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Abstract The warm inflation scenario in view of the mod-
ified Chaplygin gas is studied. We consider the inflation-
ary expansion to be driven by a standard scalar field whose
decay ratio � has a generic power-law dependence with the
scalar field φ and the temperature of the thermal bath T . By
assuming an exponential power-law dependence in the cos-
mic time for the scale factor a(t), corresponding to the inter-
mediate inflation model, we solve the background and per-
turbative dynamics considering our model to evolve accord-
ing to (1) weak dissipative regime and (2) strong dissipative
regime. Specifically, we find explicit expressions for the dis-
sipative coefficient, scalar potential, and the relevant infla-
tionary observables like the scalar power spectrum, scalar
spectral index, and tensor-to-scalar ratio. The free parame-
ters characterizing our model are constrained by consider-
ing the essential condition for warm inflation, the conditions
for the model evolves according to weak or strong dissipa-
tive regime, and the 2015 Planck results through the ns–r
plane.

1 Introduction

Inflation is the most acceptable paradigm that describes the
physics of the very early universe. Besides of solving most
of the shortcomings of the hot big-bang scenario, like the
horizon, the flatness, and the monopole problems [1–5],
inflation also generates a mechanism to explain the large-
scale structure (LSS) of the universe [6–10] and the ori-
gin of the anisotropies observed in the cosmic microwave
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background (CMB) radiation [11–18], since primordial den-
sity perturbations may be sourced from quantum fluctua-
tions of the inlaton scalar field during the inflationary expan-
sion.

The standard cold inflation scenario is divided into two
regimes: the slow-roll and reheating phases. In the slow-
roll period the universe undergoes an accelerated expan-
sion and all interactions between the inflaton scalar field
and other field degrees of freedom are typically neglected.
Subsequently, a reheating period [19,20] is invoked to end
the brief acceleration. After reheating, the universe is filled
with relativistic particles and thus the universe enters in the
radiation big-bang epoch. For a modern review of reheating,
see [21]. On the other hand, warm inflation is an alternative
mechanism for having successful inflation. The warm infla-
tion scenario, as opposed to standard cold inflation, has the
essential feature that a reheating phase is avoided at the end
of the accelerated expansion due to the decay of the inflaton
into radiation and particles during the slow-roll phase [22–
24]. During warm inflation, the temperature of the universe
does not drop dramatically and the universe can smoothly
enter into the decelerated, radiation-dominated period, which
is essential for a successful big-bang nucleosynthesis. In the
warm inflation scenario, dissipative effects are important dur-
ing the accelerated expansion, so that radiation production
occurs concurrently with the accelerated expansion. The dis-
sipative effect arises from a friction term � which describes
the processes of the scalar field dissipating into a thermal
bath via its interaction with other field degrees of freedom.
The effectiveness of warm inflation may be parametrized by
the ratio R ≡ �/3H . The weak dissipative regime for warm
inflation is for R � 1, while for R � 1, it is the strong dissi-
pative regime for warm inflation. Following Refs. [25,26], a
general parametrization of the dissipative coefficient depend-
ing on both the temperature of the thermal bath T and the
inflaton scalar field φ can be written as

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-017-5264-0&domain=pdf
mailto:abduljawad@ciitlahore.edu.pk
mailto:{} jawadab181@yahoo.com
mailto:shahzad\protect _qau19@yahoo.com
mailto:shamailatoor.math@yahoo.com
mailto:{}\hfill \penalty -\@M drshamailarani@ciitlahore.edu.pk
mailto:nelson.videla@pucv.cl


700 Page 2 of 15 Eur. Phys. J. C (2017) 77 :700

�(T, φ) = Cφ

Tm

φm−1 , (1)

where the parameter Cφ is related with the dissipative micro-
scopic dynamics and the exponent m is an integer, where
the value of the power m dependent on the specifics of the
model construction for warm inflation and on the tempera-
ture regime of the thermal bath. Typically, it is found that
m = 3 (low temperature), m = 1 (high temperature) or
m = 0 (constant dissipation). Additionally, thermal fluctu-
ations during the inflationary scenario may play a funda-
mental role in producing the primordial fluctuations [27,28].
During warm inflationary scenario the density perturbations
arise from thermal fluctuations of the inflaton and dominate
over the quantum ones. In this form, an essential condi-
tion for warm inflation to occur is the existence of a radi-
ation component with temperature T > H , since the ther-
mal and quantum fluctuations are proportional to T and H ,
respectively [22,23,27–31]. When the universe heats up and
becomes radiation dominated, inflation ends and the universe
smoothly enters in the radiation Big-Bang phase [22,23]. For
a comprehensive review of warm inflation, see Refs. [32,33].

The observational data from the luminosity-redshift of
type Ia supernovae (SNIa), large-scale structure (LSS), and
the cosmic microwave background (CMB) anisotropy spec-
trum, have supported evidence that our universe has started
recently a phase of accelerated expansion [11–18,34–37].
The responsible for this acceleration of the late expansion
is an exotic component having a negative pressure, usu-
ally known as dark energy (DE). Several models have been
already proposed to be DE candidates, such as cosmolog-
ical constant [38], quintessence [39–41], k-essence [42–
44], tachyon [45–47], phantom [48–50], Chaplygin gas [51],
holographic dark energy [52], among others in order to mod-
ify the matter sector of the gravitational action. Despite the
plenty of models, the nature of the dark sector of the universe,
i.e. dark energy and dark matter, is still unknown. There exists
another way of understanding the observed universe in which
dark matter and dark energy are described by a single unified
component. Particularly, the Chaplygin gas [51] achieves the
unification of dark energy and dark matter. In this sense, the
Chaplygin gas behaves as a pressureless matter at early times,
and like a cosmological constant at late times. The original
Chaplygin gas is characterized by an exotic equation of state
with negative pressure,

pcg = − B

ρcg
, (2)

whit B being a constant parameter. The original Chaplygin
gas has been extended to the so-called generalized Chaplygin
(GCG) gas with the following equation of state [53]:

pgcg = − B

ρλ
gcg

, (3)

with 0 ≤ λ ≤ 1. For the particular case λ = 1, the original
Chaplygin gas is recovered. The main motivation for studying
this kind of model comes from string theory. The Chaplygin
gas emerges as an effective fluid associated with D-branes
which may be obtained from the Born–Infeld action [54]. At
background level, the GCG is able to describe the cosmo-
logical dynamics [55], however, the model presents serious
issues at the perturbative level [56]. Thus, a modification to
the GCG, resulting in the modified Chaplygin gas (MCG)
with a equation of state given by [57]

pmcg = Aρmcg − B

ρλ
gcg

, (4)

where A and B are constant parameters, with 0 ≤ λ ≤ 1, is
suitable to describe the evolution of the universe [58,59] and
it is also consistent with a perturbative study [60].

As we have seen, the original and generalized Chaplygin
gas models are usually applied to explain the late-time accel-
eration of our universe as a possible candidate of dark energy.
On the other hand, the modified Chaplygin gas (MCG) is
also a model that mimics the behavior of matter at early
times and that of a cosmological constant at late times. Given
the attractiveness of the MCG as a dark energy candidate, a
natural question to ask is: Can inflation be accommodated
within the MCG scenario? This is the question we wish to
address in the present work. However, we should emphasize
that our inflationary model is not presented as a more desir-
able alternative to the conventional ones. Rather, we merely
aim to establish the assumptions and extrapolations required
to obtain successful inflation in a Chaplygin inspired model
[61].

