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Abstract In quantum computing, nice error bases as gener-
alization of the Pauli basis were introduced by Knill. These
bases are known to be projective representations of finite
groups. In this paper, we propose a group representation
approach to the study of quantum stabilizer codes. We utilize
this approach to define decoherence-free subspaces (DFSs).
Unlike previous studies of DFSs, this type of DFSs does not
involve any spatial symmetry assumptions on the system-
environment interaction. Thus, it can be used to construct
quantum error-avoiding codes (QEACs) that are fault tolerant
automatically. We also propose a new simple construction of
QEACs and subsequently develop several classes of QEACs.
Finally, we present numerical simulation results encoding
the logical error rate over physical error rate on the fidelity
performance of these QEACs. Our study demonstrates that
DFSs-based QEACs are capable of providing a generalized
and unified framework for error-avoiding methods.

1 Introduction

In quantum computation/communication systems, it is crit-
ical to maintain the coherence of a quantum system [1]. In
practice, however, decoherence coming from the unwanted
interaction between the system and the environment will col-
lapse the state of the quantum communication/computation,
thus making the information harder to correct [2]. Decoher-
ence has been recognized as a major and un-ignorable prob-
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lem in practical applications [3]. Quantum error-correcting
codes (QECCs) have become the most efficient way to com-
bat decoherence [4]. However, QECCs are rather costly in
quantum computing resources [5]. To protect a single quan-
tum bit (qubit) of information from suffering general single-
qubit errors, at least five qubits are needed [6]. An alternate
quantum code exists, called “quantum error-preventing or
error-avoiding code (QEAC)”, which is capable of combating
decoherence and has exhibited the advantage of being easy-
to-use [7–9]. It must be noted that quantum error-avoiding
codes (QEACs) are mainly designed based on collective
decoherence [10]. Furthermore, collective decoherence is
possible for adjacent qubits due to the qubits coupling to
the same environment. For collective decoherence, on the
other hand, there exist coherence-preserving states. There-
fore, in QEACs, arbitrary input states can be encoded into
superpositions of the coherence-preserving states.

From quantum coding theory, it is well known that a code
is capable of correcting the linear span of these error opera-
tors if it can correct a set of error operators. Therefore, it is
sufficient to confine our attention to errors that form a uni-
tary basis of vector space of linear operators. A special type
of basis of unitary operators called a “nice error basis” has
been investigated [11]. In this basis, the number of known
index groups for nice error bases are extended by exploit-
ing the connections between groups of central type and their
Sylow subgroups. In general, nice error bases are parame-
terized by a group. Furthermore, the conjecture that every
nice error basis is equivalent to a shift-and-multiply basis
has been proved to be false [12]. In this paper, we will show
that nice error bases have more structures. We also prove
that nice error bases are faithful irreducible projective rep-
resentations that are induced from finite groups. Thus, the
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knowledge of these groups is sufficient to construct the cor-
responding error bases. Without loss of generality, we may
assume that the associated abstract error group is finite if we
consider nice error bases up to equivalence [4].

The group structure associated with nice error bases is
helpful in constructing QECCs. Currently, the stabilizer for-
malism is regarded as the most striking development in
QECCs, whereby codewords are specified by Abelian sub-
groups and the stabilizers [13–16]. A stabilizer code is usu-
ally given by a selforthogonal(with respect to the trace inner
product) additive code over GF(4). It can also be given by
a self-orthogonal (with respect to the symplectic inner prod-
uct) linear code over GF(2), where information is encoded
in linear subspaces of the entire Hilbert space. In this man-
ner, “errors” induced by the interaction with the environment
can be detected and corrected. The essential point resides in
the fact that detected errors belonging to the class of errors
correctable by the given code, must be found without gaining
any information as regards the actual state of the computing
system prior to corruption. Otherwise, this would lead to a
further decoherence [17].

Nice error bases are also of interest in the theories of
noiseless subsystems (NS) and decoherence-free subspaces
(DFSs) [18–20]. For instance, NS and DFSs are two standard
coding methods used to implement collective decoherence.
The idea is described as follows: in the presence of such a
“coherence” environmental noise, one can design states that
are hard to corrupt rather than states that can easily be cor-
rected. In other words, the present approach consists of an
intrinsic stabilization of quantum information and it is com-
plementary to error correcting. We are interested in simple
implementation of DFSs for the quantum channels with a
common error on each qubit. From the above-mentioned dis-
cussion, an error group is a finite group of unitary operators
generated by nice error bases, and a stabilizer construction
can also be derived from nice error bases. We next propose
a group representation approach to the construction of quan-
tum stabilizer codes. Meanwhile, the group representation of
quantum stabilizer codes is kept unchanged so as to preserve
coherence states. All the coherence-preserving states consti-
tute DFSs, which can be used to construct QEACs that are
fault tolerant automatically.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the group representation of quantum stabi-
lizer codes. Section 3 defines DFSs. In Sect. 4, a new simple
construction of QEACs is proposed, followed by developing
several classes of QEACs from this construction. Finally,
Sect. 5 concludes this paper.
Notation Lowercase bold letters are used to denote opera-
tors or vectors and uppercase bold letters denote matrices.
Superscript †, T , and ∗ denote Hermitian transpose, trans-
pose, and conjugate, respectively. w̄ complex conjugate of w.
Furthermore, we use Tr(·), |·〉, 〈·|, 〈·|·〉 to denote the matrix

trace, the bra, the ket, and the Dirac inner product, respec-
tively. We use I to denote an identity matrix, use U to denote
an unitary operator. Finally symbol “≡” stands for “defined
as”.

2 Group representation of quantum stabilizer codes

In this section, we firstly parameterize the nice error bases,
which make it easy to connect the quantum mechanics. In
quantum error-correcting codes, the coding structure to store
quantum information is a subspace of the total Hilbert space
of the physical qubits, thereafter referred to as the code space
C . After that, we will construct quantum stabilizer codes from
a finite error group E . The main properties of such a stabilizer
code are determined by applying results from error group of
nice error bases. Finally, we obtain the group representation
of quantum stabilizer codes.

