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Abstract A class of AdS2×�2, with�2 being a two-sphere
or a hyperbolic space, solutions within four-dimensional
N = 4 gauged supergravity coupled to three-vector mul-
tiplets with dyonic gauging is identified. The gauged super-
gravity has a non-semisimple SO(3)�(T3, T̂3) gauge group
and can be obtained from a consistent truncation of 11-
dimensional supergravity on a tri-sasakian manifold. The
maximally symmetric vacua contain AdS4 geometries with
N = 1, 3 supersymmetry corresponding to N = 1 and
N = 3 superconformal field theories (SCFTs) in three
dimensions. We find supersymmetric solutions of the form
AdS2 × �2 preserving two supercharges. These solutions
describe twisted compactifications of the dual N = 1 and
N = 3 SCFTs and should arise as near horizon geometries
of dyonic black holes in asymptotically AdS4 space-time.
Most solutions have hyperbolic horizons although some of
them exhibit spherical horizons. These provide a new class
of AdS2 × �2 geometries with known M-theory origin.

1 Introduction

Apart from giving deep insight to strongly coupled gauge
theories and string/M-theory compactifications in various
dimensions, the AdS/CFT correspondence has been recently
used to explain the entropy of asymptotically AdS4 black
holes [1–3]. In this context, the black hole entropy is com-
puted using topologically twisted index of three-dimensional
superconformal field theories (SCFTs) compactified on a
Riemann surface �2 [4–8]. In the dual gravity solutions,
the black holes interpolate between the asymptotically AdS4

and the near horizon AdS2 × �2 geometries. These can be
interpreted as RG flows from three-dimensional SCFTs in
the form of Chern–Simons–Matter (CSM) theories possibly
with flavor matters to superconformal quantum mechanics
corresponding to the AdS2 geometry.
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Along this line of research, BPS black hole solutions
in four-dimensional gauged supergravity, in particular near
horizon geometries, with known higher-dimensional origins
are very useful. Most of the solutions have been studied
within N = 2 gauged supergravities [9–15], for recent
results; see [16,17]. Many of these solutions can be uplifted
to string/M-theory since these N = 2 gauged supergravi-
ties can be obtained either from truncations of the maximal
N = 8 gauged supergravity, whose higher-dimensional ori-
gin is known, or direct truncations of M-theory on Sasaki–
Einstein manifolds.

In this work, we give evidence for a new class of BPS black
hole solutions in the half-maximal N = 4 gauged super-
gravity with known higher-dimensional origin by finding a
number of new AdS2 ×�2 solutions. This gauged supergrav-
ity has SO(3) � (T3, T̂3) gauge group and can be obtained
from a compactification of M-theory on a tri-sasakian mani-
fold [18]. Holographic RG flows and supersymmetric Janus
solutions, describing (1 + 1)-dimensional interfaces in the
dual SCFTs have recently appeared in [19]. In the present
paper, we will look for supersymmetric solutions of the form
AdS2 × �2 within this tri-sasakian compactification.

Apart from giving this type of solutions in gauged super-
gravity with more supersymmetry, to the best of the authors’
knowledge, the results are the first example of AdS2 × �2

solutions from the truncation of M-theory on a tri-sasakian
manifold. The truncation given in [18] gives a reduction
ansatz for 11-dimensional supergravity on a generic tri-
sasakian manifold including massive Kaluza–Klein modes.
Among this type of manifolds, N 010 with isometry SU (2)×
SU (3) is of particular interest. In this case, there is a non-
trivial two-form giving rise to an extra vector multiplet; see
[20,21] for the Kaluza–Klein spectrum of AdS4×N 010. This
background, discovered long ago in [22], preserves N = 3
out of the original N = 4 supersymmetry. There is another
supersymmetric AdS4 vacuum with SO(3) symmetry and
N = 1 supersymmetry, the one broken by AdS4 × N 010.
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This vacuum corresponds to AdS4 × Ñ 010 geometry, with
Ñ 010 being a squashed version of N 010.

Not much is known about the dual N = 1 SCFT, but the
dual N = 3 SCFT has been proposed in a number of previous
works [23,24]; see also [25,26]. This SCFT takes the form
of a CSM theory with SU (N ) × SU (N ) gauge group. It is a
theory of interacting three hypermultiplets transforming in a
triplet of the SU (3)flavor symmetry, and each hypermultiplet
transforms as a bifundamental under the SU (N ) × SU (N )

gauge group and as a doublet of the SU (2)R ∼ SO(3)R R-
symmetry. There are also a number of previous works giving
holographic studies of this theory both in 11-dimensional
context and in the effective N = 3 and N = 4 gauged
supergravities [19,27–31]. Solutions given in these works are
holographic RG flows, Janus solutions and supersymmetric
AdS2 × �2 solutions with magnetic charges.

In this work, we consider N = 4 gauged supergravity
constructed in the embedding tensor formalism in [32]. This
construction is the most general supersymmetric gaugins of
N = 4 supergravity in which both the “electric” vector fields,
appearing in the ungauged Lagrangian, and their magnetic
duals can participate. Therefore, magnetic and dyonic gaug-
ings are allowed in this formulation. Furthermore, this for-
mulation contains the “purely electric” gauged N = 4 super-
gravity constructed long time ago in [33] and the non-trivial
SL(2, R) phases of [34,35] as special cases. We will look for
supersymmetric AdS2 × �2 solutions in the N = 4 gauged
supergravity with a dyonic gauging of the non-semisimple
group SO(3) � (T3, T̂3). The solutions are required to pre-
serve SO(2) ⊂ SO(3)R , so only a particular combination
of vector fields corresponding to this SO(2) residual gauge
symmetry appears in the gauge covariant derivative. The
strategy is essentially similar to the wrapped brane solutions
of [36], implementing the twist by canceling the spin con-
nections on �2 by the SO(2) gauge connection.

These AdS2 × �2 solutions should appear as near hori-
zon geometries of supersymmetric black holes in asymptot-
ically AdS4 space-time. Since the N = 4 gauged super-
gravity admits two supersymmetric AdS4 vacua with unbro-
ken SO(3)R symmetry and N = 1, 3 supersymmetries, the
AdS2×�2 solutions should be RG fixed points in one dimen-
sion of the dual N = 1, 3 SCFTs. Although the structure of
the dual N = 1 SCFT is presently not clear, we expect that
there should be RG flows between these twisted N = 1, 3
SCFTs on �2 to one-dimensional superconformal quantum
mechanics dual to the AdS2 × �2 solutions. In this sense,
the entropy of these black holes would possibly be computed
from the topologically twisted indices of the dual N = 1, 3
SCFTs. Furthermore, these solutions should provide a new
class of AdS2 geometries within M-theory.

The paper is organized as follows. In Sect. 2, we review
N = 4 gauged supergravity coupled to vector multiplets and
relevant formulas for uplifting the resulting solutions to 11

dimensions. The analysis of BPS equations for SO(2) ⊂
SO(3)R singlet scalars and Yang–Mills equations, for static
black hole ansatze consistent with the symmetry of �2, will
be carried out in Sect. 3. In Sect. 4, we will explicitly give
AdS2 × �2 solutions to the BPS flow equations. We sepa-
rately consider the N = 1 and N = 3 cases and end the
section with the uplift formulas for embedding the solutions
in 11 dimensions. We finally give some conclusions and com-
ments on the results in Sect. 5. In the appendix, we collect the
convention regarding ‘t Hooft matrices and give the explicit
form of the Yang–Mills and BPS equations.

2 N = 4 gauged supergravity with dyonic gauging

In this section, we review N = 4 gauged supergravity in
the embedding tensor formalism following [32]. We mainly
focus on the bosonic Lagrangian and supersymmetry trans-
formations of fermions which provide basic ingredients for
finding supersymmetric solutions. Since the gauged super-
gravity under consideration is known to arise from a tri-
sasakian truncation of 11-dimensional supergravity, we will
also give relevant formulas which are useful to uplift four-
dimensional solutions to 11 dimensions. The full detail of
this truncation can be found in [18].

2.1 N = 4 gauged supergravity coupled to vector
multiplets

In the half-maximal N = 4 supergravity in four dimen-
sions, the supergravity multiplet consists of the graviton

eμ̂
μ, four gravitini ψ i

μ, six vectors Am
μ , four spin- 1

2 fields
χ i and one complex scalar τ . The complex scalar can be
parametrized by the SL(2, R)/SO(2) coset. The supergrav-
ity multiplet can couple to an arbitrary number n of vector
multiplets containing a vector field Aμ, four gaugini λi and
six scalars φm . The scalar fields can be parametrized by the
SO(6, n)/SO(6) × SO(n) coset.

