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Abstract In this paper, we apply the dynamical analysis to a
coupled phantom field with scaling potential taking particular
forms of the coupling (linear and combination of linear), and
present phase space analysis. We investigate if there exists
a late time accelerated scaling attractor that has the ratio of
dark energy and dark matter densities of the order one. We
observe that the scrutinized couplings cannot alleviate the
coincidence problem, however, they acquire stable late time
accelerated solutions. We also discuss a coupled tachyon field
with inverse square potential assuming linear coupling.

1 Introduction

The late time cosmic acceleration is revealed by various
observations [1–6]. Substantial efforts were made by a num-
ber of authors to explore the cause of cosmic acceleration, by
introducing a new player with negative pressure termed dark
energy (DE) [7–10]. Apart from dark energy, there are other
theoretical models, such as void and back-reaction models,
which all provide late time cosmic acceleration [11–19].

The simplest candidate of DE is the cosmological constant
� with the equation of state w = −1. However, it suffers two
severe problems, the cosmological constant (fine tuning) and
coincidence problems [20–23]. Though the �CDM model is
supported by the present observations, yet it has no satisfac-
tory argument for the fine tuning and coincidence problems;
why is the vacuum energy so small? Why are the densities of
DE and dark matter (DM) nearly equal at present, while their
time evolution is very different? Therefore, one can explore
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the dynamical DE models that can fit into the observations.
Such models have been studied in the past few decades [24–
55].

The simplest models of dynamical DE are scalar fields,
dubbed “quintessence”. If the quintessence is coupled with
the DM, then one can get similar energy densities in the dark
sector at present. A conclusive way is if the DE models have
�DE/�DM of the order 1 and an accelerated scaling attrac-
tor solution, then the coincidence problem can be alleviated.
Therefore, to sort out the coincidence problem, the interac-
tion of DE with DM is one novel approach.

It has been found that the form of dark energy that dom-
inates the present Universe could be a phantom energy,
quintessence or cosmological constant. The available cosmo-
logical data do not fix a microscopic theory of dark energy.
But the overall uncertainty is reflected by the existence of
various phenomenological models. To reduce the number of
models one way is to consider only the ones that do not vio-
late any of the fundamental theories. The number can be fur-
ther reduced by testing the models against the cosmological
data. The phantom field can be a source of dark energy and
may arise from higher order theories of gravity; for exam-
ple, the Brans–Dicke and non-minimally coupled scalar field
theories [56–60]. Recently, the dynamics of a coupled phan-
tom field with dark matter has been discussed [61–68]. To
solve the long standing coincidence problem, we consider
scalar fields (specifically phantom and tachyon) as a dynam-
ical dark energy interacting with dark matter by transferring
energy between the two dark components. For an exponen-
tial potential, the quantity λ = −V ′/κV , which corresponds
to the relative slope of the potential, is constant. Therefore,
it is easy to study the stability of the stationary points in the
phase space [69,70].

In the literature, it has been proposed that rolling tachyon
condensates, in a class of string theories, may have impor-
tant cosmological outcomes. Ashoke Sen [71,72] has shown
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that the decay of D-branes generates a pressure-less gas hav-
ing definite energy density that looks like classical dust. The
equation of state of a rolling tachyon lies between 0 and −1
[73]. The tachyon is an unstable field, which is vital in string
theory and which is used in Dirac–Born–Infeld (DBI) action.
It also acts as a source of dark energy for a particular class of
potentials [74–79]. In this case, we consider an inverse square
potential for which λ is constant, an analog of exponential
potential for the standard scalar field. Coupling with matter
might lead to late time acceleration. The tachyon field also
has implications for inflation, namely, the tensor to scalar
ratio is very low in this case.

A dynamical system plays a central role in the understand-
ing of the asymptotic behavior of the cosmological models
and belongs to the class of autonomous systems [69,70]. For
an autonomous system, the dimensionless set of variables are
chosen due to a number of reasons.

(a) These variables give rise to a bounded dynamical sys-
tem.

(b) They are well behaved and regularly have a direct phys-
ical interpretation.

(c) Due to a symmetry in the equations, the number of equa-
tions can be reduced and then resulting simplified sys-
tem is investigated. A brief analysis of the dynamical
system is given in the appendix.

In this letter, we investigate the stationary points and their
stability for coupled phantom and tachyon fields. We apply
dynamical system analysis to study the asymptotic behav-
ior of the cosmological models mentioned above. We con-
sider the forms of coupling that are proportional to the time
derivative of their energy densities. The different forms of
coupling have been studied in [80–86]. There also exist stud-
ies of the models without such particular forms of coupling
[87]. The rest of the paper is organized as follows: In Sect. 2
we discuss the coupled phantom dynamics and construct the
autonomous system which is useful for phase space analysis.
In Sect. 3 we study phase space trajectories, and we obtain
stationary points and their stabilities for different forms of
coupling. The stationary points and their stabilities of a
tachyon field with the coupling Q = βρ̇φ is discussed in
Sect. 4. We summarize our results in Sect. 5.