2.1 Error group of nice error bases

A nice error basis in a n-dimensional Hilbert space H is
defined as a set ε ≡ {Eg}g∈G , where Eg is unitary on
H , G denotes a group of order n2 with identity element 1,
Tr(Eg) = nδg,1 and EgEh = wghEg+h , where wgh is a
nonzero complex number depending on (g, h) ∈ G×G. Fur-
thermore, the function w: G × G → G× is called the factor
system of E . We call G the index group of the error basis ε

[21]. In addition, error bases with Abelian index groups are
called nice error bases that generate a finite group of unitary
operators U , which comprise scalar multiples of the identity
[4]. Meanwhile, an error group is a finite group of unitary
operators generated by both a nice unitary error basis and
multiples of the identity.

Theorem 1 If a nice error basis ε hasanAbelian indexgroup
G [22], then for any nonzero h ∈ G we have
∑

g∈G
wghw̄hg = 0. (1)

Proof As the property of error bases, ∀g, h ∈ G, EgEh =
ωghEg+h , we have the following equalities:

EaEbEh = (wbhw̄hb)EaEhEb

= (wahw̄ha)(wbhw̄hb)EhEaEb, (2)

EaEbEh = wab(w(a+b)hw̄h(a+b))EhEa+b

= (w(a+b)hw̄h(a+b))EhEaEb. (3)

Combining (2) with (3), we obtain

(wahw̄ha)(wbhw̄hb) = w(a+b)hw̄h(a+b). (4)

If Gh is defined as Gh ≡ wghw̄hg , from (4) we can observe
that Gh is a subgroup of cyclic group, because wgh generates
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a cyclic group [4]. We can define an operation ◦ on the set
L = Gh × G as

(a, g) ◦ (b, h) = (abw(g, h), gh), a, b ∈ Gh . (5)

It turns out that L is a finite group with respect to this multi-
plication, which is called the w-covering group ofG. Without
loss of generality, we assume that the factor system w is of
finite order, which ensures that the abstract error group is
finite. For instance, if we take the n-fold tensor product of
matrices [23]

g = (
√−1)m0σ 1 ⊗ σ 2 ⊗ · · · ⊗ σ n, (6)

where m0 ∈ (0, 1, 2, 3) and σ i ∈ {I, X,Y , Z}∀i , from (6),
we may obtain a nice error basis for a system of n qubits.
The abstract error group L generated by these matrices is
isomorphic to a so-called extraspecial 2-group.

Theorem 2 A group L is an abstract error group with
Abelian index group G ≡ L/Gh if and only if the following
conditions are satisfied simultaneously: (1) L is nilpotent of
class at most 2, and (2) Gh is a cyclic group.

Proof We denote L ′ the commutator subgroup by using

L ′ = 〈[g, h] = g−1h−1gh|g, h ∈ L〉. (7)

Recall that a quotient group L/S of L is Abelian if and only
if the stabilizer subgroup S of L contains the commutator
subgroup L ′, for a subgroup S < L , let us define stabilizer
code as

C(S) ≡ {|ψ〉, g|ψ〉 = |ψ〉,∀g ∈ S}, (8)

where C(S) is non-trivial and has dimension 2k if only if
−I /∈ S is satisfied and at the same time S is generated by a
set of n − k independent generators M.

We use a z-polynomial to describe the tensor product of
error operators Eg , i.e. Eg = Eg1 ⊗Eg2 ⊗· · ·⊗Egn . In order
to simplify the description, zg1

1 zg2
2 · · · zgnn is denoted by zg .

All zg’s are constituted product group Z , where Z ⊂ E . For
any g ∈ S, h ∈ L , we can obtain a mapping χh on complex
number field as

χh(z
g) = Tr(E†

hE
†
gEg/n

n). (9)

By substituting (2) and (3) into (9), we obtain

χh(z
g) =

n∏

i=1

whi gi w̄gi hi . (10)

In code space C , we redefine (8) as

C(S) =
∑

g∈S
cg fC (g), (11)

where cg is the weight of code satisfying cg = χh(zg),
and fC (g) is polynomial of code. The detailed construction
method will be addressed later.

2.2 Group representation of quantum stabilizer codes

When an error operator varies the original state of a qubit,
the corrupted state may fall either inside or outside the code
space. The former case occurs in the classic coding literature
as undetectable errors, a type of errors which exceed the error-
correction capability of any code. This should occur very
rarely in well-designed codes. However, this can be achieved
by measuring the eigenvalue array, as known as the syndrome
of a given state. Furthermore, a syndrome identifies the error
operator that can counteract the specific error, which can be
further used to the corrupted state in order to recover the
original state.

Motivated by this, we start with the basic notions of clas-
sical and quantum coding theory. We may denote the Galois
field of qm elements by Fqm , where q is a prime number and
m is an integer [24]. Let a1, a2, . . . an denote the elements of
a basis of Fqm over Fq , where ai ∈ Fq . By fixing a nonzero
Fq -linear function Tr : Fqm → Fq (called a trace function),
Tr(·) thus satisfies

Tr(a + b) = Tr(a) + Tr(b), (12)

Tr(aia) = aiTr(a), (13)

for ∀a, b ∈ Fqm . Note that, for x ∈ Fqm , another trace func-
tion can be defined by Trx (a) = Tr(xa). For any a, b from
C and any g, h ∈ Fqm , ag+bh is also obtained from C (If C
is qm-linear, we just call it linear). We may simply say that
C is an [n, k]qm code, and then use RC = R = 1

n logqm |C |,
d(C) = d, and δ(C) = δ = d/n to denote its transmis-
sion rate, minimum distance, and relative minimum distance,
respectively. Hence, the weight distribution of a linear code
C of length n is defined by

Ai (C) = {ag + bh ∈ C, wt (ag + bh) = i}, i = 1, . . . , n,

(14)

where wt (·) is the weight function.
A qm-dimensional Hilbert space H can be identified with

the n-fold tensor product of Hilbert spaces [25]. The qm-
dimensional spaces are thought of as the state spaces of qm-
ary systems, and in the same way the value 0 and 1 can be
thought of as the possible states of a bit in a bit string. We
now define an explicit error basis for qm-ary quantum codes.
Let T and R be the linear operators acting on the space C
that are defined by the matrices with entries