Various authors have examined warm inflation by consid-
ering the Chaplygin gas, standard and tachyon scalar field
models in Einstein’s General Relativity as well as in brane-
world scenario with different expressions for the dissipa-
tive coefficient [62–77]. They found the consistency of their
results with observational data, i.e., BICEP2, WMAP (7+9)

and Planck data. Moreover, many authors have investigated
warm inflation in various alternative as well as modified the-
ories of gravity [78–82]. Recently, Herrera et al. [83] stud-
ied warm intermediate inflation in the context of GCG in
the weak and strong dissipative regimes by assuming a gen-
eralized form of the dissipative coefficient under slow-roll
approximation. They found the constraints on the parame-
ters by considering the Planck 2015 data, together with the
essential condition for warm inflation T > H .

The main goal of the present work is to investigate the
dynamics of warm inflation driven by a standard scalar field
in the MCG scenario, with an inflaton decay rate � given
by the generalized expression of Eq. (1). By assuming an
exponential power-law dependence in the cosmic time for
the scale factor a(t), we solve the background and pertur-
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bative dynamics considering our model to evolve according
to (1) weak dissipative regime (R � 1) and (2) according
to strong dissipative regime (R � 1). The free parameters
characterizing our model are constrained by considering the
essential condition for warm inflation, T > H , the condition
for the model evolves according to weak or strong dissipative
regime, and the 2015 Planck results through the ns–r plane.

This paper is organized as follows: in the next section,
we present the basic setup of warm inflation in the MCG
scenario. In Sects. 3 and 4, we solve the background and
perturbative dynamics when the model evolves according to
weak and strong regimes, respectively. Specifically, in each
section, we find explicit expressions for the dissipative coef-
ficient, scalar potential, and the relevant inflationary observ-
ables as the scalar power spectrum, scalar spectral index, and
tensor-to-scalar ratio. Finally, Sect. 5 summarizes our find-
ing and exhibits our conclusions. We have chosen units such
that c = h̄ = 1.

2 Modified Chaplygin gas inspired inflation

In this section, we introduce the basic setup of warm inflation
in MCG scenario with a generalized expression for the infla-
ton decay rate �. As it was mentioned at the introduction, the
exotic equation of state of MCG is given by

pmcg = Aρmcg − B

ρλ
mcg

, (5)

where A and B are constant parameters with 0 ≤ λ ≤ 1.
pmcg and ρmcg are the pressure and energy density of MCG,
respectively. The energy density of MCG as a function of
the scale factor a can be obtained with the help of the stress-
energy conservation law, yielding

ρmcg =
[

B

1 + A
+ C

a3(1+λ)(1+A)

] 1
1+λ

= ρmcg0

[
Bs + 1 − Bs

a3(1+λ)(1+A)

] 1
1+λ

, (6)

where Bs = B
1+A

1
ρ1+λ
mcg0

, C is a positive integration constant.

From the solution given by Eq. (6), the energy density of
the MCG is characterized by three parameters, Bs (or equiv-
alently B), A, and λ. Particularly, in [84] by using a joint
analysis of several tests at background as well as perturba-
tive level, as the differential age of old galaxies, given by
H(z), baryonic acoustic oscillations (BAO) peak parameter,
CMB shift parameter, SN Ia data, and growth index, the val-
ues for the best fit (with χ2/d.o. f ∼ 1.0296) are given by
Bs = 0.8252, A = 0.0046, and λ = 0.1905.

As was mentioned in the introduction, in order to obtain
successful inflation in a Chaplygin like inspired model, some

assumptions and extrapolations are required. Following [61],
we identify the energy density of matter ρm with the contri-
bution of the energy density associated to the standard scalar
field ρφ through an extrapolation of Eq. (6), yielding

[
B

1 + A
+ ρ

(1+λ)(1+A)
m

] 1
1+λ →

[
B

1 + A
+ ρ

(1+λ)(1+A)
φ

] 1
1+λ

.

(7)

In this sense, we will not consider Eq. (7) as a consequence
of Eq. (6), but a non-covariant modification of gravity instead,
resulting in a modifed Friedmann equation, as was pointed
out in [85].

In this scenario, we consider a spatially flat universe which
contains a self-interacting inflation field φ and a radiation
field, then we write down a modified Friedmann equation of
the form

H2 = κ

3

([
B

1 + A
+ ρ

(1+λ)(1+A)
φ

] 1
1+λ + ργ

)
, (8)

where κ = 8πG and H is the Hubble rate defined as H =
ȧ/a.

We recall that the Friedmann equation (8) constitutes
a non-covariant modification of gravity. However, as was
pointed out in Ref. [61], it may assumed that the effect giv-
ing rise to Eq. (8) preserves diffeomorphism invariance in
(3 + 1) dimensions, whence total stress-energy conservation
follows. In this way, for our analysis, the second Friedmann
equation is no longer required.

By coupling the inflaton field to a radiation fluid, the con-
servation equations for each individual component are given
by [22–24]

ρ̇φ +3H(ρφ + Pφ) = −�φ̇, �⇒ φ̈+3H φ̇ +V ′ = −�φ̇,

(9)

and

ρ̇γ + 4Hργ = �φ̇2, (10)

where ρφ = φ̇2

2 + V (φ) and Pφ = φ̇2

2 − V (φ) correspond to
the energy density and pressure associated with the standard
scalar field, respectively, and V (φ) is the inflaton’s potential.
On the other hand, � represents the inflaton decay rate or
dissipative coefficient, which is responsible for the process of
decay of the scalar field into radiation during the inflationary
expansion. This decay rate can be realized as a constant or
can be a function of scalar field or temperature or both, i.e.,
�(T, φ). From first principles in quantum field theory this
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decay ratio � has been already computed. A generalized form
of � is given by [25,26]

�(T, φ) = Cφ

Tm

φm−1 . (11)

In the literature, several cases have been studied for the differ-
ent values of m, in special case m = 1, i.e. � ∝ T represent
high temperature SUSY case, for the value m = 0 i.e. � ∝ φ

corresponds to an exponentially decaying propagator in the

high temperature SUSY model, for m = −1 i.e. � ∝ φ2

T ,
with non-SUSY case.

Considering that during warm inflation the energy density
associated of radiation field ρφ � ργ is subdominant with
respect to energy density of the scalar field [22–24,27–31],
Eq. (8) becomes

H2 ≈ κ

3

([
B

1 + A
+ ρ

(1+λ)(1+A)
φ

] 1
1+λ

)

= κ

3

⎛
⎝

[
B

1 + A
+

(
φ̇2

2
+ V (φ)

)(1+λ)(1+A)
] 1

1+λ

⎞
⎠ .

(12)

By combining Eqs. (9) and (12), we obtain the square velocity
of the inflaton field,

φ̇2 = 2(−Ḣ)

κ(1 + A)(1 + R)

(
3H2

κ

) −A
1+A

×
[

1 − B

1 + A

(
3H2

κ

)−(1+λ)
]− A+λ(1+A)

(1+A)(1+λ)

. (13)

In this equation, we have introduced a new parameter R
defined by

R ≡ �

3H
. (14)

This parameter measures the relative strength of thermal
damping compared to the expansion damping. In warm infla-
tion, two possible regimes can be described through R, i.e.,
weak dissipative regime in which R � 1 and Hubble damp-
ing is still the dominant term in this case. The second is
strong dissipative regime which can be defined as R � 1
and � controls the damped evolution of the inflation field.