Space-time and tangent space indices are denoted, respec-
tively, by μ, ν, . . . = 0, 1, 2, 3 and μ̂, ν̂, . . . = 0, 1, 2, 3.
Indices m, n = 1, . . . , 6 and i, j = 1, 2, 3, 4, respec-
tively, describe the vector and spinor representations of the
SO(6)R ∼ SU (4)R R-symmetry or equivalently a second-
rank anti-symmetric tensor and fundamental representations
of SU (4)R . The n vector multiplets are labeled by indices
a, b = 1, . . . , n. All the fields in the vector multiplets
will accordingly carry an additional index in the form of
(Aa

μ, λia, φma).
All fermionic fields and the supersymmetry parameters

transform in the fundamental representation of SU (4)R R-
symmetry with the chirality projections

γ5ψ
i
μ = ψ i

μ, γ5χ
i = −χ i , γ5λ

i = λi . (1)
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Similarly, for the fields transforming in the anti-fundamental
representation of SU (4)R , we have

γ5ψμi = −ψμi , γ5χi = χi , γ5λi = −λi . (2)

General gaugings of the matter-coupled N = 4 super-
gravity can be efficiently described by the embedding tensor

, which encodes the information as regards the embed-
ding of any gauge group G0 in the global or duality sym-
metry SL(2, R) × SO(6, n). There are two components of
the embedding tensor ξαM and fαMN P with α = (+,−)

and M, N = (m, a) = 1, . . . , n + 6 denoting fundamen-
tal representations of SL(2, R) and SO(6, n), respectively.
The electric vector fields AM+ = (Am

μ, Aa
μ), appearing in

the ungauged Lagrangian, together with their magnetic dual
AM− form a doublet under SL(2, R). These are denoted col-
lectively by AMα . In general, a subgroup of both SL(2, R)

and SO(6, n) can be gauged, and the magnetic vector fields
can also participate in the gauging. However, in this paper,
we only consider gaugings with only fαMN P non-vanishing.
We then set ξαM to zero from now on. This also considerably
simplifies many formulas given below.

The full covariant derivative can be written as

Dμ = ∇μ − gAMα
μ f N P

αM tN P (3)

where ∇μ is the space-time covariant derivative including the
spin connections. tMN are SO(6, n) generators which can be
chosen as

(tMN )
Q

P = 2δ
Q
[MηN ]P , (4)

with ηMN being the SO(6, n) invariant tensor. The gauge
coupling constant g can be absorbed in the embedding ten-
sor 
. The original gauging considered in [33] only involves
electric vector fields and is called electric gauging. In this
case, only f+MN P are non-vanishing. In the following dis-
cussions, we will consider dyonic gauging involving both
electric and magnetic vector fields. In this case, both AM+
and AM− enter the Lagrangian, and fαMN P with α = ±
are non-vanishing. Consistency requires the presence of two-
form fields when magnetic vector fields are included. In the
present case with ξαM = 0, these two-forms transform as an
anti-symmetric tensor under SO(6, n) and will be denoted
by BMN

μν = B[MN ]
μν . The two-forms modify the gauge field

strengths to

HM± = d AM± − 1

2
ηMQ fαQN P A

Nα ∧ AP±

±1

2
ηMQ f∓QN P B

N P . (5)

Note that for non-vanishing f−MN P the field strengths of
electric vectors HM+ have a contribution from the two-form
fields.

Before moving to the Lagrangian, we explicitly give the
parametrization of the scalar coset manifold SL(2, R)/SO(2)

× SO(6, n)/SO(6) × SO(n). The first factor can be
described by a coset representative

Vα = 1√
Imτ

(
τ

1

)
(6)

or equivalently by a symmetric matrix

Mαβ = Re(VαV∗
β) = 1

Imτ

( |τ |2 Reτ
Reτ 1

)
. (7)

It should also be noted that Im(VαV∗
β) = εαβ . The complex

scalar τ can also be written in terms of the dilaton φ and the
axion χ as

τ = χ + ieφ. (8)

For the SO(6, n)/SO(6)×SO(n) factor, we can introduce
the coset representative V A

M transforming by left and right
multiplications under SO(6, n) and SO(6)×SO(n), respec-
tively. The SO(6)× SO(n) index will be split as A = (m, a)

according to which the coset representative can be written
as V A

M = (V m
M ,V a

M ). As an element of SO(6, n), the
matrix V A

M also satisfies the relation

ηMN = −V m
M V m

N + V a
M V a

N . (9)

As in the SL(2, R)/SO(2) factor, the SO(6, n)/SO(6) ×
SO(n) coset can also be parametrized in term of a symmetric
matrix defined by

MMN = V m
M V m

N + V a
M V a

N . (10)

The bosonic Lagrangian of the N = 4 gauged supergrav-
ity is given by

e−1L = 1

2
R + 1

16
DμMMNDμMMN

− 1

4(Imτ)2 ∂μτ∂μτ ∗ − V

−1

4
Im τMMNHM+

μν HN+μν

−1

8
Re τe−1εμνρσ ηMNHM+

μν HN+
ρσ

−1

2
e−1εμνρσ

[
f−MN P A

M−
μ AN+

ν ∂ρ A
P−
σ

+1

4
fαMNR fβPQSη

RS AMα
μ AN+

ν APβ
ρ AQ−

σ

−1

4
f−MN P B

N P
μν

×
(

2∂ρ A
M−
σ − 1

2
ηMS fαSQR A

Qα
ρ AR−

σ

)

− 1

16
f+MNR f−PQSη

RS BMN
μν BPQ

ρσ

]
(11)
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where e is the vielbein determinant. The scalar potential is
given by

V = g2

16

[
fαMN P fβQRSM

αβ

×
[

1

3
MMQMNRMPS+

(
2

3
ηMQ−MMQ

)
ηN RηPS

]

−4

9
fαMN P fβQRSε

αβMMNPQRS
]

(12)

where MMN is the inverse of MMN , and MMNPQRS is
defined by

MMNPQRS = εmnpqrsV m
M V n

N V p
P V q

Q V r
R V s

S (13)

with indices raised by ηMN . The covariant derivative of MMN

is defined by

DMMN = dMMN + 2APαηQR fαQP(MMN )R . (14)

It should be pointed out here that the magnetic vectors
and the two-forms do not have kinetic terms. They are aux-
iliary fields whose field equations give rise to the duality
relation between two-forms and scalars and the electric-
magnetic duality of AM+ and AM−, respectively. Together
with the Yang–Mills equations obtained from the variation
with respect to AM+, these equations are given by

ηMN ∗ DHN− = −1

4
f+MP

N MNQDMQP , (15)

ηMN ∗ DHN+ = 1

4
f−MP

NMNQDMQP , (16)

HM− = Im τMMNηN P ∗ HP+ − Re τHM+, (17)

where we have used differential form language for later com-
putational convenience. By substituting HM− from (17) in
(15), we obtain the usual Yang–Mills equations for HM+
while Eq. (16) simply gives the relation between the Hodge
dual of the three-form field strength and the scalars due to
the usual Bianchi identity of the gauge field strengths

FM± = d AM± − 1

2
ηMQ fαQN P A

Nα ∧ AP±. (18)

In this paper, we are interested in N = 4 gauged supergravity
coupled to three vector multiplets. The gauge group of inter-
est here is a non-semisimple group SO(3) � (T3, T̂3) ⊂
SO(6, 3) described by the following components of the
embedding tensor:

f+I J,K+6 = − f+I+3,J+6,K+6

= −2
√

2εI J K , I, J, K = 1, 2, 3,

f+I+6,J+6,K+6 = 6
√

2kεI J K ,

f−I,J+6,K+6 = −4εI J K . (19)

The constant k is related to the four-form flux along the four-
dimensional space-time; see Eq. (122).