T i,i = δi,i−1 mod n, Ri,i = ξ iδi,i , (15)

where ξ = e
√−12π/n , and the indices range from 0 to n − 1

[25].
As discussed in the previous section, it is enough to con-

sider the error operators

Eab = T
z
g1
1
R
z
g1
1

⊗ T
z
g2
2
R
z
g2
2

⊗ · · · T z
gn
n
Rz

gn
n

. (16)
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The set of operators is then given by

ε = {ξ i Eab|1 ≤ i ≤ n}. (17)

Quantum stabilizer codes are defined as joint eigenspaces of
the operators of a commutative subgroup L ′ in (7) of ε. With-
out loss of generality, we assume that Z ∈ L ′. Otherwise, we
should extend L ′ by Z . Recall that the characters of L ′ with

pointwise multiplication form a group, i.e.
�

L , which is iso-

morphic to L ′. Let
�

Z be the group of linear characters of Z .
The map, i.e. |ψ〉, will restrict a character of L ′ to a character

of Z is a group homomorphism
�

L → �

Z . The corresponding
code space is then denoted by C ′.

To connect and compare quantum error-correcting codes
with classic error-correcting codes, we thenceforth denote a
classic code that encodes k binary bits to n binary bits as
an [n, k] code. Furthermore, we denote a quantum code that
encodes k qubits to n qubits as an [[n, k]] code [26,27]. If a
code has minimum distance d, it is capable of detecting any
d − 1 and correcting any

⌊ d−1
2

⌋
errors. In [28], Gottesman

has proposed a class of stabilizer codes, which are one-qubit
error correcting, saturate the quantum Hamming bound, and
assign distinct “error syndrome” to each correctable error
operator according to a certain rule.

The encoding of a stabilizer codeC(S) through a standard
generator matrix is summarized as follows. Considering a
stabilizer group S whose elements, when represented as in
(6), have m0 = 0. Let |0〉 ≡ |0〉⊗n , referred to as “seed”
state. Define

|ψ〉 ≡ 2−d
∑

g∈S
g|0〉. (18)

The set of 2k vectors will be

{|ψc1c2···cg 〉, cg ∈ {0, 1}}, (19)

where |ψc1c2···cg 〉 ≡ χh(z
g1
1 )χh(z

g2
2 ) · · · χh(z

gn
n )|ψ〉, is a

basis of the stabilizer code C(S). The encoding process will
be accomplished by a linear transformation from the state
space Z to the stabilizer code C(S) given by |c1c2 · · · cg〉 →
|ψc1c2···cg 〉, cg ∈ {0, 1}. When encoding in this way, cg =
χh(zg) is called “seed generators”. Noted that the encoding
process can involve only primary generators and seed gen-
erators since g|0〉 = |0〉, where g is generated by secondary
generators.

From (16), we observe that if any two error operators Ea

and Eb are in Gh , with each item having weight less than or
equal to t∗ (where t∗ = ⌊ d−1

2

⌋
), it satisfies

E†
aEb /∈ C(S)\S, (20)

for a certain stabilizer group S, with C(S) being at least t∗-
qubit error correcting. As in (14), for any g ∈ S, h ∈ L , we
may define fg: Gh → Z

fg(h) =
{

0 if gh − hg = 0
1 if gh + hg = 0.

(21)

Furthermore, for a given generating set of a stabilizer group S
with n independent generators g1, g2, . . . , gn , we may define
fS ; Gh → Z by fS(h) = ( fg1(h), fg2(h), . . . , fgn (h))T,
which is called the syndrome ofh with respect to the stabilizer
group S. Furthermore, fS(h) is also denoted by

fS(h) = HΛn×(n−k) fC (S)T, (22)

where fC (S) = ( fC (g1), fC (g2), . . . , fC (gn))T, Λn×(n−k)

is an error syndrome matrix of a qubit, and H is the check
of S corresponding to the generators g1, g2, . . . , gn . It can
be inferred that fS is a group homomorphism [22]. In (22),
the columns of check matrix H of S are just the syndromes
of basis operators α1,α2, . . . αn , β1,β2, . . . βn . Thus to
establish a check matrix H of a target stabilizer group
S, we need to assign 2n syndromes fS(α1), . . . , fS(αn),
fS(β1), . . . , fS(βn) as its columns and to verify this matrix
to be commutative. Since fS(h) = (0, 0, . . . , 0)T can
be satisfied if and only if h ∈ C(S), from (20), stabi-
lizer code C(S) will be at least t∗-qubit error correcting
if fS(E†

aEb) �= 0 for any two error operators Ea =
(
√−1)m0αuβv , Eb = (

√−1)m0
′
αμβν and (u, v) �=

(μ, ν). Let u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn),
μ = (μ1, μ2, . . . , μn) and ν = (ν1, ν2, . . . , νn) be satis-
fied simultaneously. Since fS is group homomorphism and
gwuv, gwμν ≤ t∗ [16], each of fS(E) is given by

fS(Ea) = fS((
√−1)m0αuβv)

=
n∑

i=1

ui fS(αi ) +
n∑

i=1

vi fS(β i ), (23)

fS(Eb) = fS((
√−1)m0

′
αμβν)

=
n∑

i=1

μi fS(αi ) +
n∑

i=1

νi fS(β i ). (24)

Hence, fS(E†
aEb) is a sum of no more than 4t∗ terms and

can be represented as

fS(E†
aEb) =

n∑

i=1

(ui + μi ) fS(αi ) +
n∑

i=1

(vi + νi ) fS(β i ).

(25)

In (22), H is linearly independent if the elements of S can be
viewed as the realization of an (i.i.d.) Bernoulli process [29].
We can model the elements of S as outcomes of a Bernoulli
process with parameter p. The weight-d parity-check matrix
H leads to

p = fd(ρ) ≡
∑

i∈O

(
d
i

)
ρi (1 − ρ)d−i = 1 − (1 − 2ρ)d

2
,

(26)
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where ρ denotes the probability of error of a qubit, and O is
the set of positive odd integers not larger than d.