2 Coupled phantom dynamics

In a spatially flat Universe, we consider two components,
namely phantom field and matter (baryonic+DM). The
energy density of each component may not be conserved,
although the total energy density of the Universe is. There-
fore, the conservation laws of energy can be written as

ρ̇m + 3H (ρm + pm) = Q,

ρ̇φ + 3H (ρφ + pφ) = −Q, (1)

ρ̇tot + 3H (ρtot + ptot) = 0,

where ρtot = ρφ + ρm and ptot = pφ + pm , and ρm, ρφ, pm
and pφ are the energy densities and pressures of matter (dust)
and phantom field, respectively. The coupling is through the
function Q, and H denotes the Hubble parameter.

The flow of energy between two components depends on
the sign of Q. If Q > 0, the transfer of energy takes place
from phantom to matter, whereas for Q < 0 it occurs from
matter to phantom. At present, several forms of Q have been
investigated [88–101]. Following Eq. (1), it is clear that Q
should be a function of H, ρm and ρφ ,

Q = Q(H, ρm, ρφ). (2)

We consider three particular forms of Q: αρ̇m, βρ̇φ and
σ (ρ̇m + ρ̇φ). In these forms, H is not directly involved, as
it has the dimension of the inverse of time, and the latter is
already present in ρ̇i .

In a spatially flat Friedmann–Lemaitre–Robertson–Walker
(FLRW) Universe, the evolution equations are given by

H2 =
κ2

3
(ρm + ρφ)

2Ḣ + 3H2 = −κ2 pφ

(3)

where κ2 = 8πG, ρφ = − 1
2 φ̇2 + V (φ) and pφ = − 1

2 φ̇2 −
V (φ). To cast the evolution equations in the form of an
autonomous system, we introduce the following dimension-
less quantities:

x =
κφ̇√
6H

; y =
κ
√
V√

3H
; λ = − V ′

κV
. (4)

Hence, we find

dx

dN
= x

(
φ̈

H φ̇
− Ḣ

H2

)
,

dy

dN
= −y

(√
3

2
λx +

Ḣ

H2

)
,

(5)

where N = ln a. For an exponential potential, we find that λ

is constant, and

Ḣ

H2 =
3(x2 + y2 − 1)

2
(6)

φ̈

H φ̇
= −3 − √

3/2
λy2

x
+

Q

H φ̇2
. (7)

Then the effective equation of state, the field density param-
eter and the equation of state for a phantom field are given,
respectively, by

weff = −1 − 2Ḣ

3H2 ,
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�φ =
κ2ρφ

3H2 = −x2 + y2 (8)

wφ =
weff

�φ

.

For an accelerating Universe, we have weff < − 1
3 .

3 Stationary points and their stabilities

To study stationary points and their stabilities, let us con-
sider the autonomous system (5), from which we can find
the stationary points by setting the left-hand side of these
equations to zero. Then the signs of the eigenvalues will tell
us the stability of the points. In the following sub-sections,
we consider different forms of the coupling.

3.1 Coupling Q = αρ̇m

For this coupling, Eq. (7) takes the form

φ̈

H φ̇
= −3 − √

3/2
λy2

x
− 3α�m

2(1 − α)x2 (9)

where �m = 1 − �φ . Then the autonomous system can be
written as

dx

dN
= x

(
−3 − √

3/2
λy2

x
− 3α�m

2(1 − α)x2 − 3(x2 + y2 − 1)

2

)
,

dy

dN
= −y

(√
3

2
λx +

3(x2 + y2 − 1)

2

)
. (10)

The critical points can be obtained by putting dx
dN = 0 and

dy
dN = 0, simultaneously. Therefore, we have the following
stationary points:

1. x = −
√

α
α−1 , y = 0. In this case, the corresponding

eigenvalues are

μ1 = −6 − 3

α − 1
< 0, for α > 1,

μ2 =
−3 +

√
6α(α − 1) λ

2(α − 1)
< 0, for α > 1,

√
6α(α − 1) λ ≤ 0.

The point has negative eigenvalues for α > 1 and√
6α(α − 1) λ ≤ 0. Thus, it is a stable point.

2. x =
√

α
α−1 , y = 0. Then we have the following eigenval-

ues:

μ1 = −6 − 3

α − 1
< 0, for α > 1,

μ2 =
−3 − √

6α(α − 1) λ

2(α − 1)
< 0, for α > 1,

√
6α(α − 1) λ ≥ 0.

The eigenvalues of this point show they are negative for
α > 1 and

√
6α(α − 1) λ ≥ 0. Therefore, it is a stable

point.

3. x = − λ√
6
, y = −

√
1 + λ2

6 . In this case, the eigenvalues
are given by

μ1 = −3 − λ2/2 < 0, for λ > 0,

μ2 = 3/(α − 1) − λ2 < 0, for α > 1, λ >
√

3/(α − 1).

The point is stable under the conditions given above.

4. x = − λ√
6
, y =

√
1 + λ2

6 . In this case, we get the same
eigenvalues as (3).

5. x =

√
3
2

λ(1−α) , y = −
√

(α−1)αλ2− 3
2

λ(α−1) . In this case, the corre-
sponding eigenvalues are

μ1 = −1

4

(
12 +

9

α − 1
− 2αλ2 + δ1

)
< 0,

for 12 +
9

α − 1
− 2αλ2 + δ1 > 0,

μ2 = −1

4

(
12 +

9

α − 1
− 2αλ2 − δ1

)
< 0,

for 12 +
9

α − 1
− 2αλ2 − δ1 > 0,

where δ1 =√
(α−1)λ2(216+(α−1)λ2(−63+4α(−54+36α−3(α−1)(4α−5)λ2+(α−1)2αλ4)))

λ2(α−1)2 .
The point now is a saddle point.