We should also remark that we follow the convention of
[18] in all of the computations carried out here. In particular,
the SO(6, 3) tensor ηMN is off-diagonal

ηMN =
⎛
⎝−I3 03 03

03 03 I3

03 I3 03

⎞
⎠ (20)

where 03 and I3 denote 3 × 3 zero and identity matrices,
respectively. As a result, the computation of MMNPQRS in
(13) and parts of the supersymmetry transformations given
below which involve V m

M and V a
M must be done with the

projection to the negative and positive eigenvalues of ηMN ,
respectively. This can be achieved by using the projection
matrix

P =
⎛
⎝ 03

√
2 P̃3 03

−P̃3 03 P̃3

P̃3 03 P̃3

⎞
⎠ (21)

where the 3 × 3 matrix P̃3 is given by

P̃3 = 1√
2

⎛
⎝ 0 0 1

0 1 0
1 0 0

⎞
⎠ . (22)

We now turn to the supersymmetry transformations of
fermionic fields. These are given by

δψ i
μ = 2Dμεi − 2

3
gAi j

1 γμε j + i

4
(Vα)∗VM

i jHMα
νρ γ νργμε j ,

(23)

δχ i = iεαβVαDμVβγ μεi − 4

3
igAi j

2 ε j + i

2
VαVM

i jHMα
μν ε j ,

(24)

δλia = 2iV M
a DμV i j

M γ με j + 2igA i
2aj ε j

−1

4
VαVMaHMα

μν γ μνεi . (25)

The fermion shift matrices are defined by

Ai j
1 = εαβ(Vα)∗V M

kl V ik
N V jl

P f N P
βM ,

Ai j
2 = εαβVαV M

kl V ik
N V jl

P f N P
βM ,

A j
2ai = εαβVαVM

aVN
ikV jk

P f P
βMN (26)

where V i j
M is defined in terms of the ‘t Hooft matrices Gi j

m

and V m
M as

V i j
M = 1

2
V m
M Gi j

m (27)

and similarly for its inverse

VM
i j = −1

2
V m
M (Gi j

m )∗ . (28)

Gi j
m satisfy the relations

Gmi j = (Gi j
m )∗ = 1

2
εi jklG

kl
m . (29)

123
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The explicit form of these matrices is given in the appendix.
It should also be noted that the scalar potential can be written
in terms of A1 and A2 tensors as

V = −1

3
Ai j

1 A1i j + 1

9
Ai j

2 A2i j + 1

2
A j

2ai A i
2a j . (30)

With the explicit form of Vα given in (6) and Eq. (17), it
is straightforward to derive the following identities:

iVαVM
i jHMα

μν γ μν = −(V−)−1VM
i jHM+

μν γ μν(1 − γ5),(31)

iVαVM
aHMα

μν γ μν = −(V−)−1VM
aHM+

μν γ μν(1 + γ5), (32)

i(Vα)∗VM
i jHMα

μν γ μνγρ =(V−)−1VM
i jHM+

μν γ μνγρ(1−γ5).

(33)

In obtaining these results, we have used the following rela-
tions for the SO(6, n) coset representative [33]:

ηMN = −1

2
εi jklVM

i jVN
kl + VM

aVN
a,

VM
aVM

i j = 0,

VM
i jVM

kl = −1

2
(δikδ

j
l − δil δ

j
k ), VM

aVM
b = δab . (34)

These relations are useful in simplifying the BPS equations
resulting from the supersymmetry transformations. Note also
that these relations are slightly different from those given in
[32] due to a different convention on Vα in terms of the scalar
τ . In more detail, Vα used in this paper and in [18] satisfies
V+/V− = τ while Vα used in [32] gives V+/V− = τ ∗. This
results in some sign changes in the above equations compared
to those of [32].

2.2 Uplift formulas to 11 dimensions

As mentioned above, four-dimensional N = 4 gauged super-
gravity coupled to three vector multiplets with SO(3) �

(T3, T̂3) gauge group has been obtained from a truncation
of 11-dimensional supergravity on a tri-sasakian manifold in
[18]. We will briefly review the structure and relevant for-
mulas focusing on the reduction ansatz which will be useful
for embedding four-dimensional solutions. Essentially, we
simply collect some formulas without giving detailed expla-
nations for which we refer the interested reader to [18].

The 11-dimensional metric can be written as

ds2
11 = e2ϕds2

4 + e2Uds2(BQK)

+gI J (η
I + AI

1)(η
J + AJ

1 ) . (35)

The three-dimensional internal metric gI J can be written in
terms of the vielbein as

g = QT Q. (36)

Following [18], we will parametrize the matrix Q in terms
of a product of a diagonal matrix V and an SO(3) matrix O

Q = V O, V = diag(eV1 , eV2 , eV3) . (37)

The scalar ϕ is chosen to be

ϕ = −1

2
(4U + V1 + V2 + V3) (38)

in order to obtain the Einstein frame action in four dimen-
sions. BQK denotes a four-dimensional quaternionic Kähler
manifold whose explicit metric is not needed in the following
discussions.

The ansatz for the four-form field is given by

G4 = H4 + H3I ∧ (η + A1)
I + 1

2
εI J K H̃ I

2 ∧ (η + A1)
J

∧(η + A1)
K + 4Trc vol(QK)H1I J

∧(η + A1)
I ∧ J I + 1

6
εI J K

×dχ ∧ (η + A1)
I ∧ (η + A1)

J ∧ (η + A1)
K

+H2I ∧ J I + εI J L [(χ + Trc)δLK

−2c(LK )](η + A1)
I ∧ (η + A1)

J ∧ J K . (39)

cI J is a 3 × 3 matrix and Trc = δ I J cI J . The volume form of
BQK, vol(QK), can be written in terms of the two-forms J I

as

vol(QK) = 1

6
J I ∧ J I . (40)

Various forms in the above equation are defined by

H4 = dc3 + c2I ∧ F I
2 ,

H3I = Dc2I + εI J K F J
2 ∧ c̃1K ,

H̃2I = Dc̃1I − 2c2I + χF2I ,

H2I = Dc1I + 2c2I + cJ I F
J

2 ,

H1I J = DcI J + 2εI J K (c1K + c̃1K ) (41)

with the SO(3) covariant derivative

DcI1...In = dcI1...In + 2
n∑

l=1

εJ Il K AJ
1 ∧ cI1...K ...In . (42)

The SO(3)R field strengths are defined by

F I
2 = d AI

1 − εI J K AJ
1 ∧ AK

1 . (43)

It is useful to note here that the SL(2, R)/SO(2) scalars are
given by

τ = χ + ieV1+V2+V3 . (44)

Although we will not directly need the explicit form of
ds2(BQK) and ηI ’s in the remaining parts of this paper, it
is useful to give some information on the N 010 tri-sasakian
manifold. N 010 is a 7-manifold with SU (2) × SU (3) isom-
etry. The SU (2) is identified with the R-symmetry of the
dual N = 3 SCFT while SU (3) is the flavor symmetry. A

123
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simple description of N 010 can be obtained in terms of a
coset manifold SU (3)/U (1). With the standard Gell-Mann
matrices, the SU (3) generators can be chosen to be − i

2λα ,
α = 1, . . . , 8. The coset andU (1) generators are accordingly
identified as

Ki = − i

2
(λ1, λ2, λ3, λ4, λ5, λ6, λ7),

H = − i
√

3

2
λ8. (45)

The vielbein on N 010 can eventually be obtained from the
decomposition of the Maurer–Cartan one-form

L−1dL = ei Ki + ωH (46)

where L is the coset representative for SU (3)/U (1), and ω

is the corresponding U (1) connection.
Following [18], we can use the tri-sasakian structures of

the form

ηI = 1

2
(e1, e2, e7),

J I = 1

8
(e4 ∧ e5 − e3 ∧ e6,−e3 ∧ e5 − e4

∧e6, e5 ∧ e6 − e3 ∧ e4). (47)

From these, we find the metric on the quaternionic–Kähler
base BQK to be

ds2(BQK) = 1

256
[(e3)2 + (e4)2 + (e5)2 + (e6)2] (48)

with the volume form given by

vol(QK) = 1

6
J I ∧ J I = − 1

64
e3 ∧ e4 ∧ e5 ∧ e6. (49)

As mentioned before, all of the fields appearing in the reduc-
tion of [18] are SU (3) singlets.

3 BPS flow equations

In this section, we perform the analysis of Yang–Mills equa-
tions and supersymmetry transformations in order to obtain
BPS equations for the flows between AdS4 vacua and possi-
ble AdS2 × �2 geometries. We set all fermions to zero and
truncate the bosonic fields to SO(2) ⊂ SO(3)R singlets.
This SO(2) is generated by

X̂ = X9+ + X6+ + X3− (50)

where the gauge generators are defined by

XMα = − fαMN Pt
N P . (51)

We see that a combination of the electric vectors A9+, A6+
and the magnetic vector A3− becomes the corresponding
SO(2) gauge field.

We are interested in supersymmetric solutions of the form
AdS2 × �2 with �2 = S2, H2. We will then take the ansatz
for the four-dimensional metric to be

ds2
4 = −e2 f (r)dt2 + dr2 + e2g(r)(dθ2 + F(θ)2dφ2) (52)

with

F(θ) = sin θ and F(θ) = sinh θ (53)

for the S2 and H2, respectively. We will also use the param-
eter κ = ±1 to denote the S2 and H2 cases. The functions
f (r), g(r) and all other fields only depend on the radial coor-
dinate r for static solutions. With the obvious vielbein

et̂ = e f dt, er̂ = dr,

eθ̂ = egdθ, eφ̂ = egFdφ, (54)

it is now straightforward to compute the spin connections of
the above metric

ωt̂ r̂ = f ′et̂ , ωθ̂ r̂ = g′eθ̂ ,

ωφ̂r̂ = g′eφ̂ , ωθ̂φ̂ = F ′(θ)

F(θ)
e−geφ̂ . (55)

In the above expressions, we have used the hat to denote
“flat” indices while ′ stands for the r -derivative with the only
exception that F ′(θ) = dF(θ)

dθ
. The ansatz for electric and

magnetic vector fields are given by

AM+ = AM
t dt − pM F ′(θ)dφ, (56)

AM− = ÃM
t dt − eM F ′(θ)dφ (57)

where we have chosen the gauge such that AMα
r = 0. pM and

eM correspond to magnetic and electric charges, respectively.
In the present case, only AMα with M = 3, 6, 9 are relevant.