In (23), we assume that αu and βv are two concatenated
2n-dimensional vectors of a Pauli block matrix. Let

�
αu and

�

βu be two concatenated 2n′-dimensional vectors of a Pauli
block matrix. In order to link αu and

�
αu together, we define

a 2(n + n′)-dimensional vector αu = αu ⊕ �
αu . In the same

way, we also obtain another 2(n + n′)-dimensional vector

βu = βu ⊕ �

βu . After that, we have the following lemma for
constructing the stabilizers with large block length.

Lemma 1 According to the above-mentioned vectorsαu and
βu, we have [30]

αu · βu = 0. (27)

Next, we will construct the stabilizers by designing an
Abelian group from Pauli block matrices with size 2n by
2n . When n = 1 is satisfied, an arbitrary symmetrical Pauli
block matrix J2 with size 2 by 2 can easily be constructed as

J2 =
[

σ i σ j

σ j σ i

]
, (28)

where αu and βv are two concatenated 4-dimensional vec-
tors of two row operators αu = σ i ⊗ σ j and βv = σ j ⊗ σ i ,
respectively. It implies that αu and βv commute. As an exam-
ple, for i = 1 and j = 2, we obtain two concatenated vectors
α1 = (10|01) and α2 = (01|10), where two operations are
α1 = σ 1 ⊗ σ 2 and α2 = σ 2 ⊗ σ 1, respectively.

In order to construct Pauli block matrix with a higher size,
we introduce the concept of Kronecker product of matrices
A = (ai j )r×l and B = (bi j )s×t , i.e.

A ⊗ B =

⎡

⎢⎢⎢⎣

Ab11 Ab12 · · · Ab1t

Ab21 Ab22 · · · Ab2t
...

... · · · ...

Abs1 Abs2 · · · Abst

⎤

⎥⎥⎥⎦ . (29)

The key properties of the Kronecker product will be used
throughout the rest of the paper. Now let us go back to (22),
Λn×(n−k) is error syndrome matrix of a qubit. We define error
syndrome for any error operators Eg as

sEg =
(
s1
Eg1

, s2
Eg2

, . . . , sn−k
Egn−k

)
∈ Fn−k

2 . (30)

In (8), S is generated by relying on a set of n−k independent
generators M and is denoted by S = {M1, M2, . . . , Mn−k}.
If the commutation relation is satisfied, i.e. [Eg, M j ] = 0,

then s jEg j
= 0. Otherwise, if [Eg, M j ] = 1 is satisfied, then

s jEg j
= 1, j = 1, 2, . . . , n − k.

A quantum state is vulnerable to external noise. Thus, the
code of quantum state must be protected from it in quantum
information. One may apply a decoding operation to quantum
state in order to extract the error syndrome and determine the

presence of any errors. We assume that the x th qubit generates
bit-flip error, the corresponding error operator is defined as

X x = I⊗(x−1) ⊗ X ⊗ I⊗(n−x), (31)

and the error syndrome of X x is thus given by

sX x =
(
s1
X x

, s2
X x

, . . . , sn−k
X x

)
∈ Fn−k

2 . (32)

The error syndrome matrix of a bit-flip error is given by

sX =

⎡

⎢⎢⎢⎣

sX1

sX2
...

sXn

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎣

s1
X1

s2
X1

· · · sn−k
X1

s1
X2

s2
X2

· · · sn−k
X2

...
... · · · ...

s1
Xn

s2
Xn

· · · sn−k
Xn

⎤

⎥⎥⎥⎥⎦
. (33)

More generally, if multiple qubits generate bit-flip errors
simultaneously, then the error operator is denoted by

EX = i cX
n∏

v=1

Xav
v , (34)

where av ∈ F2, cX ∈ {0, 1}. Define a = [a1, a2, . . . , an],
we can obtain the following relation:

EXM j = (−1)

n∑
u=1

aus
j
Xu

M j EX . (35)

Using a similar method, we can obtain the error operator of
a bit phase-flip error as

Zz = I⊗(z−1) ⊗ Z ⊗ I⊗(n−z). (36)

The corresponding error syndrome of Zz and the error syn-
drome matrix are, respectively, given by

sZz = (s1
Zz

, s2
Zz

, . . . , sn−k
Zz

) ∈ Fn−k
2 , (37)

sZ =

⎡

⎢⎢⎢⎣

sZ1

sZ2
...

sZn

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎣

s1
Z1

s2
Z1

· · · sn−k
Z1

s1
Z2

s2
Z2

· · · sn−k
Z2

...
... · · · ...

s1
Zn

s2
Zn

· · · sn−k
Zn

⎤

⎥⎥⎥⎥⎦
. (38)

If a qubit generates bit-flip error and bit phase-flip error
simultaneously, the corresponding error operator and error
syndrome are, respectively, given by

Ym = I⊗(m−1) ⊗ Y ⊗ I⊗(n−m), (39)

sYm =
(
s1
Ym

, s2
Ym

, . . . , sn−k
Ym

)
∈ Fn−k

2 , (40)

where Ym = iZmXm , and s jYm
= s jXm

⊕ s jZm
= s jXm

+ s jZm
.