In this coupling, we are interested in Cases (3) and (5),
as Case (3) is stable and has an accelerating period, whereas
Case (5) is a saddle point and also has an accelerating period.
For Case (3), we solve the autonomous system (10) numeri-
cally for α = 5 and λ = 1, and the result is displayed in Fig. 1.
The stable point of Case (3) acts as an attractive node under
the chosen parameters, which is confirmed by Fig. 1. Addi-
tionally, in this case we obtain �φ = 1, which corresponds to
the case where dark energy totally dominates. However, we
find that Case (3) is a stable fixed point with a late accelerating
Universe (weff < −1/3), but it cannot solve the coincidence
problem as it has �DE = 1 rather than �DE/�DM � O(1). In
Case (5), we evolve the system (10) numerically for α = −0.3
and λ = 1.9, and find that this point is a saddle point, which
is shown at the left panel of Fig. 2. We also find the cosmo-
logical observables �φ,weff and wφ . The middle and right
panels of Fig. 2 show the evolution of wφ and �φ versus λ.
They also show in which range of λ (having different val-
ues of α) both physical observables are allowed. The general
properties of this coupling are summarized in Table 1.
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Fig. 1 The figure shows the phase space trajectories for point (3) of
the coupling Q = αρ̇m . The stable fixed point is an attractive node and
corresponds to α = 5 and λ = 1. The black dot represents the stable
attractor point

3.2 Coupling Q = βρ̇φ

For the coupling Q = βρ̇φ , Eq. (7) becomes

φ̈

H φ̇
= −3 − √

3/2
λy2

x
+

3β

1 + β
. (11)

Therefore, Eq. (5) takes the form

dx

dN
= x

(
−3 − √

3/2
λy2

x
+

3β

1 + β
− 3(x2 + y2 − 1)

2

)
,

dy

dN
= −y

(√
3

2
λx +

3(x2 + y2 − 1)

2

)
. (12)

For this coupling, we have the following stationary points:

1. x = 0, y = 0. In this case, the corresponding eigenvalues
are

μ1 =
3

2
− 3

1 + β
< 0, for 0 < β < 1,

μ2 =
3

2
.
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λ

Fig. 2 This figure represents the phase portrait, evolution of wφ and
�φ of point (5) for Q = αρ̇m . This is an unstable point and acts as a sad-
dle point that is shown in the left panel for α = −0.3 and λ = 1.9. The
middle and right panels are plotted for different values of α. The solid,

dashed, dot-dashed and dotted lines correspond to α = −1,−2,−3
and −5, respectively. The values of λ below the horizontal line are not
allowed

Table 1 We display stationary points for the coupling Q = αρ̇m . We also show the expressions of �φ,weff , wφ and the conditions to have an
accelerating phase

Point x y Stability �φ weff wφ = weff
�φ

Acceleration

1 −
√

α
α−1 0 Stable for α > 1

√
6α(α − 1)λ ≤ 0, α

1−α
α

1−α
1 No

2
√

α
α−1 0 Stable for α > 1,

√
6α(α − 1)λ ≥ 0 α

1−α
α

1−α
1 No

3,4 − λ√
6

∓
√

1 + λ2

6 Stable for α > 1, λ >

√
3

α−1 1 −1 − λ2

3 −1 − λ2

3 Yes

5
√

3/2
λ(1−α) −

√
(α−1)αλ2−3/2

λ(α−1) Saddle for 12 + 9
α−1 − 2αλ2 > δ1

(α−1)αλ2−3
(α−1)2λ2

α
1−α

− (α−1)αλ2

(α−1)αλ2−3
Yes
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As one of the eigenvalues is positive, the stationary point
is unstable for any value of β.

2. x = −
√

β−1
β+1 , y = 0. In this case, the eigenvalues are

given by

μ1 = −3 +
6

1 + β
< 0, for β < −1,

μ2 =
3

1 + β
+

√
3

2
− 3

1 + β
λ < 0,

for − 2 ≤ β < −1 and 0 < λ ≤ 1.

The eigenvalues of this point show the negativity for
−2 ≤ β < −1 and 0 < λ ≤ 1. Therefore, it is a stable
point.

3. x =
√

β−1
β+1 , y = 0. In this case, the corresponding eigen-

values are

μ1 = −3 +
6

1 + β
< 0, for β < −1,

μ2 =
3

1 + β
−

√
3

2
− 3

1 + β
λ < 0,

for β < −1 and λ > 0.

It is a stable point for the above given conditions.

4. x = 9−(1+β)2λ4+δ2

2
√

6λ(1+β)(3+(1+β)λ2)
, y=−

√
6(1+β)2λ2−9+λ4(1+β)2−δ2

2
√

3(1+β)λ
.