By also assuming that ρ̇γ � 4Hργ , i.e., the radiation
production is quasi-stable [22–24,27–31], Eqs. (10) and (13)
lead to the relation for ργ as follows:

ργ = �φ̇2

4H
= �(−Ḣ)

2κH(1 + A)(1 + R)

(
3H2

κ

) −A
1+A

×
[

1 − B

1 + A

(
3H2

κ

)−(1+λ)
]− A+λ(1+A)

(1+A)(1+λ)

. (15)

In addition, the thermalized energy density of radiation field
can be written as ργ = Cγ T 4, where Cγ = π2g∗/30, and
g∗ denotes the number of relativistic degrees of freedom. In
particular, for the minimal supersymmetric standard model
(MSSM), we have g∗ = 228.75 and Cγ � 70 [26]. We
can get the temperature of the thermal bath from Eq. (15) as
follows:

T =
[

�(−Ḣ)

2κCγ (1 + A)(1 + R)

]1/4 (
3H2

κ

) −A
4(1+A)

×
[

1 − B

1 + A

(
3H2

κ

)−(1+λ)
]− A+λ(1+A)

4(1+A)(1λ)

. (16)

By considering Eqs. (12), (13) and (16), the inflaton’s poten-
tial may be expressed as follows:

V =
[(

3H2

κ

)
− B

1 + A

] 1
(1+A)(1+λ)

+ Ḣ

κ(1 + A)(1 + R)

(
3H2

k

) −A
1+A

×
[

1 − B

1 + A

(
3H2

κ

)−(1+λ)
]− A+λ(1+A)

(1+A)(1+λ)

. (17)

Similarly, by using Eqs. (11) and (16), the dissipative coeffi-
cient may be written as

�
4−m

4 = Cφφ1−m
[

(−Ḣ)

2κCγ H(1 + A)(1 + R)

]m/4 (
3H2

κ

) −mA
4(1+A)

×
⎡
⎣1 − B

1 + A
×

(
3H2

κ

)−(1+λ)
⎤
⎦

−m(A+λ(1+A))
4(1+A)(1+λ)

. (18)

In the next two sections, we will explore the inflationary
dynamics at background as well as perturbative level when
our model evolves according to (1) weak dissipative regime
and (2) strong dissipative regime, respectively. As an extra
input, we assume an exponential power-law dependence in
cosmic time for the scale factor a(t), given by the intermedi-
ate inflation model. Exact solutions in the context of inflation
can be found from an exponential potential, obtaining a solu-
tion for the scale factor give by a(t) ∼ t p, p > 1, termed
power-law inflation [86]. On the other hand, by considering a
constant scalar potential [1], we obtain an exponential solu-
tion for the scale factor a(t) ∼ exp H0t , known as de Sitter
expansion. For an inverse power-law potential, the interme-
diate inflation model is found as an exact solution, for which
the scale factor expands faster than power-law expansion but
slower than de Sitter inflation. The scale factor a(t) for inter-
mediate inflationary model is given by [87]

a(t) = exp [αt f ], (19)
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where α > 0 and 0 < f < 1. This model was in the
beginning formulated as an exact solution to the background
equations, nevertheless this model may be studied under the
slow-roll approximation together with the cosmological per-
turbations [88–91].

3 The weak dissipative regime

Assuming that our model evolves according to the weak dis-
sipative regime, i.e., R � 1 (or � � 3H ), the scalar field
φ as a function of cosmic time may be found by using Eqs.
(13) and (19), yielding

φ(t) − φ0 = M[t]
S

, (20)

where φ0 is a constant of integration, and the constant S is
given by

S = A(2 − f ) + f√
2(1 − f )(1 + A)

(
1

α f

) 1−A
2(1+A) (κ

3

) 1−A
2(1+A)

,

while M[t] is a function of cosmic time taking the following
form:

M[t] = t
f +2A−A f

2(1+A) 2F1

[
A(2 − f ) + f

4(1 + λ)(1 + A)(1 − f )
,

A + λ(1 + A)

2(1 + A)(1 + λ)
, 1 + A(2 − f ) + f

4(1 + λ)(1 + A)(1 − f )
,

B

1 + A
3−(1+λ)t2(1− f )(1+λ)

(
κ

f 2α2

)1+λ]
,

here 2F1 denotes the hypergeometric function [92] Under the
slow-roll approximation, in which φ̇2/2 < V (φ), from Eq.
(17), the scalar potential as a function of scalar field can be
written as

V (φ) ≈
[(

3α2 f 2

κ(M−1[Sφ])2(1− f )

)(1+λ)

− B

1 + A

] 1
(1+A)(1+λ)

.

(21)

In a similar way, we can obtain the dissipative coefficient in
terms of the scalar field as

�(φ) =
[

1 − f

2κCγ (1 + A)(M−1[Sφ])
] m

4−m

×
(

3α2 f 2

κ(M−1[Sφ])2(1− f )

) −mA
(1+A)(4−m)

× C
4

4−m
φ φ

4(1−m)
4−m)

×
⎡
⎣1 − B

1 + A

(
κ(M−1[Sφ])2(1− f )

3α2 f 2

)(1+λ)
⎤
⎦

− m(A+λ(1+A))
(1+A)(1+λ)(4−m)

.(22)

The number of e-folds, N , between two different values of
cosmic time, t1 and t2, or equivalently, between two values
of the scalar field, φ1 and φ2 is defined as follows:

N =
∫ t2

t1
Hdt = α(t f2 − t f1 )

= α
(
(M−1[Sφ2]) f − (M−1[Sφ1]) f

)
. (23)

Since we are dealing with the scale factor a(t), it is
straightforward to use the slow-parameters

ε = − Ḣ

H2 , (24)

and

η = − Ḧ

H Ḣ
. (25)

In the intermediate inflation model, the slow-roll parame-
ters ε and η decrease as the field rolls down the potential, then
there is no natural exit from the model [90]. However, from
the definition of the parameter ε, we may obtain the value of
the scalar field for inflationary scenario at early stage (ε = 1)
[90], giving

φ1 = 1

S
M

[(
1 − f

α f

)1/ f
]

. (26)

In this way, we may evaluate the inflationary observables
at N e-folds which have passed since the beginning of the
inflationary period.

In the following, we will study the scalar and tensor per-
turbations for our warm inflation model in the MCG scenario,
considering it to evolve according to the weak regime. For
the case of the scalar perturbations, the amplitude could be
stated as P1/2

R = H
φ̇

δφ [93]. Additionally, in the warm infla-
tion scenario, a thermalized radiation component is present
with T > H , then the inflaton fluctuations δφ are predom-
inantly thermal instead quantum. Particularly, for the weak
dissipation regime, the amplitude of the scalar field fluctua-
tion was found to be δφ2 � HT [27]. Then the power spec-
trum of the scalar perturbations can be obtained by utilizing
Eqs. (13), (16), and (18):

PR =
√

3

4
κ(1 + A)

(
3

κ

) (3−m)A
(1+A)(4−m)

×
[

Cφ

2κCγ (1 + A)

] 1
4−m

φ
1−m
4−m (−Ḣ)

m−3
4−m

× (H)
(11−3m)(1+A)+2A(3−m)

(1+A)(4−m)

×
[

1 − B

1 + A

(
3H2

κ

)−(1+λ)
] (3−m)[A+λ(1+A)]

(4−m)(1+A)(1+λ)

.

(27)
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The power spectrum of scalar perturbations in terms of the
scalar field can also be written as

PR = δ1φ
1−m
4−m (M−1[Sφ]) ( f−2)(m−3)(1+A)−(1− f )[(11−3m)(1+A)+2A(3−m)]

(1+A)(4−m)

×
⎡
⎣1 − B

1 + A
×

(
κ(M−1[Sφ])2(1− f )

3α2 f 2

)(1+λ)
⎤
⎦

(3−m)[A+λ(1+A)]
(4−m)(1+λ)(1+A)

,

(28)

where δ1 is new constant which is given by

δ1 =
√

3

4
κ(1 + A)

[
Cφ

2kCγ (1 + A)

] 1
4−m

× (1 − f )
m−3
4−m (α f )

[(11−3m)(1+A)+2A(3−m)]−(3−m)(1+A)
(1+A)(4−m) .