Therefore, the linear relation among sYm , sXm and sZm can
be expressed as

sYm = sXm + sZm . (41)

If multiple qubits generate bit-flip error and bit phase-flip
errors simultaneously, the corresponding error operator Eg

can be denoted by
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Eg = i cg
n∏

v=1

Xav
v

n∏

l=1

Zbl
l , (42)

where av, bl ∈ F2. Define a = [a1, a2, . . . , an], b =
[b1, b2, . . . , bn], we can obtain the relation as follows:

EgM j = (−1)bs
j
Zas

j
X M j Eg. (43)

From (43), we have

s jEg
= as jX + bs jZ. (44)

The error syndrome matrix of Eg is then given by

sEg = asX + bsZ, (45)

where sEg , sX , sX ∈ Λn×(n−k) are defined in (22). From
(45), there exist n − k possible ways in which error syn-
dromes, ε( j), occur in each transmitted n-bit vector. These
error patterns occur with probability

p(ε( j)) = αwt ( j) · (1 − α)n−wt (ε( j)), (46)

where α is the crossover probability [30], and wt (ε( j)) is the
weight of ε( j). Basically, each error pattern results in one of
the 2m syndromes, which is produced as follows:

Sε( j) = ε( j) × HT. (47)

Any error pattern, which is a codeword, has a syndrome equal
to zero. Since the code is linear, for each particular syndrome,
sEg , there exist n − k different error patterns, ε( j), that pro-
duce the same syndrome, and the probability of each syn-
drome is given by

p(sEg ) =
n−k∑

j=1

p(ε( j))δ(Sε( j) − sEg ), (48)

where δ(·) denotes the Dirac function.

2.3 Group projective representation of quantum stabilizer
codes

Recall that the group E has a faithful irreducible ordinary rep-
resentation χ : E → U of large degree deg = (E; Z(E))1/2.
The errors are expressed as linear combinations of the unitary
n × n matrices χ(g) representing elements g of the abstract
error group E .

Lemma 2 Let N be a finite group N ⊂ E, and letχ (χ ⊂ S)

be an irreducible character of N that is faithful on Z =
Z(E)∩N . If z ∈ Z , z �= 1, and n ∈ N , then χ(zn) = tχ(n)

for t �= 1.

Proof The restriction of φ to N can be expressed as a sum
of characters χ g(x) = χ(gxg−1) conjugated to χ

(χ ↓ N )(x) = m
∑

χ g(x), (49)

where χ ↓ N denotes the restriction of χ to N . The conju-
gated characters satisfy

χ g(z) = χ(gzg−1) = χ(z), (50)

for all central elements z ∈ Z . Hence,

(φ ↓ N )(z) = |E |mχ(x), (51)

for all z ∈ Z , which proves the lemma.

Lemma 3 Let S be a certain quantum stabilizer group in
(21). It is assumed that χ is an irreducible projective repre-
sentation of S consisting of unitary matrices, implying that
{χ(g) : g ∈ G} is a nice error basis and χ is an irreducible
projective representation of S.

Proof Equations (20) and (51) have the same meaning: that
{χ(g) ∈ U : g ∈ G} form a projective representation χ of S.
It is assumed that χ is an irreducible projective representation
of S consisting of unitary matrices. Let τ be the projective
character of χ . Since χ is irreducible and τ(1)2 = n2 = |S|,
we obtain τ(g) = 0 for all g = 1. Conversely, suppose
that χ is the projective representation formed by a nice error
basis. In this case, its projective character τ is invariant under
projective equivalence. When τ(g) = 0 for all g �= 1,
τ(1)2 = n2 = |S|, we conclude that χ is irreducible.

The above-mentioned proof showed that χ is an irre-
ducible projective representation of S, leading to

εχ = χ(1)

|N |
∑

n∈N
χ(n−1)χ(n), (52)

where εχ is an orthogonal projector onto Q. The available
code Q is used to correct a set of errors � ⊂ E , and the
dimension of Q is denoted nχ(1).

Once a quantum stabilizer code on H⊗n has been con-
structed in the previous sections, the inertia subgroup can be
applied to find operations that can be implemented transver-
sally. This ensures that these operations can be implemented
with fault tolerance. Suppose that C = C(χ) for an irre-
ducible character of the normal subgroup N of ε⊗n . Let
H be Hilbert space acted on by ε and U(H) the unitary
group on H . The group of transversally implementable oper-
ations, O(C), consists of a unitary operator U of the form
U = U1 ⊗ Un ∈ U(H)⊗n with UC → C . The question
of “which U on C” occurs in O(C) is of great interest when
utilizing C for fault-tolerant computation.

In (18), |ψ〉 is an initial state in C(S). Let |ψ ′〉 denote
the state after an interaction with the environment. For error
detection, it suffices to measure whether |ψ ′〉 is in C(S). If
the projection operator (also called the density operator) ρ is
detectable and the measurement outcome is to project |ψ ′〉
into C(S), the resultant state is |ψ〉. What we have known is
that the other measurement outcome is an error occurred.

To correct errors, it requires that we restore |ψ ′〉 accord-
ing to a syndrome representation of the Hilbert space, H ≡
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S ⊗ C(S) + R. A suitable syndrome representation can
be gained from ε/T (χ) (where T (χ) is inertia subgroup,
E /∈ T (χ) ∈ Z ) as follows: let {g0, g1, . . .} be a set be
Hilbert space spanned by orthonormal states labeled |gi 〉,
and let | j i 〉 denote an orthonormal basis of C(S). An iso-
morphism Ω: S ⊗ C(S) → H is given by

Ω(|gi 〉| j i 〉) ≡ gi | j i 〉. (53)

The choice of gi implies that the subspaces giC(S) partition
H into equal dimensional orthogonal subspaces (the invari-
ant subspaces of N associated with the distinct induced irre-
ducible characters). In order to recover |ψ〉 from |ψ ′〉, one
first measures the syndrome by projecting |ψ ′〉 into one of
the giC(S). If the measurement outcome is in giC(S), then
we can apply g−1

i to the state. Note that the giC(S) are inde-
pendent of the choice of representation gi ∈ gi T (χ), and
only the restoration of the state to C(S) will depend on this
choice.