In this case, we have the following eigenvalues:

μ1 = −2δ2
2 − 6(1 + β)δ2ελ

2 + 2ε2(−9 + (1 + β)λ2(9 + 2(1 + β)λ2)) + ν

16(1 + β)2ε2λ2 < 0,

for 2δ2
2 + 2ε2(−9 + (1 + β)λ2(9 + 2(1 + β)λ2)) + ν < 0,

μ2 = −2δ2
2 − 6(1 + β)δ2ελ

2 + 2ε2(−9 + (1 + β)λ2(9 + 2(1 + β)λ2)) − ν

16(1 + β)2ε2λ2 < 0,

for 2δ2
2 + 2ε2(−9 + (1 + β)λ2(9 + 2(1 + β)λ2)) − ν < 0,

where

δ2 =
√

(3 + (1 + β)λ2)2(9 + (1 + β)λ2(6 + λ2 + β(12 + λ2)))

ε = 3 + (1 + β)λ2

ν =
√ (

δ4
2 − 12(1 + β)λ2δ3

2ε − 6δ2
2ε2(3 − 4(β − 6)(1 + β)λ2

+3(1 + β)2λ4) + ε4(−9 + 12(1 + β)(2 + β)λ2

+5(1 + β)2λ4)2 + 4(1 + β)λ2δ2ε3(−117 + (1 + β)

×λ2(24 + λ2 + β(60 + λ2))))
)

.

The eigenvalues of this point show the negativity under the
above conditions. Hence, it is a stable point. �φ,weff and
wφ are given by

�φ = −9 − (1 + β)2λ4 +
√

δ2

2(1 + β)2λ2ε
, (13)

weff = −9 + 18β + 6(1 + β)2λ2 + (1 + β)2λ4 − √
δ2

6(1 + β)ε
, (14)

wφ =
−9 − (1 + β)λ2(6 + (1 + β)λ2) +

√
γ

6ε
, (15)

where

γ = 81 + (1 + β)2λ2
(

108 + 18(3 + 4β)λ2

+12(1 + β)2λ4 + (1 + β)2λ6
)
. (16)

For this coupling, we pay particular attention to Cases (2)
and (4). In Case (2), we evolve the autonomous system (12)
numerically for the values β = −2 and λ = 1, and we get
�φ,weff and wφ . With the chosen parameters, the point is
stable and behaves as an attractive node (see Fig. 3), but there
does not exist an accelerating phase of the Universe, as the
equation of state wφ for the phantom field is always positive.
Therefore, it does not solve the coincidence problem. In Case
(4), we elaborate the system for β = −2.5 and λ = 1, and
we find that it is stable and acts as an attractive node. The
phase portrait of this stable point is shown in the left panel of
Fig. 4, the middle and right panels of Fig. 4 show the evolution
of wφ and �φ . For this point, we consider two cases: (a)
β = −2.5 and 1 ≤ λ < 1.5, in which Case (4) behaves
as a stable point but does not give rise to an accelerating

Universe as wφ is always positive. (b) β = −2.5 and λ >

1.5, in which Case (4) acts as a saddle point and has an
accelerating phase as wφ < −1 (see Table 2). Hence, it
does not alleviate the coincidence problem. The results of
the coupling are summarized in Table 2.

3.3 Coupling Q = σ (ρ̇m + ρ̇φ)

In this case, the coupling Q is a linear combination of ρ̇m
and ρ̇φ . For this coupling, Eq. (7) can be written as
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Fig. 3 The figure displays the phase space trajectories of Case (2) for
Q = βρ̇φ . It is plotted for β = −2 and λ = 1. The point is stable and
behaves as an attractive node

φ̈

H φ̇
= −3 − √

3/2
λy2

x
− 3σ�m

2(1 − σ )x2 +
3σ

1 + σ
. (17)

Thus, the autonomous system (5) becomes

dx

dN
= x

(
−3 − √

3/2
λy2

x
− 3σ�m

2(1 − σ )x2

+
3σ

1 + σ
− 3(x2 + y2 − 1)

2

)
,

dy

dN
= −y

(√
3

2
λx +

3(x2 + y2 − 1)

2

)
. (18)

For this coupling, we have the following stationary points:

1. x = −
√

1−σ+2σ 2−
√

1+σ (σ+8σ 3−6)√
2(σ 2−1)

, y = 0. In this case, the

corresponding eigenvalues are

μ1 =
3
√

1 + σ (σ + 8σ 3 − 6)

σ 2 − 1
< 0, for σ 2 < 1,

μ2 =
1

8

(
6(σ − 3 +

√
1 + σ (σ + 8σ 3 − 6))

σ 2 − 1

+ 4
√

3λ

√
1 − σ + 2σ 2 −

√
1 + σ (σ + 8σ 3 − 6)

σ 2 − 1

⎞
⎠ > 0,

for all σ.

As one of the eigenvalues is positive, the stationary point
is a saddle point for any value of σ .

2. x =

√
1−σ+2σ 2−

√
1+σ (σ+8σ 3−6)√

2(σ 2−1)
, y = 0. In this case, the

eigenvalues are given by

μ1 =
3
√

1 + σ (σ + 8σ 3 − 6)

σ 2 − 1
< 0, for σ 2 < 1,

μ2 =
1

8

(
6(σ − 3 +

√
1 + σ (σ + 8σ 3 − 6))

σ 2 − 1

− 4
√

3λ

√
1 − σ + 2σ 2 −

√
1 + σ (σ + 8σ 3 − 6)

σ 2 − 1

⎞
⎠ > 0,

for all σ.