We finally give the explicit form of the scalar coset repre-
sentative for SO(6, 3)/SO(6)×SO(3). The parametrization
of [18] which is directly related to the higher-dimensional
origin is given by

V = CQ (58)

where the matrices Q and C are defined by

Q =
⎛
⎝ I3 03 03

03 e−2U Q−1 I3

03 03 e2U QT

⎞
⎠ ,

C = exp

⎛
⎝ 03

√
2cT 03

03 03 03√
2c a 03

⎞
⎠ . (59)

For SO(2) invariant scalars, the 3 × 3 matrices c and a are
given by

c =
⎛
⎝ Z1 Z3 0

−Z3 Z1 0
0 0 Z2

⎞
⎠ , a =

⎛
⎝ 0 � 0

−� 0 0
0 0 0

⎞
⎠ (60)
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while Q can be obtained from (37) with V2 = V1 and O
being

O = exp

⎛
⎝ 0 β 0

−β 0 0
0 0 0

⎞
⎠ . (61)

This is a generalization of the coset representative of the
SO(3)R singlet scalars used in [19] in which � = β =
Z3 = 0, Z1 = Z2 and V1 = V2 = V3. In the following,
we will rename the scalars V3 → V2 such that the complex
scalar τ becomes

τ = χ + ie2V1+V2 . (62)

We now give the scalar potential for SO(2) singlet scalars,

V = e−3(4U+2V1+V2)[e4(U+V2)(e4U + 2e4V1)

+9k2 + 4χ2e4U+2V1

−4e6U+4V1+2V2(6 + e2(U−V1)

−e−2(U−V1)) + 24kχ Z1 + 16χ2Z2
1

+8χ Z2e
4U+2V1 − 12kχ Z2

+(16χ2 − 24k)Z1Z2 + 32χ Z2
1 Z2

+4Z2
2e

4U+2V1 + 4χ2Z2
2 + 8χ Z1Z

2
2

+16Z2
1 Z

2
2 − 4χ Z3

2 − 8Z1Z
3
2

+6kZ2
2 + Z4

2 + 2e2V2

[e4U (χ + 2Z1 − Z2)
2 + 2e4V1(2Z1 + Z2)

2]]. (63)

The scalars β, � and Z3 do not appear in the potential. It
can also be checked that setting β = � = Z3 = 0 is a con-
sistent truncation. In fact, β never appears in any equations,
so we can set it to zero. On the other hand, the Yang–Mills
equations, to be given later, demand that � and Z3 must
be constant. Since we are interested in the flow solutions
interpolating between AdS2 × �2 and AdS4 vacua, and at
supersymmetric AdS4 critical points, both � and Z3 vanish.
We then choose Z3 = � = 0.

The kinetic terms for the remaining scalars read

Lkin = −6U ′2 − 2U ′(2V ′
1 + V ′

2) − 2V ′2
1 − V ′

1V
′
2

−1

4
[3V ′2

2 + e−2(2V1+V2)χ ′2 + 4e−2(2U+V1)

×Z ′2
1 + 2e−2(2U+V2)Z ′2

2 ]. (64)

We now redefine the scalars such that the kinetic terms are
diagonal

Ṽ = 2V1 + V2, Ũ1 = 2U + V1, Ũ2 = 2U + V2, (65)

in terms of which we find

Lkin = −1

4
(4Ũ ′2

1 + 2Ũ ′2
2 + Ṽ ′2

+e−2Ṽχ ′2 + 4e−2Ũ1 Z ′2
1 + 2e−2Ũ2 Z ′2

2 ). (66)

These new scalars will also be useful in the analysis of the
BPS equations below.

The above scalar potential admits two supersymmetric
AdS4 vacua with N = 1 and N = 3 supersymmetries [18].
At these vacua the symmetry is enhanced from SO(2) to
SO(3). For convenience, before carry out the analysis of
the Yang–Mills and BPS equations, we review the N = 3
and N = 1 AdS4 critical points in terms of the new scalars
defined above:

N = 3 : Ṽ = Ũ1 = Ũ2 = 1

2
ln k,

V0 = −12|k|− 3
2 , k > 0, (67)

N = 1 : Ũ1 = Ũ2 = ln 5 + 1

2
ln

[
− k

15

]
,

Ṽ = 1

2
ln

[
− k

15

]
,

V0 = −12|k|− 3
2

√
37

55
, k < 0. (68)

V0 is the cosmological constant related to the AdS4 radius
by

L2 = − 3

V0
. (69)

3.1 The analysis of Yang–Mills equations

We now solve the equations of motion for the gauge fields
given in (15)–(17). We should emphasize that, in the reduc-
tion of [18], the magnetic vectors AM− with M = 4, 5, 6 do
not appear in the reduction ansatz. These might arise from
the reduction of the dual internal seven-dimensional metric.
Furthermore, in this reduction, the two-form fields corre-
sponding to these magnetic vectors do not appear.

Although the present analysis involves A6+, we will trun-
cate out the A6− in order to use the reduction ansatz of [18] to
uplift the resulting solutions to 11 dimensions. This amounts
to setting e6 and Ã6

t in (57) to zero. It turns out that this
truncation is consistent provided that the two-form fields are
properly truncated. Therefore, we will set e6 = Ã6

t = 0 in the
following analysis. Note also that the vanishing of A6− does
not mean the covariant field strength H6− vanishes although
the usual gauge field strengthF6− vanishes. This is due to the
fact that H6− gets a contribution from the two-form fields.

In order to consistently remove A6−, we truncate the two-
form fields to only B18 and B78. With the symmetry of
AdS2 × �2 background and a particular choice of tensor
gauge transformations

BMN → BMN + d�MN , (70)

we will take the ansatz for the two-forms to be

B78 = B(r)F(θ)dθ ∧ dφ,
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B18 = B̃(r)F(θ)dθ ∧ dφ. (71)

With the explicit form of the embedding tensor, we can
compute the covariant field strengths

H3+ = A3
t
′
dr ∧ dt + (p3 + 4B)F(θ)dθ ∧ dφ,

H6+ = A6
t
′
dr ∧ dt + (p6 − 4B̃)F(θ)dθ ∧ dφ,

H9+ = A9
t
′
dr ∧ dt + p9F(θ)dθ ∧ dφ,

H3− = Ã3′
t dr ∧ dt + (e3 − 2

√
2B̃)F(θ)dθ ∧ dφ,

H6− = −6
√

2kBF(θ)dθ ∧ dφ,

H9− = Ã9′
t dr ∧ dt + (e9 − 2

√
2B)F(θ)dθ ∧ dφ. (72)

Note the non-vanishing covariant field strengthH6−, as men-
tioned above, due to the contribution from the two-form fields
despite A6− = 0.

Equations arising from (15) and (16) are explicitly given in
the appendix. They can be solved by imposing the following
conditions:

Z ′
3 = 0, �′ = 2Z1Z

′
3 − 2Z3Z

′
1,

B ′F(θ)dr ∧ dθ ∧ dφ = √
2e−4(2U+V1)

×(3k ∗ A9+ + ∗A6+ − √
2 ∗ A3−),

B̃ ′F(θ)dr ∧ dθ ∧ dφ = 4Z1e
−4(2U+V1)

×(3k ∗ A9+ + ∗A6+ − √
2 ∗ A3−). (73)

The first condition implies that Z3 is constant. As men-
tioned above, this allows one to set Z3 = 0. The sec-
ond condition then requires that � is constant. We can
also set � = 0. Together with β = 0, we are left
with only six scalars (U, V1, V2, χ, Z1, Z2) or equivalently
(Ũ1, Ũ2, Ṽ , χ, Z1, Z2).