The power spectrum may also be written as a function of the
number of e-folds as follows:

PR(N )

= δ2(M(J [N ])) 1−m
4−m (J [N ]) ( f−2)(m−3)(1+A)−(1− f )[(11−3m)(1+A)+2A(3−m)]

(1+A)(4−m)

×
⎡
⎣1 − B

1 + A

(
κ(J [N ])2(1− f )

3α2 f 2

)(1+λ)
⎤
⎦

(3−m)[A+λ(1+A)]
(4−m)(1+A)(1+λ)

, (29)

where the constant δ2 is defined as δ2 = δ1S
m−1
4−m and J [N ]

is defined as J [N ] = [ 1+ f (N−1)
A f

] 1
f . Additionally, the scalar

spectral index ns , defined by ns −1 = d lnPR
dlnk , by using Eqs.

(20) and (29), takes the form

ns = 1

+ ( f − 2)(m − 3)(1 + A) − (1 − f )[(11 − 3m)(1 + A) + 2A(3 − m)]
α f (1 + A)(4 − m)(M−1[Sφ]) f

+ n2 + n3, (30)

where n2 and n3 are given by

n2 =
(

1 − m

4 − m

)√
2(1 − f )

κα f (1 + A)

(
3α2 f 2

κ

)− A
2(1+A)

×
(

1

φ

)
(M−1[Sφ])

2A(1− f )− f (1+A)
2(1+A)

×
⎡
⎣1 − B

1 + A

(
κ(M−1[Sφ])2(1− f )

3α2 f 2

)(1+λ)
⎤
⎦

− A+λ(1+A)
2(1+λ)(1+A)

and

n3 = −2
B

1 + A

(
3 − m

4 − m

)(
A + λ(1 + A)

(1 + A)

)
(1 − f )(κ/3)1+λ

(α f )3+2λ

×
(
M−1[Sφ]

)2−3 f +2λ(1− f )

×
⎡
⎣1 − B

1 + A

(
κ(M−1[Sφ])2(1− f )

3α2 f 2

)(1+λ)
⎤
⎦

−1

.

By using Eqs. (23) and (26), the scalar spectral index may
also be written in terms of the number of e-folds N

ns = 1

+ ( f − 2)(m − 3)(1 + A) − (1 − f )[(11 − 3m)(1 + A) + 2A(3 − m)]
(4 − m)(1 + A)[1 + f (N − 1)]

+ n2 + n3, (31)

where n2 and n3 are defined as

n2 = S

(
1 − m

4 − m

)√
2(1 − f )

κα f (1 + A)

(
3α2 f 2

κ

)− A
2(1+A)

× (J [N ]) 2A(1− f )− f (1+A)
2(1+A)

M(J [N ])

×
⎡
⎣1 − B

1 + A

(
κ(J [N ])2(1− f )

3α2 f 2

)(1+λ)
⎤
⎦

− A+λ(1+A)
2(1+λ)(1+A)

and

n3 = 2
B

1 + A

(
3 − m

4 − m

) (
A + λ(1 + A)

(1 + A)

)

× (1 − f )(κ/3)1+λ

(α f )3+2λ
(J [N ]))2−3 f +2λ(1− f )

×
⎡
⎣1 − B

1 + A

(
κ(J [N ])2(1− f )

3α2 f 2

)(1+λ)
⎤
⎦

−1

.

Regarding tensor perturbations, these do not couple to the
thermal background, so gravitational waves are only gener-
ated by quantum fluctuations, as in standard inflation [31]

Pg = 8κ

(
H

2π

)2

. (32)

Having the tensor power spectrum, we may compute the
tensor-to-scalar ratio r = Pg/PR, yielding the following:

r(φ)

= (M−1[Sφ]) (1− f )[(11−3m)(1+A)+2A(3−m)]−( f −2)(m−3)(1+A)−2(1− f )(1+A)(4−m)
(1+A)(4−m)

× 2κα2 f 2

π2δ1
φ

m−1
4−m

×
⎡
⎣1 − B

1 + A

(
κ(M−1[Sφ])2(1− f )

3α2 f 2

)(1+λ)
⎤
⎦

(m−3)[A+λ(1+A)]
(4−m)(1+A)(1+λ)

.

(33)

Similarly, in terms of the number of e-folds N , the tensor-
to-scalar ratio becomes
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Fig. 1 Plots of T/H as a function of the scalar spectral index ns (upper
left) and �/3H as a function of the scalar spectral index ns (upper right)
for N = 60. For both plots we have considered three different values
of the parameter Cφ for the special case m = 3, i.e., � ∝ T 3/φ2,
assuming the model evolves according to the weak dissipative regime.
In both panels, the dotted, dashed, and solid lines correspond to the

pairs (α = 0.0062, f = 0.4703), (α = 0.0043, f = 0.4702), and
(α = 0.0036, f = 0.4701), respectively. Lower left and lower right
panels show �/3H as a function of the scalar spectral index ns for
N = 55 and N = 70, respectively. In these plots we have used the
values Cγ = 70, A = 0.0046, B = 0.8289, λ = 0.1905, and κ = 1

r(N ) = (J [N ])) (1− f )[(11−3m)(1+A)+2A(3−m)]−( f−2)(m−3)(1+A)−2(1− f )(1+A)(4−m)
(1+A)(4−m)

× 2κα2 f 2

π2δ2
(M(J [N ])) m−1

4−m

×
⎡
⎣1 − B

1 + A

(
κ(J [N ]))2(1− f )

3α2 f 2

)(1+λ)
⎤
⎦

(m−3)[A+λ(1+A)]
(4−m)(1+A)(1+λ)

.

(34)

In order to constrain our model, we must consider the
essential condition for warm inflation, T > H , the condition
for which the model evolves according to the weak regime,
R � 1, and finally the Planck 2015 results [18], through
the two-dimensional marginalized joint confidence contours
for ns and r , at the 68 and 95% CL. The upper left and
upper right plots in Fig. 1 show the ratios T/H and �/3H
as a functions of the scalar spectral index ns for the case
m = 3, i.e., �(φ, T ) = CφT 3/φ2, respectively. To obtain
both plots we used three different values for Cφ parameter
and considered the following values characterizing the MCG:
A = 0.0046, B = 0.8289 (by fixing ρmcg0 = 1), and λ =
0.1905 [84], and Cγ = 70. In order to obtain numerical
values for T/H and �/H , for each value of Cφ we solve
numerically Eqs. (29) and (31) for α and f , considering the
observational values PR � 2 × 10−9 and ns � 0.96 [18],
and fixing N = 60. In this way, for Cφ = 3 × 109, we
obtain the values α = 0.0062 and f = 0.4703, whereas,
for Cφ = 6 × 109, the solution is given by α = 0.0043
and f = 0.4702. Finally, for Cφ = 9 × 109, we find that
α = 0.0036 and f = 0.4701. From the upper left panel, we
note that, forCφ > 3×109, the condition for warm inflation,

T > H , is always satisfied for the whole range considered
for ns . On the other hand, from the upper right panel, we note
that, for Cφ < 9 × 109, the model evolves according to the
weak regime, R � 1. In this way, the condition for warm
inflation gives us a lower limit on Cφ and, on the other hand,
the condition for which the model evolves in agreement with
the weak regime gives us an upper limit for Cφ . Then, for
the case m = 3, the allowed range for Cφ become 3 × 109 <

