strictly following the rules of the conventional ADT method.
In terms of this potential to calculate the mass M(1) and
M(2), we found that they are in agreement with the five-
dimensional mass M and M̃ , respectively. Furthermore, as
comparison, the off-shell generalised ADT formulation was
applied to compute the mass of the squashed rotating KK
black holes, yielding the value M̃ . This supports that the
boundary matched KK monopole should be adopted as the
reference background in the context of the original ADT for-
malism.

Finally, it should be emphasised that the analysis in this
work can be successfully extended to the charged generali-
sations of the neutral rotating KK black holes found in [5]
although we merely deal with the ADT mass of the neutral
ones. However, the applications to the more general squashed
KK black holes, for instance, the charged rotating Gödel-type
black holes [6] and the three-charge rotating black holes with
squashed horizons [7], need to be checked in the future work.
If the physical charges of these black holes can be obtained,
we will take an important step towards understanding the
universality for the reference backgrounds of the flat back-
ground and the boundary matched KK monopole.
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