This is a saddle point.

5 4 3 2 1 0
3

2

1

0

1

2

3

x

y

4 2 0 2 43.0

2.5

2.0

1.5

1.0

0.5

w

4 2 0 2 41.0

0.5

0.0

0.5

1.0

λ λ

Fig. 4 The left panel shows the phase portrait of Case (4) for Q = βρ̇φ

and corresponds to β = −2.5 and λ = 1. The middle and right pan-
els show the evolution of wφ and �φ versus λ for various values
of β. The solid, dashed, dot-dashed and dotted lines correspond to

β = −0.5,−2,−3 and −5, respectively. The values of λ below the
horizontal line are not accepted. This is a stable point and acts as an
attractive node
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Table 2 We present stationary points and their stability for the coupling Q = βρ̇φ

Point x y Stability �φ weff wφ = weff
�φ

Acceleration

1 0 0 Saddle 0 0 Indeterminate No

2 −
√

β−1
β+1 0 Stable for −2 ≤ β < −1 and 0 < λ ≤ 1 1−β

1+β
1−β
1+β

1 No

3
√

β−1
β+1 0 Stable for β < −1 and λ > 0 1−β

1+β
1−β
1+β

1 No

4 9−(1+β)2λ4+δ2

2
√

6λ(1+β)(3+(1+β)λ2)
−

√
6(1+β)2λ2−9+λ4(1+β)2−δ2

2
√

3(1+β)λ
− Eq. (13) Eq. (14) Eq. (15) −
(a) Stable for β = −2.5 and 1 ≤ λ < 1.5 Positive No

(b) Saddle for β = −2.5 and λ ≥ 1.5 < −1 Yes

3. x =

√
1+σ (2σ−1)+

√
1+σ (σ+8σ 3−6)

2(σ 2−1)
, y = 0. In this case, the

eigenvalues take the form

μ1 = −3
√

1 + σ (σ + 8σ 3 − 6)

σ 2 − 1
< 0, for σ 2 > 1,

μ2 =
1

8

(
−6(3 − σ +

√
1 + σ (σ + 8σ 3 − 6))

σ 2 − 1

−4
√

3λ

√
1 + σ (2σ − 1) +

√
1 + σ (σ + 8σ 3 − 6)

σ 2 − 1

⎞
⎠ < 0,

for σ 2 > 1 and λ > 0.

The eigenvalues of the point show the negativity for σ 2 >

1 and λ > 0. Therefore, it is a stable point.

For this coupling, the stationary point in Case (3) is sta-
ble for σ 2 > 1 and λ > 0. We numerically evolve the
autonomous system (18) for the choices σ = 2 and λ = 1.
The phase space trajectories of the stable point is displayed
in Fig. 5, and the point behaves as an attractive node. For this
point we do not find any accelerating solution as it has a pos-
itive equation of state. Hence, it cannot solve the coincidence
problem. The main results of this coupling are summarized
in Table 3.

In Ref. [80], we studied the coupled quintessence with
scaling potential for different forms of the coupling and dis-
cussed phase space analysis. For all the models, we obtained
a late time accelerated scaling attractor having �DE/�DM =
O(1). Therefore all the models considered in the said ref-
erence are viable to solving the coincidence problem. In the
present paper, we perform the same analysis with the coupled
phantom field and inspect whether the coincidence problem
can be alleviated or not. In the case of the coupling term
Q = αρ̇m , the point (3) is a stable fixed point with an accel-
erating phase, but it cannot solve the coincidence problem
as �DE = 1 (see Table 1). In the case of Q = βρ̇φ , we
focus on points (2) and (4), and notice that both are unable to
solve the coincidence problem (see Table 2). In the case of

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.0

0.5

0.0

0.5

1.0

x

y

Fig. 5 The figure represents the evolution of the phase space trajecto-
ries of Case (3) for Q = σ (ρ̇m + ρ̇φ), and it is plotted for σ = 2 and
λ = 1. The stable point acts as an attractive node, and the black dot
designates a stable attractor point

Q = σ (ρ̇m+ρ̇φ), the point (3) is stable with a non-accelerating
phase as the equation of state is positive (see Table 3). There-
fore, in the interacting phantom field models, the coincidence
problem cannot be solved. Similar results were discussed in
Ref. [102].

4 Coupled tachyon dynamics

The tachyon acts as a source of dark energy, depending on the
shape of the potentials [74–79]. We consider that dark energy
and dark matter are interacting with each other, but the total
energy density is conserved. The conservation equations for
both components are written as

ρ̇m + 3H (ρm + pm) = Q,
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Table 3 We show stationary points for the coupling Q = σ (ρ̇m + ρ̇φ)

Point x y Stability �φ weff wφ = weff
�φ

Acceleration

1, 2 ∓
√

1−σ+2σ 2−
√

1+σ (σ+8σ 3−6)√
2(σ 2−1)

0 Saddle σ−1−2σ 2

2(σ 2−1)
+
√

1+σ (σ+8σ 3−6)
2(σ 2−1)

σ−1−2σ 2

2(σ 2−1)
+
√

1+σ (σ+8σ 3−6)
2(σ 2−1)