Cφ < 9 × 109.
In addition, to see whether the change on the number of e-

folds N modifies the allowed range forCφ , firstly we consider
N = 55. We solve numerically Eqs. (29) and (31) for α and
f , and considering the observational values PR � 2 × 10−9

andns � 0.96 [18]. In order to make a direct comparison with
the case N = 60, we consider the same values already used
for Cφ . In this way, for Cφ = 3 × 109, we obtain the values
α = 0.0015 and f = 0.5237, whereas, forCφ = 6×109, the
solution is given by α = 0.0011 and f = 0.5237. Finally,
for Cφ = 9×109, we find that α = 0.0008 and f = 0.5237.
Similarly, by fixing N = 70 and for Cφ = 3 × 109, we
obtain the values α = 0.5168 and f = 0.2531, whereas,
for Cφ = 6 × 109, the solution is given by α = 0.4704
and f = 0.2531. Finally, for Cφ = 9 × 109, we find that
α = 0.4456 and f = 0.2531. For N = 55 and N = 70,
the essential condition for warm inflation to occur, through
the plot T/H as a function of ns (not shown) still imposes
a lower limit for Cφ which is not modified with respect to
N = 60. However, from the left and right panels of Fig. 2,
we infer that the condition for the model evolves according
to weak regime, modifies the upper limit on Cφ for N = 55
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Fig. 2 Plots �/3H as a function of the scalar spectral index ns for
N = 55 and N = 70, respectively. For the left plot, the dotted, dashed,
and solid lines correspond to the pairs (α = 0.0015, f = 0.5237),
(α = 0.0011, f = 0.5237), and (α = 0.0008, f = 0.5237), respec-
tively. Finally, for the right plot, the dotted, dashed, and solid lines

correspond to the pairs (α = 0.5168, f = 0.2531), (α = 0.4704,
f = 0.2531), and (α = 0.4456, f = 0.2531), respectively. For all
plots we have used the values Cγ = 70, A = 0.0046, B = 0.8289,
λ = 0.1905, and κ = 1

and N = 70. In particular, for N = 55, the new upper limit
on Cφ becomes 6 × 109, which is lower than the previous
found by fixing N = 60. However, for N = 70, the new
upper bound becomes 1012, being greater than the already
found for N = 60. Then, for N = 55 and N = 70, the
allowed ranges for Cφ are 3 × 109 < Cφ < 6 × 109 and
3×109 < Cφ < ×1012, respectively. Having in mind that the
changes on N imply a modification on the allowed ranges for
Cφ , particularly for the upper bound, although not significant,
from as now we restrict ourselves to N = 60.

It is interesting to mention that Planck data, through two-
dimensional marginalized joint confidence contours for ns
and r , does not impose any constraint on our model for the
special case m = 3. In fact, for the several values consid-
ered before, the tensor-to-scalar ratio r ∼ 10−6 (figure not
shown), being compatible with the Planck 2015 data, by con-
sidering the two-dimensional marginalized constraints at 68
and 95% C.L. on the parameters r and ns [18].

Finally, Fig. 3 shows the effective potential, given by Eq.
(17), as a function of the inflaton field φ in the weak dissipa-
tive regime, for the case m = 3 with N = 60. Particularly,
we have considered three different values of the parameter
Cφ , where the dotted, dashed, and solid lines correspond
to the pairs (α = 0.0062, f = 0.4703), (α = 0.0043,
f = 0.4702), and (α = 0.0036, f = 0.4701), respectively.
Inflation takes place as the field rolls down the potential,
which tends asymptotically to zero as φ → ∞.

The left and right plots in Fig. 4 show the ratios T/H and
�/3H as a functions of the scalar spectral index ns for the
case m = 1, i.e., �(φ, T ) = CφT , respectively. To obtain

Fig. 3 Plot of the effective potential V as a function of inflaton field
φ for the case m = 3 with N = 60. For this plot we have considered
three different values of the parameter Cφ for the special case m = 3,
i.e., � ∝ T 3/φ2, assuming the model evolves according to the weak
dissipative regime. The dotted, dashed, and solid lines correspond to
the pairs (α = 0.0062, f = 0.4703), (α = 0.0043, f = 0.4702), and
(α = 0.0036, f = 0.4701), respectively. In addition, we have used the
values Cγ = 70, A = 0.0046, B = 0.8289, λ = 0.1905, and κ = 1

both plots we used three different values forCφ parameter and
considered the same values characterizing the MCG used for
the casem = 3, andCγ = 70. Following the same procedure
as for the casem = 3, forCφ = 3×10−3 we obtain the values
α = 0.5168 and f = 0.2531, whereas, for Cφ = 10−2, the
solution is given by α = 0.4704 and f = 0.2532. Finally, for
Cφ = 2 × 10−2, we find that α = 0.4456 and f = 0.2533.
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From the left panel, we note that for Cφ > 3 × 10−3, the
condition for warm inflation, T

H > 1, is always satisfied for
the whole range considered for ns . On the other hand, from
the right panel, we note that, for Cφ < 10−2, the models
evolve according to the weak regime, R � 1. In this way,
the condition for warm inflation gives us a lower limit on
Cφ and, on the other hand, the condition for which the model
evolves in agreement with the weak regime gives us an upper
limit for Cφ . Then, for the case m = 1, the allowed range
for Cφ is found to be 3 × 10−3 < Cφ < 10−2. Again, the
two-dimensional marginalized joint confidence contours for
ns and r dont impose any constraint on Cφ . Additionally, for
all the previous values, the tensor-to-scalar ratio r ∼ 10−7

(figure not shown), supported by Planck 2015 data.
As in previous cases, for m = 0 and m = −1, the

lower limit on Cφ corresponds to the minimum allowed
value for which the essential condition for warm inflation,
T
H > 1, is satisfied, and on the other hand, the upper limit
on Cφ correspond to the maximum allowed value for which
the model evolves according to the weak regime R � 1.
Specifically, for m = 0, the lower limit on Cφ is given
by Cφ = 1.5 × 10−9, for which we find numerically that
α = 0.8571 and f = 0.2264. Additionally, the upper
limit on Cφ is found to be Cφ = 1.5 × 10−8. For this
value we find numerically α = 0.7514 and f = 0.2266.
Finally, for m = −1, the lower limit on Cφ corresponds
to Cφ = 5.5 × 10−16, for which we find numerically that
α = 1.1737 and f = 0.2102. The upper limit on Cφ is
found to be Cφ = 6.5×10−15. For this value we find numer-
ically α = 1.0458 and f = 0.2104. Moreover, as in previous
cases, we observe that the consistency relation r(ns) does not
impose a constraint on Cφ . In this way, for the weak dissi-
pative regime, the constraints on our model are found only
by considering the essential condition for warm inflation,
T > H , and the condition for which the model evolves in
agreement with the weak dissipative regime, R � 1.

4 The strong dissipative regime

In this section, we analyze the inflationary dynamics of our
MCG model in the strong dissipative regime � � 3H . We
can find the solution for the scalar field as a function of cosmic
time by using Eqs. (13) and (18). Here, we study the solution
for the two cases separately, for m = 3 and m �= 3.