H is used to denote the Hilbert space for some quantum
system and it can be decomposed as H = (H A ⊗ HB) ⊕ K
with dim(H A) = m, dim(HB) = n and dim(K ) =
dim(H) −mn. We assume that H A and HB are spanned by
the orthonormal sets {|gi 〉}, {| j i 〉}, respectively. We define
the projection operator

ρ =
∑

i
|gi 〉〈gi | ⊗ IIB ⊕ 0dim(K ), (54)

leading to ρ(H) = H A ⊗ HB . Hereafter, we will discuss
the case when dim(K ) = 0. Every such channel admits an
operator sum representation as

ε(σ ) =
∑

i

Eiσ E†
i , (55)

where Ei denotes the error operator. ��

3 Definition of decoherence-free subspaces

Noted that quantum system is fragile for external noise.
Therefore, the quantum system must be protected in both
quantum information processing and quantum computation
[31]. In practice, the majority of quantum systems employed
for these purposes are microscopic in size (typically a few
micrometers). In contrast, environmental noise, such as elec-
tromagnetic waves, has a wavelength about a few centimeters
or more. Therefore, it is natural to assume that all the qubits
suffer from the same error operator. The DFSs and NS are
two standard coding methods used to correct collective errors
[32–34]. The scheme has been explained using the operator
sum representation of the quantum channel (55). In (55), the
error operators Ei in E can be expressed as multiples of an
operator of the form ε⊗n ∈ H⊗n .

Let C(S) be the 2n-dimensional space spanned by the
singlets |ψ〉. If |ψ (Z)〉 ∈ C(S) is satisfied, then |ψ ′〉 ∈ C(S),

and one may obtain Hl |ψ (Z)〉 ⊗ |ψ ′〉 = 0. It leads to the
following result:

Theorem 3 Let EN be the manifold of states built over the
singlet space C(S). If ρ = ∑

i |gi 〉〈gi | ⊗ IIB ⊕ 0dim(K ) ∈
EN is satisfied, then, for any initial bath state, ρB, we have
LρB
t (ρ) = ρ, ∀t > 0.

Proof Let ρB = ∑
i | j i 〉〈 j i |, and ρ = ∑

i |gi 〉〈gi | ⊗ IIB ⊕
0dim(K ) ∈ EN . If ρ(t) = U(t)ρ ⊗ ρBU

†(t) is satisfied, we
have

ρ(t) =
∑

i j

ρi j × U(t)|g(n)
i 〉 ⊗ | j i 〉 (〈g(n)

i | ⊗ 〈 j†
i |)U†(t),

(56)

and taking the trace over the bath one gets

ρ(t) =
∑

i j

ρi j |g(n)
i 〉〈g(n)

i | ⊗ |Tr(U(t)| j i 〉 〈 j†i |U†(t))| = ρ.

(57)

Theorem 3 can be rephrased in the following way, which
emphasizes its strength: In the manifold of the states over
HS , there must exist a submanifold EN of stationary states of
the Liouvillian evolution. Therefore, the dynamics over EN

is a fortiori unitary. Note that it holds for arbitrary strength
of the system–bath coupling. This evokes the possibility of
encoding in EN decoherence-free information, namely, the
states of EN realize a DFS [17,35].

If we begin deriving the master equation for collective
error, a collective error of qubits is caused by the interaction
with noise environment. The system Hamiltonian H l(t) over
singlet space C(S) is then given by

H l(t) =
∑

i j

[gi e−√−1ρ(t)e−√−1( fi− f0)t j†
i , a j ), (58)

where a j is the annihilation operator of the bath mode, and fi
and f0 denote frequencies of the bath mode and of the qubits,
respectively. The corresponding Lindblad master equation is
expressed as

d

dt
ρ(t) = −

∞∫

0

dςTr([H l(t), [H l(t − ς), ρ(t) ⊗ ρB]]).

(59)

Substituting (58) into (59), we obtain the following Lindblad
master equation:

d

dt
ρ(t) = √−1

∑

i j

δi j [g†
i g j , ρ(t)]

+
∑

i j

γi j [2 j iρ(t) j†
i − j†

i j iρ(t) − ρ(t) j†
i j i ],

(60)
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where γi j is the coefficient 2n-dimensional space spanned by
the singlets |ψ〉. As described previously, quantum stabilizer
codes are defined as joint eigenspaces of the operators of a
commutative subgroup in (7), and | j i 〉 denote an orthonormal
basis of C(S) in (53). Hence, both j i and j†

i satisfy the

commutation relations, i.e., [ j†
i , j ] = 0. Substituting (56)

into (60), the Lindblad master equation can be rewritten as
d

dt
ρ(t) = √−1

∑

i j

δi j [g†
i g j , ρ(t)], (61)

where j†
i and ρ(t) jointly satisfy the commutation relations

[ j†
i , ρ(t)] = 0. Hence, LD(ρ) = ϒ[2 j iρ(t) j†

i − j†
i j iρ(t)−

ρ(t) j†
i j i ] = 0 (ϒ is the decay rate of the transmission line

resonator) is satisfied. If ρ satisfies LD(ρ) = 0, the space
becomes DFS [35,36].

Theorem 4 For quantum stabilizer code C(S) in (22) is
nonempty linear subspace of S, if and only if C(S) is
eigenspace of all Kraus operators K i , i.e. |ψ〉 ∈ C(S),

K i |ψ〉 = gi |ψ〉, where gi is irrelevant to |ψ〉, in which
case C(S) is a DFS of S.

Proof We first of all prove the necessity. For |ψ〉 ∈ C(S),
we have
∑

i

|〈ψ |K i |ψ〉|2 = 1. (62)

Furthermore, K i |ψ〉 can be decomposed as [17]

K i |ψ〉 = gi |ψ〉 + g⊥
i |ψ⊥〉, (63)

where 〈ψ |ψ⊥〉 = 0, gi g⊥
i is constant coefficient. Note that

K i satisfies the normalizing condition and is denoted

〈ψ |
(

∑

i

K †
i K i

)
|ψ〉 = 1. (64)

Substituting (63) into (64), we can obtain

K i |ψ〉 = gi |ψ〉. (65)

Suppose that |ψ1〉, |ψ2〉 ∈ C(S) and K i |ψ i 〉 = gi |ψ i 〉
(i = 1, 2) can be satisfied, the coherence superposition
state satisfies |ψc〉 = γ1|ψ1〉 + γ1|ψ1〉 ∈ C(S), where
|γ1|2 + |γ2|2 = 1. Substituting |ψc〉 into (64), we have
∑

i
|(γ ∗

1 〈ψ1| + γ ∗
2 〈ψ1|) × K i (γ1|ψ1〉 + γ2|ψ1〉)|2 = 1.