1 No

3

√
1+σ (2σ−1)+

√
1+σ (σ+8σ 3−6)

2(σ 2−1)
0 Stable for σ 2 > 1, λ > 0 1+σ (2σ−1)

2(1−σ 2)
+
√

1+σ (σ+8σ 3−6)
2(1−σ 2)

1+σ (2σ−1)
2(1−σ 2)

+
√

1+σ (σ+8σ 3−6)
2(1−σ 2)

1 No

ρ̇φ + 3H (ρφ + pφ) = −Q, (19)

where

ρφ =
V (φ)√
1 − φ̇2

,

pφ = −V (φ)
√

1 − φ̇2. (20)

Then the evolution equations take the form

H2 =
κ2

3

[
V (φ)√
1 − φ̇2

+ ρm

]
, (21)

φ̈

1 − φ̇2
+ 3H φ̇ +

V ′(φ)

V (φ)
= −Q

√
1 − φ̇2

φ̇V (φ)
, (22)

where a prime and a dot denote derivatives with respect to
field and cosmic time, respectively.

Let us define the following dimensionless parameters:

x = φ̇, y =
κ
√
V√

3H
, �m =

κ2ρm

3H2 , λ = − V ′

κV
√
V

. (23)

Then we obtain the autonomous system

dx

dN
=

φ̈

H φ̇
x,

dy

dN
= −

√
3

2
y2λx − y

(
Ḣ

H2

)
. (24)

Here we take inverse square potential for which λ is con-
stant. Also, we consider the coupling Q = βρ̇φ only. For this
coupling we have the following equations:

Ḣ

H2 =
3
(
y2

√
1 − x2 − 1

)
2

, (25)

φ̈

H φ̇
= −3

(
1 − x2

)
+

√
3λy

(
1 − x2

)
x

+
3β

(
1 − x2

)
1 + β

. (26)

The equation of state for the tachyon field is given by

weff = −1 − 2Ḣ

3H2 , (27)

wφ =
weff − wm�m

1 − �m
, (28)

where wm = 0 for standard dust matter. Setting the left-hand
sides of the autonomous system (24) to zero, we obtain the
following stationary points:

(1) x = 0, y = 0. In this case, the corresponding eigenvalues
are

μ1 = − 3

1 + β
< 0, for 0 < β < 1,

μ2 =
3

2
,

As one of the eigenvalues is positive, the stationary point
is a saddle point.

(2) x = ±1, y = ±
√

3
λ

. In this case, the metric is indetermi-
nate.

(3)

x = − 1

3
√

6
(1 + β)λ

√ (
((−81(2 × 21/3δ

2/3
3 + 18(18 + δ5))

+ 22/3δ
1/3
3 (18 + δ5)) + 9(1 + β)2(243β2(18 + 22/3δ

1/3
4 )

+ 12β(486 + 27 × 22/3δ
1/3
4 − 21/3δ

2/3
4 )

+ 135 × 22/3δ
1/3
4 − 8 × 21/3δ

2/3
4 + 18(153 + δ5))λ4

− 2(1 + β)4(243 + 2187β2 − 81β(−18 + 22/3δ
1/3
4 )

− 54 × 22/3δ
1/3
4 + 21/3δ

2/3
4 )λ8 + 2(1 + β)6

× (−90 − 162β + 22/3δ
1/3
4 )λ12 − 4(1 + β)8λ16

/((1 + β)2λ2(−81(18 + δ5) + 243(1 + β)2

× (5 + 3β(4 + 3β))λ4 + 54(1 + β)4(2 + 3β)λ8

+ 2(1 + β)6λ12)))
)

,

y = − 1

3
√

2

√ (
((−81(324 + 18 × 22/3δ

1/3
3 + 2 × 21/3δ

2/3
3

+ 18δ5 + 22/3δ
1/3
3 δ5) + 9(1 + β)2(2754 + 243β2

× (18 + 22/3δ
1/3
4 ) + 12β(486 + 27 × 22/3δ

1/3
4

− 21/3δ
2/3
4 ) + 135 × 22/3δ

1/3
4

− 8 × 21/3δ
2/3
4 + 18δ5)λ4 − 2(1 + β)4

× (243 + 2187β2 − 81β(−18 + 22/3δ
1/3
4 )

− 54 × 22/3δ
1/3
4 + 21/3δ

2/3
4 )λ8

+ 2(1 + β)6(−90 − 162β + 22/3δ
1/3
4 )λ12

× − 4(1 + β)8λ16)/((1 + β)2λ2(−81(18 + δ5)

123



Eur. Phys. J. C (2017) 77 :686 Page 9 of 12 686

+ 243(1 + β)2 × (5 + 3β(4 + 3β))λ4 + 54(1 + β)4(2 + 3β)

λ8 + 2(1 + β)6λ12)))
)

.