4.1 Special case m = 3

For the special case m = 3, the scalar field as a function of
cosmic time becomes

φ(t) − φ0 = exp

(
M̃[t]
S̃

)
, (35)

where φ(t = 0) = φ0 is an integration constant. The quantity
S̃ and the function M̃[t] are given by

S̃ = 2− 31
8
Cφ

1/2

Cγ
3/8 (1 + A)−7/8 (κ/3)

1
8(1+A)

(α f )
(3A+5)
8(1+A)

× (1 − f )−
1
8 [(A(4 + 3 f ) + 5 f + 2],

M̃[t] = t
A(4+3 f )+5 f +2

8(1+λ) 2F1

×
[

A(4 + 3 f ) + 5 f + 2

16(1 + A)(1 − f )(1 + λ)
,

A + λ(1 + A)

8(1 + A)(1 + λ)
,

1 + A(4 + 3 f ) + 5 f + 2

16(1 + A)(1 − f )(1 + λ)
,

× B

1 + A

κt−2( f−1)(1+λ)

3α2 f 2

]
, (36)

respectively. One can find the Hubble rate form = 3 in terms
of scalar field by utilizing Eqs. (19) and (35), thus,

H(φ) = α f

(M̃−1[S̃ ln φ])1− f
. (37)

For this case, the potential V (φ) leads to

V (φ) ≈
⎡
⎣

(
3α2 f 2

κ(M̃−1[S̃ ln φ])2(1− f )

)1+λ

− B

1 + A

⎤
⎦

1
(1+A)(1+λ)

.

(38)

The dissipative coefficient for m = 3 in terms of the scalar
field can be obtained by using Eqs. (18) and (35):

�(φ) = δ3φ
−2(M̃−1[S̃ ln φ]) 6A(1− f )−3(2− f )(1+A)

4(1+A)

[
1 − B

1 + A

×
(

κ(M̃−1[S̃ ln φ])2(1− f )

3α2 f 2

)1+λ]−3(A+λ(1+A))
4(1+A)(1+λ)

, (39)

here δ3 is a constant and attained the value δ3 = Cφ[
α f (1− f )

2κCγ (1+A)

]3/4
(

3α2 f 2

κ
)

−3A
4(1+A) . By combining Eqs. (19) and

(35), we can find the relation for the number of e-folds N as
follows:

N =
∫ t2

t1
Hdt = α

(
(M̃−1[S̃ ln φ2]) f − (M̃−1[S̃ ln φ1]) f

)
.

(40)

Now, we shall study the cosmological perturbations for
our model in the strong dissipative regime R = �/3H > 1.
For this regime, the scalar field fluctuation δφis found to be
δφ2� kF T

2π2 [32,33], where kF is a freeze-out wave number

which is defined as kF = √
�H = H

√
3R > H . In this

way, the power spectrum of the scalar perturbation PR can
be obtained by using Eqs. (16), (18), and (19):
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Fig. 4 Plots of T/H as a function of the scalar spectral index ns (left)
and �/3H as a function of the scalar spectral index ns (right). For both
plots we have considered three different values of the parameter Cφ for
the special casem = 1, i.e., � ∝ T , assuming the model evolves accord-
ing to the weak dissipative regime. In both panels, the dotted, dashed,

and solid lines correspond to the pairs (α = 0.5168, f = 0.2531),
(α = 0.4704, f = 0.2532), and (α = 0.4456, f = 0.2533), respec-
tively. In these plots we have used the values Cγ = 70, A = 0.0046,
B = 0.8289, λ = 0.1905, and κ = 1

PR = H5/2�1/2T

2π2φ̇2

= κ(1 + A)

12π2 Cφ
3/2

(
3

κ

)− 3A
8(1+A)

[
3

2κCγ (1 + A)

] 11
8

φ−3

× H
3(2+A)
4(1+A) (−Ḣ)

3
8

[
1 − B

1 + A

(
3H2

κ

)−(1+λ)
]− 3(A+λ(1+A))

8(1+A)(1+λ)

.

(41)

In addition, the power spectrum may also be expressed as a
function of the scalar field φ for m = 3 by using Eqs. (19),
(35), and (41) as

PR = δ4(M̃
−1[S̃ ln φ]) 3( f −2)(1+A)−2(1− f )[6(1+A)−3A]

8(1+A) φ−3

×
⎡
⎣1 − B

1 + A
×

(
κ(M̃−1[S̃ ln φ])2(1− f )

3α2 f 2

)1+λ
⎤
⎦

− 3(A+λ(1+A))
8(1+A)(1+λ)

,

(42)

where δ4 = κ(1+A)

12π2 Cφ
3/2( 3

κ
)
− 3A

8(1+A)

[
3

2kCγ (1+A)

]11/8

(α f )
2[6(1+A)−3A]+3(1+A)

8(1+A) (1 − f )3/8.
Similarly, in terms of the number of e-folds N , the power

spectrum for m = 3 becomes

PR = δ4(J [N ]) 3( f −2)(1+A)−2(1− f )(6(1+A)−3A)
8(1+A) exp

(
− 3

S̃
M̃(J [N ])

)

×
⎡
⎣1 − B

1 + A
×

(
κ(J [N ])2(1− f )

3α2 f 2

)1+λ
⎤
⎦

−3(A+λ(1+A))
8(1+A)(1+λ)

,

(43)

where we use Eqs. (40) and (42). By using Eq. (42), we obtain
the scalar spectral index ns as follows:

ns = 1 + 3( f − 2)(1 + A) − 2(1 − f )(6(1 + A) − 3A)

8α f (1 + A)

× (M̃−1[S̃ ln φ])− f + n1 + n2, (44)

where

n1 = −3

(
6

κ(1 + A)

)1/2 [
3

2κCγ (1 + A)

]−3/8 (
3α2 f 2

κ

) −A
8(1+A)

(1 − f )1/8

× (α f )−3/8

Cφ
1/2 (M̃−1[S̃ ln φ]) 2A(1− f )−(1+A)(4+3( f −2))

8(1+A)

[
1 − B

1 + A

×
(

κ(M̃−1[S̃ ln φ])2(1− f )

3α2 f 2

)(1+λ)]− A+λ(1+A)
8(1+λ)(1+A)

,

n2 = 3(A + λ(1 + A))

4(1 + A)

(κ/3)1+λ

(α f )3+2λ
(1 − f )(M̃−1[S̃ ln φ])2−3 f +2λ(1− f )

×
[

1 − B

1 + A

(
κ(M̃−1[S̃ ln φ])2(1− f )

3α2 f 2

)1+λ]−1

.

We can also express the scalar spectral index ns in terms of
the number of e-folds N as follows:

ns = 1 + 3( f − 2)(1 + A) − 2(1 − f )(6(1 + A) − 3A)

8α f (1 + A)

× (J [N ])− f + n1 + n2, (45)

where n1 and n2 are given by

n1 = −3

(
6

κ(1 + A)

)1/2 [
3

2κCγ (1 + A)

]−3/8 (
3α2 f 2

κ

) −A
8(1+A)

× (1 − f )1/8 (α f )−3/8

Cφ
1/2 (J [N ]) 2A(1− f )−(1+A)(4+3( f −2))

8(1+A)
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Fig. 5 Plots of �/3H as a function of the scalar spectral index ns
(left) and T/H as a function of the scalar spectral index ns (right). For
both plots we have considered three different values of the parameter
Cφ for the special case m = 3, i.e., � ∝ T 3/φ2, assuming the model
evolves according to the strong dissipative regime. In both panels, the

dotted, dashed, and solid lines correspond to the pairs (α = 0.0001,
f = 0.6451), (α = 0.0003, f = 0.5756), and (α = 0.0004,
f = 0.5313), respectively. In these plots we have used the values
Cγ = 70, A = 0.0046, B = 0.8289, λ = 0.1905, and κ = 1

×
⎡
⎣1 − B

1 + A

(
κ(J [N ])2(1− f )

3α2 f 2

)(1+λ)
⎤
⎦

− A+λ(1+A)
8(1+λ)(1+A)

n2 = 3(A + λ(1 + A))

4(1 + A)

(κ/3)1+λ

(α f )3+2λ
(1 − f )(J [N ])2−3 f +2λ(1− f )

×
⎡
⎣1 − B

1 + A
×

(
κ(J [N ])2(1− f )

3α2 f 2

)1+λ
⎤
⎦

−1

.