We move to the last two conditions in (73). First of all, the
dt ∧ dr ∧ dθ component gives

3kp9 + p6 − √
2e3 = 0 (74)

while the dr ∧ dθ ∧ dφ component leads to first-order dif-
ferential equations for B and B̃

B ′ = √
2e−4(2U+V1)+2g− f (3kA9

t + A6
t − √

2Ã3
t ), (75)

B̃ ′ = −4Z1e
−4(2U+V1)+2g− f (3kA9

t + A6
t − √

2Ã3
t ). (76)

After solving all of the Yang–Mills equations and Bianchi
identities, we now consider the duality equation for electric
and magnetic vector fields. These equations whose explicit
form is given in the appendix lead to the relations between
(AM ′

t , ÃM ′
t ) and scalars. We can accordingly express the for-

mer in terms of the latter. These relations are given by

A3′
t = e f −2g−2(U+V1)−3V2 [e4U+2V2

[e3 + √
2e9Z2 − 4BZ2

+χ(p3 + 4B + √
2Z2)]

+Z2
2 [2(e3 + p3χ) + √

2Z2(e9 + p9χ)]
−4Z2B(3k − 2χ Z2 + Z2

2)

−2
√

2B̃(e4U+2V2 + 2Z2χ + 2Z2
2) + √

2p6Z2χ], (77)

A6
t
′ = e f −2g−2(2U+V1)−3V2

[(2√
2B − e9 − p9χ)e8U+4V2 − p6Z2

2χ

−e4U+2V2 Z2[
√

2e3 − 4B̃ + 2e9Z2 + χ(
√

2p3 + 2p9Z2)]
+4B̃ Z2

2(χ + Z2) − Z3
2[√2(e3 + p3χ) + Z2(e9 + p9χ)]

+4
√

2BZ2e
4U+2V2 (Z2−χ)+2

√
2BZ2

2(3k−2χ Z2+Z2
2)],

(78)

A9
t
′ = −e f −2g−2(2U+V1)−3V2

[Z2(
√

2e3 − 4B̃ + e9Z2) − 2
√

2B(3k − 2χ Z2 + Z2
2)

+χ(p6 − 4B̃ + √
2Z2 + p9Z2

2)], (79)

Ã3′
t = e f −2g−2V1−V2

Z2
[−e4V1+2V2 [√2e4U+2V2 p9

+Z2(p
3 + 4B + √

2p9Z2)]
+χ Z2[e3 − 2

√
2B̃ + √

2e9Z2 − 4BZ2

+χ(p3 + 4B + √
2p9Z2)]

+χe4U+2V2 [√2(e9 + p9χ) − 4B]], (80)

Ã9′
t = e f −2g−2V1−V2

Z2
2

[e4(U+V1+V2) p9−e4U+2V1χ(e9−2
√

2B+ p9χ)

−χ Z2[
√

2e3 − 4B̃ + 4
√

2B(χ − Z2) + 2e9Z2

+χ(
√

2p3 + 2p9Z2)]
+e4V1+2V2 Z2(

√
2p3 + 4

√
2B + 2p9Z2)]. (81)

It turns out that only A9
t , A6

t and Ã3
t appear in other equa-

tions, while the remaining ones only appear through their
derivatives. Therefore, these fields can be integrated out.

3.2 BPS equations for SO(2) invariant scalars

We now use the ansatz for all the fields given in the previous
section to set up the BPS equations for finding supersym-
metric solutions. We will use Majorana representation for
the gamma matrices in which all γμ are real, and

γ5 = iγ0̂γr̂γθ̂
γ
φ̂

(82)

is purely imaginary. We then have, for example,

εi = 1

2
(1 + γ5)ε

i
M ,

εi = 1

2
(1 − γ5)ε

i
M (83)

with εiM being four-component Majorana spinors. It follows
that εi = (εi )∗.

We first consider the gravitino transformations. As in other
holographic solutions involving twisted compactifications of
the dual SCFTs, the strategy is to use the gauge connection to
cancel the spin connection on �2. Equations from δψ i

θ̂
= 0

and δψ i
φ̂

= 0 then reduce to the same equation. The gauge

connection enters the covariant derivative of εi through the
composite connection Q j

i . With the SO(2) singlet scalars,
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we find that Q j
i takes the form of

Q j
i = 1

2
Â

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ (84)

where Â is given by

Â = √
2e−2(2U+V1)(3k A9+ + A6+

−√
2A3− − 4e4U+2V1 A9+). (85)

From the form of Qi
j , we can see that supersymmetry cor-

responding to ε3,4 is broken for spherical and hyperbolic �2

since we cannot cancel the spin connections along ε3,4. The
N = 4 supersymmetry is then broken to N = 2.

After using the condition (74) in the Q
φ̂i

j components,
the twist is achieved by imposing the projection

γ θ̂φ̂ε î = ε î ĵε
ĵ (86)

provided that we impose the following twist condition:

2
√

2κp9 = 1. (87)

Indices î, ĵ = 1, 2 denote the Killing spinors corresponding
to the unbroken supersymmetry. From Eq. (86), the chirality

condition on ε î implies that

γ 0̂r̂ε î = −iε î ĵε
ĵ . (88)

With these projections, we can write the δψ i
θ̂

= 0 equation,

which is the same as δψ i
φ̂

equation, as

g′γr̂ε î − 2

3
Aî ĵ

1 ε ĵ + i

2
(Vα)∗VM

î ĵ

×(iHMα

0̂r̂
− HMα

θ̂φ̂
)ε ĵ

k̂εk̂ = 0 (89)

where we have multiplied the resulting equation by γ θ̂ . We
further impose the projector

γr̂ε
î = ei�δ î ĵε ĵ (90)

in which ei� is an r -dependent phase. By Eq. (88), this pro-
jector implies

γ0̂ε
î = iei�ε î ĵε ĵ . (91)

It should be noted that there are only two independent pro-
jectors given in (86) and (90). Therefore, the entire flows pre-
serve 1

4 supersymmetry. On the other hand, the AdS2 × �2

vacua is 1
2 supersymmetric since the γr̂ projection is not

needed for constant scalars.
As a next step, we introduce the “superpotential” W and

“central charge” Z defined, respectively, by the eigenvalues
of

2

3
Aî ĵ

1 = Wîδ
î ĵ (92)

and

− i

2
(Vα)∗VM

î ĵ (iHMα

0̂r̂
− HMα

θ̂φ̂
)ε ĵ

k̂ = Zîδ
î k̂ . (93)

It should be emphasized that no summation is implied in the
above two equations.

With all these, we obtain the BPS equation from δψ î
θ̂

= 0
by the equation

ei�g′ − Wi − Zi = 0 (94)

which gives

g′ = |Wi + Zi | and ei� = Wi + Zi

|Wi + Zi | . (95)

Using all of these results, we find that the equation δψ î
0̂

=
0 gives

ei�( f ′ + i Ât e
− f ) − Wi + Zi = 0. (96)

Taking the real and imaginary parts leads to the following
BPS equations:

f ′ = Re[e−i�(Wi − Zi )] (97)

and

Ât = e f Im[e−i�(Wi − Zi )]. (98)

We now come to the equation δψ î
r̂ = 0, which gives the r -

dependence of the Killing spinors. When combined with the

equation δψ î
0̂

= 0, this equation reads

2ε î ′ − f ′ − i Ât e
− f ε î = 0, (99)

which can be solved by

ε î = e
f
2 + i

2

∫
Ât e− f dr ε̃ î . (100)

ε̃ î are constant spinors satisfying the projections

γr̂ ε̃
î = δ î ĵ ε̃ ĵ , γ

θ̂φ̂
ε̃ î = ε î ĵ ε̃

ĵ . (101)

Using the γr̂ projector, we obtain the following BPS equa-
tions from δχ i and δλia :

−ei�εαβVαV ′
βδî ĵ − 4i

3
A ĵ î

2

+iVαVM
îk̂ε k̂ ĵ (iHMα

0̂r̂
+ HMα

θ̂φ̂
) = 0, (102)

Va
MVM

i j ′e−i� + 1

4
VαVMa(HMα

0̂r̂

+iHMα

θ̂φ̂
)δi

î
δ
j

ĵ
ε î ĵ + A2aj

i = 0. (103)

Note that there are four equations from δλia for each value
of a = 1, 2, 3, but δλ

i=3,4
a we do not get any contribution

from the gauge fields. However, the scalars appearing in these
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equations cannot be consistently set to zero since A2aj
i is not

diagonal in i j indices.
It should be pointed out that the N = 3 supersymmetric

AdS4 vacuum corresponds to the Killing spinors ε2,3,4 while
ε1 is the Killing spinor of the N = 1 AdS4 critical point.
In the next section, we will look for possible AdS2 × �2

solutions to the above BPS equations. As mentioned before,
in the twist given above, the supersymmetry corresponding to
ε3,4 is broken. Therefore, the resulting AdS2 × �2 solutions
will preserve only two supercharges or half of the N = 1
supersymmetry corresponding to either ε1 or ε2. We will
analyze these two cases separately.

4 Supersymmetric AdS2 × �2 solutions

In this section, we look for the AdS2 × �2 fixed points of
the above BPS flow equations with constant scalars. These
solutions should correspond to IR fixed points of the RG
flows from twisted compactifications of the dual N = 3 and
N = 1 SCFTs in three dimensions. They also describe near
horizon geometries of BPS black holes arising from M2-
branes wrapped on �2. Before giving the solutions, we first
discuss the conditions for obtaining the AdS2 fixed points.