For this point, we get the following eigenvalues:

μ1 =
−η2

2
+ 3β

(−η2

6
+

√
η6

)
+

η4

(η3

18
+ 2

√
η6

)
6η5

− 3
√

η6 − η8 − 1

3
(1 + β)2√η2

√
η6

√
η7λ

2

4(1 + β)
√

η6
< 0

for β � = −1 and 3β

(−η2

6
+

√
η6

)
+

η4

(η3

18
+ 2

√
η6

)
6η5

< 0,

μ2 =

η10

2
+ 3β

(η10

6
+

√
η6

)
+

η4

(η3

18
+ 2

√
η6

)
6η5

− 3
√

η6 + η8 −
(1 + β)2√η2

√
3 − η4

18η5

√
η7λ

2

3
√

3
4(1 + β)

√
η6

< 0

for β � = −1 and
η10

2
+ 3β

(η10

6
+

√
η6

)
+

η4

(η3

18
+ 2

√
η6

)
6η5

+ η8 < 0,

where

δ3 = −243(1 + β)2 (5 + 3β(4 + 3β)) λ4

−54(1 + β)4(2 + 3β)λ8 − 2(1 + β)6λ12 + 81(18 + δ5),

δ4 = 1458 − 243(1 + β)2(5 + 3β(4 + 3β))λ4

−54(1 + β)4(2 + 3β)λ8 − 2(1 + β)6λ12 + 81δ5,

δ5 =
√

3(1 + β)4λ4
(−324 + 9(1 + β)2(−1 + 9β(2 + 3β))λ4 + 4β(1 + β)4λ8

)
,

η1 = (−81(324 + 18 × 22/3δ
1/3
3 + 2 × 21/3δ

2/3
3 + 18δ5 + 22/3δ

1/3
3 δ5)

+9(1 + β)2(2754 + 243β2(18 + 22/3δ
1/3
4 )

+12β(486 + 27 × 22/3δ
1/3
4 − 21/3δ

2/3
4 )

+135 × 22/3δ
1/3
4 − 8 × 21/3δ

2/3
4 + 18δ5)λ4 − 2(1 + β)4

×(243 + 2187β2 − 81β(−18 + 22/3δ
1/3
4 )

−54 × 22/3δ
1/3
4 + 21/3δ

2/3
4 )λ8

+2(1 + β)6(−90 − 162β + 22/3δ
1/3
4 )λ12 − 4(1 + β)8λ16,

η2 =
η1

(1 + β)2λ2(−81(18 + δ5) + 243(1 + β)2(5 + 3β(4 + 3β))λ4 + 54(1 + β)4(2 + 3β)λ8 + 2(1 + β)6λ12)
,

η3 =
η1

(1 + β)λ2(−81(18 + δ5) + 243(1 + β)2(5 + 3β(4 + 3β))λ4 + 54(1 + β)4(2 + 3β)λ8 + 2(1 + β)6λ12)
,

η4 = (−81(2 × 21/3δ
2/3
3 + 18(18 + δ5)

+22/3δ
1/3
3 (18 + δ5)) + 9(1 + β)2(243β2(18 + 22/3δ

1/3
4 )

+12β(486 + 27 × 22/3δ
1/3
4 − 21/3δ

2/3
4 ) + 135 × 22/3δ

1/3
4

−8 × 21/3δ
2/3
4 + 18(153 + δ5))λ4 − 2(1 + β)4

×(243 + 2187β2 − 81β(−18 + 22/3δ
1/3
4 )

−54 × 22/3δ
1/3
4 + 21/3δ

2/3
4 λ8

+2(1 + β)6(−90 − 162β + 22/3δ
1/3
4 )λ12

−4(1 + β)8λ16),

η5 = −81(18 + δ5) + 243(1 + β)2(5 + 3β(4 + 3β))λ4

+54(1 + β)4(2 + 3β)λ8 + 2(1 + β)6λ12,

η6 = 1 − η4

54η5
,

η7 =
η4

(1 + β)2η5λ2 ,

η8 =
√

3
√

⎛
⎜⎜⎝η6

(
3(3 + β)2 +

η2
3

12

+
η2

4

27η2
5

− 2

9
(1 + β)2√η2

(
−3 − β +

η3
√

η6

18

)

√
η7λ

2 − 2

81
(1 + β)4√η2η

3/2
7 λ4
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Fig. 6 The figure shows the phase space trajectories for the coupled
tachyon field. The stable fixed point is an attractive node and corre-
sponds to β = 0.9 and λ = 1. The black dot represents the stable
attractor point

− 1

9
η3

⎛
⎜⎜⎝27

√
η6 + 9β

√
η6 + 4(1 + β)λ2

+
η4

(
−12(3 + β) +

1

18
η3

(
36

√
η6 − η1

2(1 + β)η5λ2 + 4(1 + β)λ2
))

18η5

⎞
⎟⎟⎠

⎞
⎟⎟⎠ ,

η9 = 81(324 + 18 × 22/3δ
1/3
3 + 2 × 21/3δ

2/3
3

+18δ5 + 22/3δ
1/3
3 δ5) − 9(1 + β)2(2754 + 243β2(18 + 22/3δ

1/3
4 )

+12β(486 + 27 × 22/3δ
1/3
4 − 21/3δ

2/3
4 ) + 135 × 22/3δ

1/3
4

−8 × 21/3δ
2/3
4 + 18δ5)λ4 + 2(1 + β)4(243 + 2187β2

−81β(−18 + 22/3δ
1/3
4 ) − 54 × 22/3δ

1/3
4

+21/3δ
2/3
4 )λ8 − 2(1 + β)6(−90 − 162β + 22/3δ

1/3
4 )λ12

+4(1 + β)8λ16,

η10 =
η9

(1 + β)2η5λ2 .