(66)

Hence, for any ψ ∈ C(S), we have K i |ψ〉 = gi |ψ〉, thus
C(S) is eigenspace of all Kraus operators K i . We secondly
prove the sufficiency. We have

∑
i
|〈ψ |K i |ψ〉|2 = 〈ψ |

(
∑

i

K †
i K i

)
|ψ〉 = 1. (67)

Therefore, we use three methods to prove the statement of
“C(S) space is a DFS”. In fact, the definitions for DFSs are
equivalent over C(S) space. Since |ψ〉, H l(t) and ρ(t) can
describe DFSs from different views.

4 Quantum error-avoiding codes

In this section, we propose a new but simple construction
of QEACs and develop several classes of QEACs from this
construction.

4.1 Quantum stabilizer codes of QEACs

Quantum stabilizer codes C(S) are defined in the previous
section. The code construction method for obtaining codes is
based on the syndrome probability mass function of a code,
where a code extended in length is a function of the probabil-
ity mass function of the original code. For syndrome coding,
it implies that the syndrome probability mass function (48)
considers only error events with weight less than

⌊ d−1
2

⌋
. The

probability generating function of code can be given by

p(sEg ) =
n−k∏

j

[(1 − p(ε( j))+p(ε( j))sEg ] (68)

for a given syndrome segment st , an unencoded logical seg-
ment Lt , and memory states Mt−1 and Mt . Defining the set
{Ω(Mt−1, Mt , Lt , st )} to be the solutions of (68), the corre-
sponding weight is thus given by

⌊ d−1
2

⌋
. If the probability

generating function of code is given by

w(Mt−1, Mt ; Lt ) = − ln
∑

Ω(Mt−1,Mt ,Lt ,st )

p(sEg ). (69)

Given the seed transformation of (30), there exist n − k
different ways that make (46) fulfill with Mt−1 → X and
Mt → Z, corresponding to the four transformation rules
that are, respectively, given by

X IY → Y ZZ; XZX → Y I Z;
X I Z → Y ZY ; XZZ → Y IY , (70)

where all of these four rules involve the logical operator X . To
find a quantum stabilizer code C(S) with minimal possible
d, we consider a class of “equivalent transformations” on
stabilizer codes. Note that stabilizer operators must satisfy
stringent commutativity constraints in order to form a valid
quantum code [37,38]. In the case, a binary (n − k) × 2n
check matrix H = [HX |HZ] of a stabilizer codeC(S) will be
described as an (n−k)×n matrix H4 over GF(4) according
to the following mapping [39]:

(0|0) ↔ I ↔ 0, (1|0) ↔ X ↔ 1,

(0|0) ↔ I ↔ ω, (1|0) ↔ X ↔ �. (71)

We can multiply each column of H4 by ω or perform con-
jugation on it. Furthermore, we can also perform any com-
bination of conjugation and multiply by � or do nothing.
Therefore, for C(S), there exist 6n equivalent transforma-
tions. Equivalently, we have the following six transforma-
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tions on every element of a column of H4, respectively:

X → X Z → Z Y → Y , X → Z Z → X Y → Y ,

X → Z Y → X Y → Z, X → Y Z → Z Y → X,

X → Z Z → Y Y → X, X → Y Z → Y Y → Z.

(72)

From (72), there exist 3n equivalent transformations on H4

to be considered, corresponding to 3n transformations on the
check matrix H = [HX |HZ] over GF(2). We can always
transform a check matrix with r1 = n − k to a check matrix
with r1 ≤ n − k − 1. Hence, we can reconstruct an error
syndrome group in DFSs from (30) and (45). For example,
when k = 4, we have

|ψ1〉 = |0000〉 + |1111〉, |ψ2〉 = |0011〉 + |1100〉,
|ψ3〉 = |0101〉 + |1010〉, |ψ4〉 = |1001〉 + |0110〉, (73)

which denote the decoherence-free states, thus span
[|ψ1〉, |ψ2〉, |ψ3〉, |ψ4〉] forms a DFS of C(S) space, due
to the fact that

K i = K i,1 I4 + K i,2X4 + K i,3Y4 + K i,4Z4, (74)

leading to

K i |ψ1〉 = K i,1(|0000〉+| 1111〉) + K i,2(|1111〉+| 0000〉)
+K i,3(|1111〉+| 0000〉) + K i,4(|0000〉+| 1111〉)

= (K i,1 + K i,2 + K i,3 + K i,4)|ψ1〉. (75)

Using the same method, we can obtain

K i |ψ2〉 = (K i,1 + K i,2 + K i,3 + K i,4)|ψ2〉,
K i |ψ3〉 = (K i,1 + K i,2 + K i,3 + K i,4)|ψ3〉,
K i |ψ4〉 = (K i,1 + K i,2 + K i,3 + K i,4)|ψ4〉. (76)

When k = 3, we also have

|ψ1〉 = |000〉 + |111〉, |ψ2〉 = |011 > +|110〉,
|ψ3〉 = |010〉 + |101〉, |ψ4〉 = |100〉 + |011〉, (77)

where |ψ1〉, |ψ2〉, |ψ3〉, |ψ1〉 are decoherence-free states.
Relying on the above-mentioned methods, we can also con-
struct a DFS of the C(S) space.

From (76), we can prove that linear superposition states
of any decoherence-free states can be constructed DFSs of
the C(S) space. If the C(S) space has dimensional 2d , i.e.
dim(C(S)) = 2d , then the corresponding DFSs can encode
k − d qubits. If dim(C(S)) = 2d−1, then DFSs will encode
k−d+1 qubits. For example, when k = 5 and dim(C(S)) =
2, E5 = [I I I I I, XX I I I, X IX I I, . . . , I XXXX], where
even qubits generate a bit-flip error, the corresponding
decoherence-free states are, respectively, denoted by

|ψ0〉 = |00000〉 + |11000〉 + |10100〉 + |10010〉
+ |10001〉 + |01100〉 + |01010〉 + |01001〉

+ |00110〉 + |00101〉 + |00011〉 + |11110〉
+ |11101〉 + |11011〉 + |10111〉 + |01111〉, (78)

|ψ1〉 = |00001〉 + |11001〉 + |10101〉 + |10011〉
+ |10000〉 + |01101〉 + |01011〉 + |01000〉
+ |00111〉 + |00100〉 + |00010〉 + |11111〉
+ |11100〉 + |11010〉 + |10110〉 + |01110〉. (79)

The above-mentioned examples show that we can derive
QEACs from DFSs of C(S). We can construct other DFSs of
C(S) using similar methods. Furthermore, QEACs provide
the generalized and unified framework for error-avoiding
methods.