At the AdS2×�2 geometries, the scalars are constant, and
we can choose the gauge in which AMα

t ∼ 0. Furthermore,
the warped factor g(r) is required to be constant, g′(r) = 0.
Let rh be the position of the horizon, we can summarize the
conditions for AdS2 × �2 solutions and their properties as
follows:

f (rh) = rh
LAdS2

, eg(rh) = L�2 ,

Im[e−i�(Wi − Zi )] = 0,

|Wi + Zi | = 0,
4

3
Aî ĵ

2 = VαVM
îk̂ε k̂ ĵ (iHMα

0̂r̂
+ HMα

θ̂φ̂
),

i

4
VαVMa(−i Ĥ Mα

0̂r̂
+ HMα

θ̂φ̂
)ε î ĵ = −A2a ĵ

î

A2a j̃
î = 0, j̃ = 3, 4, (104)

where LAdS2 and L�2 are, respectively, the radii of AdS2 and
�2. These conditions can be viewed as attractor equations for
the scalars at the black hole horizon.

4.1 Solutions in the N = 3 case

We begin with the N = 3 case. The AdS2 ×�2 solutions will
describe the fixed points of the RG flows from N = 3 SCFTs
dual to the N 010 compactification of 11-dimensional super-
gravity to supersymmetric CFT1’s dual to the AdS2 × �2

geometries. These flows are examples of the twisted com-
pactifications of the N = 3 SCFT on �2.

In this case, the superpotential and central charge are given
in terms of the redefined scalars (Ũ1, Ũ2, Ṽ ) by

W2 = 1

2
e− 1

2 (4Ũ1+2Ũ2+Ṽ )[e2Ũ2 + 4eŨ1+Ũ2 − 2eŨ2+Ṽ + 4eŨ1+Ṽ

−3k + 2i Z2e
Ũ2 + 4i Z2e

Ũ1 − 4i Z1(e
Ũ2 + eṼ + i Z2)

−2i Z2e
Ṽ − Z2

2 + 2χ(2ieŨ1 − ieŨ2 + 2Z1 + Z2)], (105)

Z2 = 1

4
e− 1

2 (4g+2Ũ2+Ṽ )[2e3e
Ũ2 − √

2ie9e
2Ũ2 + 2ie3χ + 2p3χeŨ2

−√
2i p9χ(e2Ũ2 + 3k) − 4

√
2B̃[eŨ2 + eṼ + i(χ + Z2)]

+2ie3Z2 + 2
√

2e9Z2e
Ũ2 + 2i p3χ Z2 + 2

√
2p9χ Z2e

Ũ2

+√
2i(e9 + p9χ)Z2

2 + 4i B(e2Ũ2 − 2eŨ2+Ṽ − 3k)

+4B[2χ(eŨ2 + i Z2) + Z2(e
Ṽ − 2eŨ2 − i Z2)]

+eṼ (2e3 − 3
√

2p9 − √
2p9e2Ũ2 + 2p3Z2 + √

2p9Z2
2)

−2ieŨ2+Ṽ (p3 + √
2p9Z2)] (106)

in which the subscript 2 on W2 and Z2 refers to the super-
potential and central charge associated to the Killing spinor
ε2.

The BPS equations are given by

f ′ = Re[e−i�(W2 − Z2)],
ei� = W2 + Z2

|W2 + Z2| , (107)

g′ = |W2 + Z2|, (108)

ei�Ṽ ′ − ie−Ṽ+i�χ ′

= 1

2

[
e− Ṽ

2 −Ũ2−2Ũ1 [2eŨ2 + 8e2Ũ1 − 6k + Z2(8Z1 − 2Z2)]

−e−2g−2Ũ1+ Ṽ
2 [4e2g + 2e2Ũ1 (p3 + 4B + √

2p9Z2)]
+4χ(2Z1 + Z2)e

− Ṽ
2 −Ũ2−2Ũ1 + √

2e9e
Ũ2−2g− Ṽ

2

]

+1

2
e−2g−Ũ2− Ṽ

2 [√2Z2(4B̃ − e9Z2) − 2e3(χ + Z2) + 4
√

2χ B̃

−4B(e2Ũ2 − 3k + 2χ Z2 − Z2
2) + √

2p9χ(eŨ2 + 3k)

−Z2χ(2p3 + √
2p9Z2)]

− i

2
e−Ũ2− Ṽ

2 [4eŨ2−2Ũ1 (Z2 − 2Z1 − χ) − 4eṼ−2Ũ1 (2Z1 + Z2)

−2eŨ2−2g[Z2(
√

2e9 − 4B − 2
√

2B̃) + χ(p3 + 4B + √
2p9Z2)]

+eṼ−2g[2e3 − 4
√

2B̃ − √
2p9(3k + e2Ũ2 ) − 4

√
2B̃

+Z2(2p
3 + 8B + √

2p9Z2)] − 2eŨ2−2ge3], (109)

e−i�Ũ ′
2 + ie−Ũ2−i�Z ′

2

= 1

2
e−2g−Ũ2−2Ũ1− Ṽ

2 [2e2(g+Ũ2) + √
2ie9e

2(Ũ1+Ũ2) + 6ke2g

−2ie3χe
2Ũ1 + √

2i p9χe2(Ũ1+Ũ2) + 3
√

2ikp9χe2Ũ1

+8i Z2e
2g+Ũ1 − 2ie3Z2e

2Ũ1 − 4χ Z2e
2g − 2i p3χ Z2e

2Ũ1

−8Z1Z2e
2g + 2Z2

2e
2g − √

2ie9Z
2
2e

2Ũ1 − 8χ Z1e
2g

−4i Be2Ũ1 [e2Ũ2 − 3k + Z2(2χ − Z2 − 2ieṼ )] + 8iχe2g+Ũ1

+4
√

2B̃e2Ũ1 (eṼ + iχ + i Z2) − √
2i p9χ Z2

2e
2Ũ1

−4ie2g+Ṽ (2Z1 + Z2) − Z2e
2Ũ1+Ṽ (2p3 + √

2p9Z2)

−eŨ1+Ṽ [8e2g + eŨ1 [2e3 − √
2p9(e2Ũ2 + 3k)]]], (110)
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e−i�Ũ ′
1 − ie−Ũ1−i�Z ′

1

= e−Ũ2−2Ũ1− Ṽ
2 [2eŨ2+Ṽ − e2Ũ2 − 2eŨ1 (eŨ2 + eṼ ) + 3k

−4i Z1(e
Ũ2 + eṼ − i Z2) + 2iχ(eŨ1 − eŨ2 + 2i Z1 + i Z2)

+2i Z2(e
Ũ2 + eŨ1 − eṼ ) + Z2

2 ] (111)

where we have used the relation (74) to express p6 in terms
of p9 and e3.

To obtain the complete flow solutions, we have to solve
these equations together with the two-form equations (75),
(76) and the equations for the gauge fields (77)–(81) as well
as the algebraic constraint given by Eq. (98). These equations
are very complicated even with the numerical technique not
to mention the analytic solutions. In what follows, we will
present only the AdS2 × �2 solutions and will not give the
numerical flow solutions which may be obtained by suitable
boundary conditions. In principle, the horizon is character-
ized by the values of the scalars as functions of the electric
and magnetic charges. However, due to the complexity of the
BPS equations, it is more convenient to solve the horizon con-
ditions for the charges in terms of the scalar fields although
inverting the solutions to express the scalars in terms of the
charges is desirable.

In the present case, although it is straightforward to solve
the above equations for (B, B̃, χ, Z1, p9, p3, e3, e9) in terms
of (Ũ1, Ũ2, Ṽ , Z2), the resulting expressions turn out to be
cumbersome and not very illuminating. Accordingly, we
refrain from giving the general result here but instead present
some solutions with specific values of the parameters. These
are obtained from truncating the full result and represent
some examples of AdS2 ×�2 geometries within the solution
space.

Examples of AdS2 × �2 solutions are as follows:

• We begin with a simple solution with vanishing pseu-
doscalars. In the M-theory point of view, only scalars
coming from the 11-dimensional metric are turned on.
The solution is given by

k = 1

5
, χ = Z1 = Z2 = 0, e9 = 0,

Ṽ = 1

2
ln

[
27

5

]
, Ũ1 = 1

2
ln

[
27

80

]
,

Ũ2 = −1

2
ln

[
5

3

]
, B̃ = 1

20
(5

√
2e3 − 27p9),

g = 1

2
ln

[
−81

80

√
3

10
κp9

]
,

B = − p3

4
, LAdS2 = 3

9
4

32(5)
3
4

. (112)

It is clearly seen that only the hyperbolic horizon (κ =
−1) is possible otherwise g(rh) will become complex.
Therefore, we find that this is an AdS2 × H2 solution.