Regarding the tensor perturbations, the tensor-to-scalar ratio
in terms of the scalar field for m = 3 leads to

r = 2κ

π2δ4
(α f )2(M̃−1[S̃ ln φ]) 2(1− f )(6(1+A)−3A)−3( f −2)(1+A)−16((1− f )(1+A)

8(1+A) φ3

×
⎡
⎣1 − B

1 + A

(
κ(M̃−1[S̃ ln φ])2(1− f )

3α2 f 2

)1+λ
⎤
⎦

3(A+λ(1+A))
8(1+A)(1+λ)

. (46)

In terms of the number of e-folds, the above expression turns
out to be

r = 2κ

π2δ4
(α f )2(J [N ]) 2(1− f )(6(1+A)−3A)−3( f −2)(1+A)−16((1− f )(1+A)

8(1+A)

× exp

(
3
M̃(J [N ])

S̃

)

×
⎡
⎣1 − B

1 + A

(
κ(J [N ])2(1− f )

3α2 f 2

)1+λ
⎤
⎦

3(A+λ(1+A))
8(1+A)(1+λ)

.

(47)

In order to constrain our model for this case, in a similar
way to weak regime, we consider the essential condition for

warm inflation, T > H , the condition for which the model
evolves according to the weak regime, R � 1, and finally
the two-dimensional marginalized joint confidence contours
for ns and r , at the 68 and 95 % CL, by Planck 2015 data
[18]. The left and right plots in Fig. 5 show the ratios �/3H
and T/H as functions of the scalar spectral index ns for
the case m = 3, i.e., �(φ, T ) = CφT 3/φ2, respectively.
To obtain both plots we used three different values for Cφ

parameter and the values characterizing the MCG already
used: A = 0.0046, B = 0.8289 (by fixing ρmcg0 = 1), and
λ = 0.1905 [84], and Cγ = 70. For each value of Cφ we
solve Eqs. (29) and (31) numerically for α and f , considering
the observational values PR � 2 × 10−9 and ns � 0.96
[18], by fixing N = 60. In this way, for Cφ = 109, we
obtain the values α = 0.0001 and f = 0.6451, whereas,
for Cφ = 5 × 109, the solution is given by α = 0.0003
and f = 0.5756. Finally, for Cφ = 5 × 1010, we find that
α = 0.0004 and f = 0.5313. From the left panel, we note
that, forCφ > 109, the model evolves according to the strong
regime, R � 1. On the other hand, from the right panel, we
note that, for Cφ > 109 the essential condition for warm
inflation, T

H > 1, is always satisfied. Then the condition for
which the model evolves in agreement with the strong regime
gives a lower limit on Cφ . However, the essential condition
for warm inflation does not impose any constraint. For the
sake of comparison, we found numerically that the �/3H
and T/H plots as a function of ns are not modified when we
change the number of e-folds to N = 55 and N = 70. In
this way, the lower limit already found does not change. On
the other hand, Fig. 6 shows the trajectories in the ns–r plane
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along with the two-dimensional marginalized constraints at
68 and 95% C.L. on the parameters r and ns , by Planck 2015
data [18]. Here, we observe that, for Cφ > 5 × 109, the
model in the strong dissipative regime is supported by the
observational data (r ∼ 10−8). Then, for the special case
m = 3 with N = 60, we were able to find only a lower limit
for Cφ .

4.2 Special case m �= 3

The solution for the scalar field for the case m �= 3 is found
to be

ϕ(t) − ϕ0 = M̃m[t]
S̃m

, (48)

where ϕ is a new scalar field, which is defined as ϕ(t) =
2

3−mφ(t)
3−m

2 . Also, S̃m and M̃m[t] are

Fig. 6 Plot of the tensor-to-scalar ratio r versus the scalar spectral
index ns in the strong dissipative regime, for special case m = 3,
i.e., � ∝ T 3/φ2. In addition, we have considered the two-dimensional
marginalized joint confidence contours for (ns , r), at the 68 and 95%
C.L., from the latest Planck data [18]. In this plot, the dotted, dashed,
and solid lines correspond to the pairs (α = 0.0001, f = 0.6451),
(α = 0.0003, f = 0.5756), and (α = 0.0004, f = 0.5313), respec-
tively. Moreover, we have used the values Cγ = 70, A = 0.0046,
B = 0.8289, λ = 0.1905, and κ = 1

S̃m = 2− (28+m)
8

Cφ
1/2

Cγ
m/8

(1 + A)−
4+m

8
(κ/3)

4−m
8(1+A)

(α f )
4(1+A)+2A(m−4)−(m−4)(1+A)

8(1+A)

(1 − f )
m−4

8 [A(4 + f m) − f (8 − m) + 2m − 4] ,

M̃m[t] = t
A(4+ f m)− f (8−m)+2m−4

8(1+λ) 2F1

[
A(4 + f m) − f (8 − m) + 2m − 4

16(1 + A)(1 + λ)(1 − f )
,
(4 − m)(A + λ(1 + A))

8(1 + A)(1 + λ)
,

1 + A(4 + f m) − f (8 − m) + 2m − 4

16(1 + A)(1 − f )(1 + λ)
,

B

1 + A

κt−2( f −1)(1+λ)

3α2 f 2

]
, (49)

respectively. Also, in this case, the Hubble parameter turns
out to be

H(ϕ) = α f

(M̃−1
m [S̃mϕ])1− f

. (50)

For this case, the potential V (φ) takes the form

V (ϕ) ≈
[(

3α2 f 2

κ(M̃−1
m [S̃mϕ])2(1− f )

)1+λ

− B

1 + A

] 1
(1+A)(1+λ)

.

(51)

Moreover, the dissipative coefficient can be evaluated as

�(φ) = δmφ1−m(M̃−1
m [S̃mϕ]) 2mA(1− f )−m(2− f )(1+A)

4(1+A)

[
1− B

1+A

×
(

κ(M̃−1
m [S̃mϕ])2(1− f )

3α2 f 2

)1+λ]−m(A+λ(1+A))
4(1+A)(1+λ)

, (52)

where δm = Cφ

[
α f (1− f )

2κCγ (1+A)

]m/4
(

3α2 f 2

κ

) −mA
4(1+A)

.

The number of e-folds becomes

N = α
(
(M̃−1

m (S̃mϕ2]) f − (M̃−1
m [S̃mϕ1]) f

)
. (53)

For this case, the power spectrum turns out to be

PR = δ̃m(M̃−1
m [S̃mϕ]) (3m−6)( f−2)(1+A)−2(1− f )[3A(2−m)+6(1+A))]

8(1+A) φ
3(1−m)

2

×
⎡
⎣1 − B

1 + A

(
κ(M̃−1

m [S̃mϕ])2(1− f )

3α2 f 2

)1+λ
⎤
⎦

(6−3m)[A+λ(1+A)]
8(1+A)(1+λ)

,

(54)

where δ̃m is defined as

δ̃m = κ(1 + A)

12π2 Cφ
3/2

(
3

κ

) 3A(2−m)
8(1+A)

[
3

2κCγ (1 + A)

] 3m+2
8

× (1 − f )
3m−6

8 × (α f )
2[3A(2−m)+6(1+A)]+(3m−6)(1+A)

8(1+A) .