In the case of a tachyon field, we consider only the cou-
pling Q = βρ̇φ . The point (3) shows the negativity of the
eigenvalues under the given conditions. Hence, it is a stable
point. The phase portrait is shown in Fig. 6.

5 Conclusions

We investigated the interaction of a phantom field with a dark
matter component in a spatially flat FLRW Universe. The
choices of the coupling Q in the conservation equations were
phenomenological and heuristic as there is no fundamental

theory of the coupling strength in the dark sector that was
involved. We examined three different couplings and studied
the corresponding dynamical behavior and phase space. We
paid attention to the stable point, which could give rise to
an accelerating phase. For all the three different couplings,
we found �φ,weff and wφ . Our primary goal was to see if
there exists a late time scaling attractor with an accelerat-
ing phase and having the property �DE/�DM � O(1). For
the coupling Q = αρ̇m , we focused on Cases (3) and (5). In
both cases the stationary points have an accelerating phase,
but one of the stationary point is stable and the other is a
saddle point. In Case (3) the point is stable for α > 1 and
λ >

√
3/(α − 1), and behaves as an attractive node. In this

case, we obtained a stable fixed point with an accelerating
Universe (weff < −1/3), however, it corresponds to the case
where dark energy completely dominates, as now we have
�φ = 1. Therefore, it does not solve the coincidence prob-
lem. The results are shown in Figs. 1 and 2. In the case of
the coupling Q = βρ̇φ , we concentrated on Cases (2) and
(4), and in both cases the points are stable but possessing
non-accelerating phases as now wφ is always positive (see
Table 2). In Case (4), we considered two sets of the param-
eters as β = −2.5, 1 ≤ λ < 1.5 and β = −2.5, λ > 1.5. In
the first set, the point in Case (4) behaves as a stable point
and give rise to a non-accelerating Universe (wφ always pos-
itive). In the second set, it acts as a saddle point and has an
accelerating Universe (wφ < −1). Thus, it cannot solve coin-
cidence problem either. The phase portrait and the evolution
of wφ and �φ are displayed in Figs. 3 and 4. For the linear
combination of the coupling Q = σ (ρ̇m + ρ̇φ), we noticed
that the stationary point in Case (3) is stable for σ 2 > 1 and
λ > 0, but could not give rise to an accelerating Universe as
the equation of state is always positive. The phase portrait
for this case is shown in Fig. 5, and it acts as an attractive
node.

For all the couplings considered here, our analysis showed
that the coincidence problem cannot be alleviated in the cou-
pled phantom field models. Similar results were also shown
in [102] for different couplings.

We also studied the dynamical behavior and stabilities for
the coupled tachyon field with the coupling Q = βρ̇φ . In this
case, the eigenvalues of the stationary point in Case (3) are
negative. Therefore, it is a stable point.
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Appendix

For the sake of simplicity, we investigate the system of two
first order differential equations, but it can be extended to a
system of any number of equations. We study the following
coupled differential equations for the variables x(t) and y(t):

ẋ = f (x, y, t), (29)

ẏ = g(x, y, t), (30)

where f and g are the functions of x, y and t . If the func-
tions f and g do not have an explicit time dependence then
the above equations are said to be an autonomous system.
The dynamical analysis of the autonomous system can be
investigated as follows.

We can find the fixed or critical points by putting the left-
hand side of the autonomous system to zero. In other words,
a point (xc, yc) is said to be a critical point when it satisfies
the following conditions:

f (x, y)
∣∣∣
(xc,yc)

= 0, (31)

g(x, y)
∣∣∣
(xc,yc)

= 0. (32)

The point (xc, yc) would behave as an attractor when it meets
the following condition:(
x(t), y(t)

)
−→ (xc, yc) for t −→ ∞. (33)

Next, we shall discuss the stability around the critical point.
For this purpose, we consider small perturbations δx and δy
near the critical point:

x = xc + δx, (34)

y = yc + δy. (35)

On putting Eqs. (34) and (35) into Eqs. (29) and (30), we get
first order differential equations,

d

dN

(
δx
δy

)
= M

(
δx
δy

)

where N = ln(a) and the matrix M depends upon the critical
point (xc, yc) and is written as

M =

(
∂ f
∂x

∂ f
∂y

∂g
∂x

∂g
∂y

)
(x=xc,y=yc)

.

It contains two eigenvalues μ1, μ2, and the general solution
for δx and δy is given as

δx = k1eμ1N + k2eμ2N , (36)

δy = k3eμ1N + k4eμ2N , (37)

where k1, k2, k3 and k4 are integration constants. Thus the
sign of the eigenvalues tells us the stability of the fixed points.
Usually, the following classifications are used [69,70,89]:

(a) μ1 < 0 and μ2 < 0 −→ stable node;
(b) μ1 > 0 and μ2 > 0 −→ unstable node;
(c) μ1 < 0 and μ2 > 0 or (μ1 > 0 and μ2 < 0) −→ saddle

point;
(d) the real parts of μ1 and μ2 are negative and the determi-

nant of matrix M is negative −→ stable spiral.

In the cases of (a) and (d), the fixed point is an attractor
whereas in the cases of (b) and (c) it is not.
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