• We next consider a solution with scalars and pseu-
doscalars turned on. In the 11-dimensional context, the
solution involves scalar fields from both the metric and
the four-form field. This solution is characterized by

k = 1, Z1 = Z2 = Ũ = 0,

Ũ = Ṽ = ln

[
12

7

]
,

p3 = 41e9 + 220p9

41
√

2
, B = −41e9 + 136p9

164
√

2
,

B̃ = e3

2
√

2
− 111

41
p9,

χ = −1

7
, g = 1

2
ln

[
−2

5
2 κp9

√
21

41

]
,

LAdS2 =
√

21

19
. (113)

This solution is also AdS2 × H2.
• As a final example, we consider a solution with more

scalars turned on and hence more general than the previ-
ous two solutions. This solution is given by

Z1 = 0, Z2 = −2
√
k

7
, χ = −

√
k

7
,

Ũ1 = Ũ2 = 1

2
ln k,

p3 = 128, 447k − 104, 895

4, 116
√

2k
p9,

e9 = 32, 723k − 13, 923

4, 116
√

2k
p9,

B̃ = e3

2
√

2
+ 567 − 667k

98
p9,

g = 1

2
ln

[
21(1 − k)

√
kκp9

2
√

2

]
,

Ṽ = ln(2
√
k), B = −25p9

[
3, 809k − 2, 961

16, 464
√

2k

]
,

LAdS2 = k
3
4

3
√

2
. (114)

In this case, the flux parameter k is not fixed, and there
are two types of solutions, AdS2 × S2 and AdS2 × H2,
depending on the value of k. For k > 1, we have an
AdS2 × H2 solution with κ = −1 while the solution
with k < 1 is AdS2 × S2 for which κ = 1.
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4.2 Solutions in the N = 1 case

We now repeat a similar analysis for the N = 1 case in
which the N = 1 AdS4 vacuum arises from the squashed
N 010 manifold. This critical point exists only for k < 0,
and the AdS2 × �2 solutions would be IR fixed points of
the twisted compactifications of the dual N = 1 SCFT. The
superpotential and central charge are given by

W1 = 1

2
e−Ũ2−2Ũ1− Ṽ

2 [e2Ũ2 − 4eŨ1+Ũ2 − 2eṼ (eŨ2 + 2eŨ1)

+4Z1(Z2 − ieŨ2 − ieṼ )

−3k + i Z2(2e
Ũ2 − 4eŨ1 − 2eṼ + i Z2)

+2χ(2Z1 + Z2 − ieŨ2 − 2ieŨ1)], (115)

Z1 = 1

4
e−2g−Ũ2− Ṽ

2

×[2e3(e
Ũ2 + iχ) − √

2ie9e
2Ũ2 + 2p3χeŨ2 − 3

√
2ikp9χ

−√
2i p9χe2Ũ2 − 4

√
2B̃(eŨ2 + eṼ+iχ+i Z2 ) + 2ie3Z2

+2
√

2e9Z2e
Ũ2 + 2i p3χ Z2 + 2

√
2p9χ Z2 + √

2ie9Z
2
2

+√
2i p9χ Z2

2 + 4B[2χ(eŨ2 + i Z2) + i(e2Ũ2 − 2eŨ2+Ṽ − 3k)]
+4BZ2(2e

Ṽ − 2eŨ2 − i Z2) − 2ieŨ2+Ṽ (p3 + √
2p9Z2)

+eṼ (2e3 − 6
√

2p9 − √
2p9e2Ũ2 + 2p3Z2 + √

2p9Z2
2)].

(116)

The procedure is essentially the same, so we will just
present the result of AdS2 × �2 solutions and leave the
explicit form of the corresponding BPS equations to the
appendix. In this case, it turns out to be more difficult to
find the solutions in particular we have not found any solu-
tions without the pseudoscalars turned on. With some effort,
we obtain the following solutions:

• We begin with a simple solution in which all scalars have
the same value as the N = 1 supersymmetric AdS4 vac-
uum

k = −18

11
, Z1 = Z2 = χ = 0,

Ũ1 = Ũ2 = ln 5 − 1

2
ln

[
55

6

]
, Ṽ = −1

2
ln

[
55

6

]
,

B = − p3

4
, B̃ = e3

2
√

2
, e9 = −14p3

5
√

2
,

g = 1

2
ln

[
−10

11

√
15

11
κp9

]
,

LAdS2 = 5
5
4

2
5
4

(
3

1
4

) (
11

3
4

) . (117)

The solution is of the AdS2 × H2 form.

• We now give a more complicated solution

k = −18

11
, Z1 = χ = 0,

Ũ1 = Ṽ = ln

[
7

√
− 3k

319

]
,

p3 =
√

3

638

(
p9

3, 190
√−k

)

(567, 365k − 1, 002, 298),

B =
√

3

638

(
p9

89, 320
√−k

)

(13, 987, 355k − 27, 368, 286),

B̃ = e3

2
√

2
+ 3p9

8, 932
(63, 162 − 32, 267k),

Z2 = −5

√
− 3k

319
,

g = ln

[
7

(
3

638

) 1
4
√

(k − 2)
√−kκp9

]
,

Ũ2 = 1

2
ln

[
−588k

319

]
,

LAdS2 = 21(3
1
4 )

11

√
7

21

(
2

29

) 3
4

. (118)

This solution also gives AdS2 × H2 geometry. To show
that this leads to real solutions, we explicitly give one
example of the possible solutions

Z1 = χ = 0, e9 = 54.35, p3 = −11.56,

Ũ1 = Ṽ = −0.14,

Ũ2 = 0.55, Z2 = −0.62, B = 10.66,

B̃ = −13.77 + 0.35e3,

g = 1.06. (119)

4.3 Uplift formulas

We end this section by giving the uplift formulas for embed-
ding the previously found AdS2 ×�2 solutions in 11 dimen-
sions. We first identify the vector and tensor fields in the
N = 4 gauged supergravity and those obtained from the
dimensional reduction of 11-dimensional supergravity on a
tri-sasakian manifold

A3
1 = √

2A9+, a3
1 = −√

2A6+, c3
1 = A3+,

ã3
1 = −A3−,

c̃3
1 = √

2A9−, a12
2 = √

2B18, c3
2 = B78. (120)

With this identification and the ansatz for the scalars and
vector fields, the 11-dimensional metric and the four-form
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field are given by

ds2
11 = e− 1

3 (4Ũ1+2Ũ2+Ṽ )[−e2 f dt2 + dr2

+e2g(dθ2 + F(θ)2dφ2)]
+e

1
3 (2Ũ1+Ũ2−Ṽ )ds2(BQK) + e

2
3 (Ũ1−Ũ2+Ṽ )

×[(η1)2 + (η2)2] + e
2
3 (Ṽ−2Ũ1−2Ũ2)

×(η3 + √
2A9

t dt − √
2p9F ′(θ)dφ)2 (121)

and

G4 = −[6ke−(4Ũ1+2Ũ2+Ṽ )+ f +2g − √
2BA9′

t − √
2B ′A9

t ]
×F(θ)dt ∧ dr ∧ dθ ∧ dφ

+B ′F(θ)dr ∧ dθ ∧ dφ ∧ η3 + dZ1 ∧ (η1 ∧ J 1 + η2

∧J 2)[√2(Ã9′
t + χA9′

t )dr ∧ dt + √
2(e9 + χp9

−√
2B)F(θ)dθ ∧ dφ] ∧ η1 ∧ η2

×[(A3′
t + √

2Z2A9′
t )dr

∧dt + (p3 + √
2p9Z2 + 2B)F(θ)dθ ∧ dφ] ∧ J 3

+2(χ + 2Z1)η
1 ∧ η2 ∧ J 3 + (dZ2 ∧ J 3 + dχ

∧η2 ∧ η2) ∧ (η3 − √
2p9F(θ)dφ)

+2[(A3
t + √

2Ã9
t )dt

−(
√

2e9 + p3)F(θ)dφ + 4(2Z1 + Z2)vol(BQK)

+(χ + Z2)(η
3 + √

2A9
t dt − √

2p9F(θ)dφ)]
∧(η1 ∧ J 2 − η2 ∧ J 1). (122)

5 Conclusions

In this paper, we have found a number of AdS2×�2 solutions
in N = 4 gauged supergravity with SO(3)� (T3, T̂3) gauge
group. The solutions can be uplifted to M-theory since the
N = 4 gauged supergravity is a consistent truncation of 11-
dimensional supergravity on a tri-sasakian manifold. These
AdS2 × �2 gemetries are expected to arise from the near
horizon limit of certain dyonic BPS black holes which can
be identified as holographic RG flows from twisted compact-
ifications of the dual N = 1, 3 SCFTs in the UV to supercon-
formal quantum mechanics corresponding to the AdS2 geom-
etry in the IR. We have found that most of the solutions have
hyperbolic horizons, but some of them have spherical hori-
zons depending on the values of the four-form flux param-
eter. These solutions provide examples of AdS2 geometries
from M-theory compactified on a tri-sasakian manifold such
as N 010 and are hopefully useful in the holographic study
of the N = 1, 3 Chern–Simons–Matter theories in three
dimensions. They should also be useful in the study of black
hole entropy along the line of recent results in [37–39]. In
this aspect, the near horizon solutions given here are enough
although we have not constructed the full black hole solu-
tions, numerically. It would be interesting to compute the

topologically twisted index in the dual N = 1, 3 SCFTs and
compare with the black hole entropy computed from the area
of the horizon A ∼ L2

�2
.