In terms of the number of e-folds, we obtain

PR = γ̃m(J [N ]) (3m−6)( f −2)(1+A)−2(1− f )[3A(2−m)+6(1+A))]
8(1+A) (M̃m(J [N ])) 3(1−m)

2

×
[

1 − B

1 + A

(
κ(J [N ])2(1− f )

3α2 f 2

)1+λ
] (6−3m)(A+λ(1+A))

8(1+A)(1+λ)

, (55)
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where γ̃m is defined as γ̃m = ( 1
δ̃m

)
3(1−m)

2 . In this case, the

scalar spectrum index ns becomes

ns = 1

+ (3m − 6)( f − 2)(1 + A) − 2(1 − f )[3A(2 − m) + 6(1 + A)]
8α f (1 + A)(M̃−1

m [S̃mϕ]) f
+ n1m + n2m , (56)

where

n1m =
(

3(1 − m)

2

) (
6

κ(1 + A)

)1/2

×
[

3

2κCγ (1 + A)

]−m/8

(1 − f )
4−m

8 φ
m−3

2

×
(

3α2 f 2

κ

) (m−4)A
8(1+A) (α f )−m/8

Cφ
1/2

×(M̃−1
m [S̃mϕ]) −2A(1− f )(m−4)−(1+A)(4+m( f −2))

8(1+A)

×
⎡
⎣1 − B

1 + A

(
κ(M̃−1

m [S̃mϕ])2(1− f )

3α2 f 2

)(1+λ)
⎤
⎦

(m−4)(A+λ(1+A))
8(1+λ)(1+A)

,

n2m = −
(

6 − 3m

4

) (
A + λ(1 + A)

1 + A

)

× (κ/3)1+λ(1 − f )

(α f )3+2λ
(M̃−1

m [S̃mϕ])2−3 f +2λ(1− f )

×
⎡
⎣1 − B

1 + A

(
κ(M̃−1

m [S̃mϕ])2(1− f )

3α2 f 2

)1+λ
⎤
⎦

−1

.

The scalar spectral index in terms of N becomes

ns = 1

+ (3m − 6)( f − 2)(1 + A) − 2(1 − f )[3A(2 − m) + 6(1 + A)]
8α f (1 + A)(J [N ]) f

+ n1m + n2m , (57)

where

n1m =
(

3(1 − m)

2

) (
6

κ(1 + A)

)1/2

×
[

3

2κCγ (1 + A)

]−m/8
(1 − f )

4−m
8 φ

m−3
2

(
3α2 f 2

κ

) (m−4)A
8(1+A)

× (α f )−m/8

Cφ
1/2 (J [N ])

−2A(1− f )(m−4)−(1+A)(4+m( f −2))
8(1+A)

×
⎡
⎣1 − B

1 + A

(
κ(J [N ])2(1− f )

3α2 f 2

)(1+λ)
⎤
⎦

(m−4)(A+λ(1+A))
8(1+λ)(1+A)

n2m = − (6 − 3m)[A + λ(1 + A)]
4(1 + A)

(κ/3)1+λ

(α f )3+2λ
(1 − f )(J [N ])2−3 f+2λ(1− f )

×
⎡
⎣1 − B

1 + A

(
κ(J [N ])2(1− f )

3α2 f 2

)1+λ
⎤
⎦

−1

.

The tensor-to-scalar ratio takes the following form:

r = 2κ

π2 δ̃m
(α f )2

× (M̃−1
m [S̃mϕ]) 2(1− f )[3A(2−m)+6(1+A)]−(3m−6)( f −2)(1+A)−16((1− f )(1+A)

8(1+A)

× φ
3(m−1)

2

⎡
⎣1 − B

1 + A

(
κ(M̃−1

m [S̃mϕ])2(1− f )

3α2 f 2

)1+λ
⎤
⎦

(3m−6)(A+λ(1+A))
8(1+A)(1+λ)

;

(58)

in terms of the number of e-folds,

r = 2κ

π2 δ̃m

×(α f )2(J [N ]) 2(1− f )[3A(2−m)+6(1+A)]−(3m−6)( f−2)(1+A)−16((1− f )(1+A)
8(1+A)

× (M̃m(J [N ])) 3(m−1)
2

×
⎡
⎣1 − B

1 + A

(
k(J [N ])2(1− f )

3α2 f 2

)1+λ
⎤
⎦

(3m−6)(A+λ(1+A))
8(1+A)(1+λ)

. (59)

For the case m = 1, the condition for the model evolves
according to strong dissipative regime, R � 1, gives us the
lower limit on Cφ , yielding Cφ = 6×10−2 (plot not shown).
Additionally, for Cφ > 6 × 10−2 the condition for warm
inflation, T

H > 1, is always satisfied. Then we cannot find an
upper limit on Cφ by considering the T/H plot. Moreover,
forCφ > 6×10−2, the tensor-to-scalar ratio becomes r ∼ 0,
but the model is still supported by the last data of Planck, by
considering the two-dimensional marginalized joint confi-
dence contours for (ns, r), at the 68 and 95 % C.L. (plot not
shown). Then, for the case m = 1, we were only able to find
a lower limit for Cφ , given by Cφ = 6 × 10−2.

For m = −1 and m = 0, the predicted scalar spectral
index is always greater than unity, being discarded by obser-
vations. This means that the inflaton decay ratios � ∝ φ

and � ∝ φ2

T are not suitable to describe a strong dissipative
dynamics in the MCG scenario. It is interesting to mention
that same behavior has been already reported in [70,71,83].

5 Conclusions

In the present work we have studied warm inflationary
dynamics inspired by the modified Chaplygin gas. We con-
sidered the inflationary expansion was driven by a standard
scalar field with a generalized expression for its decay ratio
� = CφTm/φm−1, where m = 3, 1, 0,−1, denotes several
inflaton decay ratios studied in the literature. We have solved
the background as well as perturbative dynamics considering
the model to evolve according to the (1) strong and (2) strong
dissipative regimes. For each dissipative regime, under the
slow-roll approximation, we have found the expressions for
the scalar power spectrum, scalar spectral index and tensor-
to-scalar ratio subsequently. Contrary to the standard cold
inflation, in the warm inflation scenario it is not sufficient
to consider only the constraints on the r–ns plane, but we
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also have to consider the essential condition for warm infla-
tion T > H and the conditions for the model evolves under
the weak (R � 1) or strong (R � 1) dissipative regimes.
In particular, for the weak dissipative regime, the condition
for warm inflation and the condition for the model to evolve
according to this regime, set the lower and upper limit for the
dissipative parameter Cφ , respectively. The Planck data, by
considering the two-dimensional marginalized constraints at
68 and 95% C.L. on the parameters r and ns , does not impose
any constraints on the model for this dissipative regime. How-
ever, the values for tensor-to-scalar ratio r are compatible
with current observational data. Regarding the strong dissi-
pative, for the special casem = 3, the condition for the model
evolves under this regime and the Planck data, through the
two-dimensional marginalized constraints on the parameters
r and ns set the lower and upper limits on the dissipative
parameter Cφ . However, for the case m = 1, neither the con-
dition for warm inflation nor the two-dimensional marginal-
ized constraints on the parameters r and ns impose con-
straints onCφ . The condition for the model evolves under the
strong regime only sets a lower limit for this quantity. Finally,
the two cases m = 0 and m = −1 fail in describe a strong
dissipative dynamics consistent with current data, since the
predicted value for the scalar spectral index is always greater
that unity. It is interesting to mention that the inflationary
dynamics of our model under the strong regime predicts a
value for the tensor-to-scalar ratio r ∼ 0, but compatible
with current data. We conclude that warm intermediate infla-
tion inspired by the modified Chaplygin gas is compatible
with current data for all the several inflaton decay ratios,
parametrized by m, if we assume that our model evolves
under the dissipative regime. However, if we assume that our
model takes place in the strong dissipative regime, only the
inflaton decay ratios yielding a dynamics compatible with
current data correspond to m = 3 and m = 1.
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