The solutions found here might constitute only a small
number of all possible solutions due to the complexity of
the resulting BPS equations. It could be interesting to look
for more solutions or even to identify all possible black hole
solutions to this N = 4 gauged supergravity similar to the
analysis in N = 2 gauged supergravity. For the case of N 010

manifold, there exists an invariant two-form in addition to
the universal forms on a generic tri-sasakian manifold. This
leads to an additional vector multiplet, called a Betti mul-
tiplet, in N = 4 gauged supergravity. This vector multiplet
corresponds to a baryonic symmetry in the dual SCFTs. Find-
ing a reduction that includes the Betti multiplet and SU (3)

non-singlet fields would be very useful in order to find more
interesting black hole and other holographic solutions. We
leave all these issues for future work.
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Appendix A: Useful formulas

In this appendix, we collect some convention on t’ Hooft
matrices and details on Yang–Mills equations and compli-
cated BPS equations in the N = 1 case.

A.1: ‘t Hooft matrices

In converting SO(6) vector indices m, n to chiral spinor
indices i, j , we use the following ‘t Hooft matrices:

Gi j
1 =

⎡
⎢⎢⎣

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎤
⎥⎥⎦ ,

Gi j
2 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0

⎤
⎥⎥⎦ ,

123
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Gi j
3 =

⎡
⎢⎢⎣

0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

⎤
⎥⎥⎦ ,

Gi j
4 =

⎡
⎢⎢⎣

0 i 0 0
−i 0 0 0
0 0 0 −i
0 0 i 0

⎤
⎥⎥⎦ ,

Gi j
5 =

⎡
⎢⎢⎣

0 0 i 0
0 0 0 i
−i 0 0 0
0 −i 0 0

⎤
⎥⎥⎦ ,

Gi j
6 =

⎡
⎢⎢⎣

0 0 0 i
0 0 −i 0
0 i 0 0
−i 0 0 0

⎤
⎥⎥⎦ . (123)

A.2: Field equations of gauge fields

In this section, we present the full equations of motion for
the gauge fields AMα . Equation (15) gives

− ∗DH3− = e−4(2U+V1)
[
4Z1(�

′ + 2Z3Z
′
1)

−4e4U+2V1 Z ′
3 − 8Z2

1 Z
′
3

]
dr

−8Z1e
−4(2U+V1)(2A3− − √

2A6+ − 3
√

2k A9+),

(124)
∗DH6− = 3

√
2ke−4(2U+V1)(�′ + 2Z3Z

′
1 − 2Z1Z

′
3)dr

+12ke−4(2U+V1)(3k A9+ + A6+ − √
2A3−), (125)

∗DH9− = √
2ke−4(2U+V1)(�′ + 2Z3Z

′
1 − 2Z1Z

′
3)dr

+4e−4(2U+V1)(3k A9+ + A6+ − √
2A3−) (126)

while Eq. (16) leads to

− ∗DH3+ = 2e−4(2U+V1)(�′ + 2Z3Z
′
1 − 2Z1Z

′
3)dr

+4e−4(2U+V1)(3k A9+ + A6+ − √
2A3−), (127)

∗DH6+ = 4
√

2ke−4(2U+V1)

[e4U+2V1 Z ′
3 + 2Z2

1 Z
′
3 − Z1(�

′ + 2Z3Z
′
1)]dr

−16Z1e
−4(2U+V1)(3k A9+ + A6+ − √

2A3−), (128)
∗DH9+ = 0 (129)

For equations obtained from (17), it is more convenient to
express them in the following combinations:

H9− = e−4U+2V1−V2(Z2
2 ∗ H9+ + ∗H6+

+√
2Z2 ∗ H3+) − χH9+, (130)

Z2
2H9− + H6− + √

2Z2H3− = e4U+2V1+3V2 ∗ H9+

−χ(Z2
2H9+ + H6+ + √

2Z2H3+), (131)√
2Z2H9− + H3− = −χ(

√
2Z2H9+ + H3+)

−e2V1+V2(
√

2Z2 ∗ H9+ + ∗H3+). (132)

A.3: BPS equations for the N = 1 case

In this section, we collect all the relevant BPS equations in
the N = 1 case. These are given by

e−i�Ũ ′
1 + ie−Ũ1−i�Z ′

1

= e−Ũ2−2Ũ1− Ṽ
2 [2eŨ1+Ũ2 − e2Ũ2 + 2eṼ (eŨ2 + eŨ1 ) + 3k

−4i Z1(e
Ũ2 + eṼ − i Z2) − 2iχ(eŨ2 + eŨ1 − 2i Z1 − i Z2)

+Z2[Z2 − 2i(eṼ + eŨ1 − eŨ2 )]], (133)

e−i�Ũ ′
2 + ie−Ũ2−i�Z ′

2

= 1

2
e−2g−Ũ2−2Ũ1− Ṽ

2 [2e2(g+Ũ2) + √
2ie9e

2(Ũ1+Ũ2) + 6ke2g

−2ie3χe
2Ũ1 + √

2i p9χe2(Ũ1+Ũ2) + 3
√

2ikp9χe2Ũ1

−8i Z2e
2g+Ũ1 − 2ie3Z2e

2Ũ1 − 4χ Z2e
2g − 2i p3χ Z2e

2Ũ1

−8Z1Z2e
2g + 2Z2

2e
2g − √

2ie9Z
2
2e

2Ũ1 − √
2i p9χ Z2

2e
2Ũ1

−4i Be2Ũ1 [e2Ũ2 − 3k + Z2(2χ − Z2 − 2ieṼ )] − 8iχe2g+Ũ1

−4ie2g+Ṽ (2Z1 + Z2) + 4
√

2B̃e2Ũ1 [eṼ + i(χ + Z2)]
+eŨ1+Ṽ [8e2g + eŨ1 (

√
2p9(e2Ũ2 + 3k) − 2e3)]

−8χ Z1e
2g − Z2e

2Ũ1+Ṽ (2p3 + √
2p9Z2)], (134)

ei�Ṽ ′ − ie−Ṽ+i�χ ′

= 1

2
e−2g−Ũ2−2Ũ1− Ṽ

2 [2e2(g+Ũ2) − 8e2g+Ũ2+Ũ1 + 2ie3e
Ũ2+2Ũ1

+√
2e9e

2(Ũ1+Ũ2) − 4iχe2g+Ũ2 − 8iχe2g+Ũ1 − 2e3χe
2Ũ1

+2i p3χeŨ2+2Ũ1 + √
2p9χe2(Ũ1+Ũ2) + 3

√
2kp9χe2Ũ1

+4e2g(2χ Z1 + i Z2e
Ũ2 ) − 2Z2e

Ũ1 (4ie2g + e3e
Ũ1 ) − 2Z2

2e
2g

+2
√

2ie9Z2e
Ũ2+2Ũ1 + 4χ Z2e

2g − 2p3χ Z2e
2Ũ1 − 6ke2g

+2
√

2i p9χ Z2e
Ũ2+2Ũ1 + 8Z1Z2e

2g − √
2e9Z

2
2e

2Ũ1

+4
√

2B̃e2Ũ1 [Z2 + χ − i(eŨ2 − eṼ )] − 4Be2Ũ1 (e2Ũ2+Ṽ − 3k)

−4Be2Ũ1 [2i Z2(e
Ũ2 + eṼ ) − Z2

2 + 2χ(Z2 − ieŨ2 )]
+ie2Ũ1+Ṽ [6√

2p9 − 2e3 + √
2p9 − 2p3Z2 − √

2p9Z2
2

+2ieŨ2 (p3 + √
2p9Z2)] + 4e2g+Ṽ [eŨ2 + i(2Z1 + Z2)]

+8e2g+Ũ1+Ṽ − 8i Z1e
2g+Ũ2 − √

2p9χ Z2
2e

2Ũ1 ] (135)

where

ei� = W1 + Z1

|W1 + Z1| . (136)

These equations need to be solved together with the following
equations:

f ′ = Re[e−i�(W1 − Z1)],
g′ = |W1 + Z1|, Ât = e f Im[e−i�(W1 − Z1)] (137)

and the two-form equations (75) and (76).
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