4.2 Stabilizer groups of QEACs

The most prominent open problem concerning operator
QEACs is stabilizer groups that are more interesting than the
stabilizer codes [40,41]. Therefore, we shall consider a sub-
group operator of QEACs. There now exist two ways to con-
struct subgroup operator of QEACs: in parallel or in series.
In the following, our primary interest resides in parallel con-
struction. The parallel implementation has the advantage that
it requires only three basic steps and thus is very efficient. Its
disadvantage is that it may be hard to implement in practice
because it requires simultaneous control over many qubits.

Let us introduce a simple example illustrating the nota-
tion of DFSs using normalizer elements which are two-body
Hamiltonians, e.g. the stabilizer group Q4 = {I⊗4,X⊗4,

Y⊗4,Z⊗4}. As Hamiltonians, X̄k and Z̄k are valid two-body
interactions and hence can be used directly to generate the
encoded SU(2) group on each encoded qubit:

X̄1 = XXII, Z̄1 = IZZI, X̄2 = IXXI, Z̄2 = ZZII,

(80)

where X̄1 and Z̄1 act as a bit flip and a phase flip on the first
encoded qubit, respectively.

Recall the multiplicity formula for unitary irreducible rep-
resentation as [42]

mk = 1

N

N∑

n=1

χ [Γ k(Gn)]∗χ [Γ k(Gn)], (81)

where mk denotes the number of times Γ k appears in the
given irreducible representation, χ [Γ k(Gn)] is the character
of the Γ k irreducible representation on the group elementGn ,
and χ [Γ (Gn)] is the character of Gn in the given irreducible
representation Γ .

The normalizer in (80) contains two X̄k and Z̄k operations,
since Xk (Zk) all commute, the corresponding gates can be
implemented in parallel. In other words,
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Fig. 1 Parallel implementation of θZ̄ for the Q4 subgroup

UX ≡ ⊗
k

exp
(
i
π

4
Xk

)
= exp

(
i
π

4

∑

k

Xk

)
, (82)

UZ ≡ ⊗
k

exp
(
i
π

4
Zk

)
= exp

(
i
π

4

∑

k

Zk

)
, (83)

can be used as parallel gates in our circuit (see Fig. 1 for
an example). In fact, we can observe that this circuit really
does implement the normalizer gate exp(iθZ̄) (or exp(iθX̄).
Therefore, the encoded qubits can be written as

Z̄k = (I ⊗ I · · · ⊗ I ⊗ Zk ⊗ I ⊗ · · · ⊗ I)︸ ︷︷ ︸
d

⊗ (Mk
Z)

︸ ︷︷ ︸
r

⊗ (I ⊗ · · · ⊗ I)︸ ︷︷ ︸
K−d−r

(84)
X̄k = (I ⊗ I · · · ⊗ I ⊗ Xk ⊗ I ⊗ · · · ⊗ I)︸ ︷︷ ︸

d

⊗ (Mk
Z)

︸ ︷︷ ︸
K−d−r

⊗ (I ⊗ · · · ⊗ I)︸ ︷︷ ︸
r

.

(85)

By substituting (84) and (85) into (82) and (83), we can gen-
erate k − d = 2 elements for subgroup Q4. These elements
encode d = 2 qubits, with states given by

|00〉d = 1√
2
(|0000〉 + |1111〉),

|01〉d = 1√
2
(|1001〉 + |0110〉)

|10〉d = 1√
2
(|1100〉 + |0011〉),

|11〉d = 1√
2
(|0101〉 + |1010〉). (86)

Let the encoding space be of dimension N (d), the optimal
d-bit quantum code has efficiency [10]

η(d) = 1

d
log2N (d) = 1

d
log2

(
d

[d/2]
)

. (87)

If d is large, η(d) can be approximated by 1 − (1/2d)

log2(πd/2), which approaches 1 very rapidly [10].
As the above-mentioned decrepitation, in the case of four

qubits, the encoding space is of six dimensions. The subgroup
codewords are given by
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Fig. 2 Logical error rate vs. physical error rate for QEAC with Q4

|k = 0,mk = 0〉1 = 1

2
(|10>d − |00〉d)(|10〉d − |01〉d),

(88)

|k = 0,mk = 0〉2 = 1√
3
[|0011〉 + |1100〉

−1

2
(|01〉d + |10〉d)(|01〉d + |10〉d)], (89)

|k = 1,mk = −1〉1 = 1√
2
(|10〉d − |01〉d)|00〉d , (90)

|k = 1,mk = −1〉2 = 1√
2
|00〉d(|10〉d − |01〉d), (91)

|k = 1,mk = −1〉3 = 1

2
[(|01〉d + |10〉d)|00〉d

−|00〉d(|01〉d + |10〉d)], (92)

|k = 2,mk = −2〉3 = |0000〉, (93)

respectively. The effectiveness of this code is 1/4(1+log2 3).
At least two qubits of information can be encoded. Fig-
ure 2 illustrates logical error rate vs. physical error rate
for QEAC with Q4. The results show an advantage for the
encoding technique over the whole range of errors consid-
ered. As expected, a slightly higher error rate in the DFS is
obtained due to the additional operations required for increas-
ing qubits.

As another example with a many-body normalizer ele-
ment, we consider the subgroupQ2X, which describes a phys-
ically interesting error model, where bit-flip errors act on all
pairs of nearest-neighbor qubits. To find the DFS under Q2X,
we expect to find just on one X̄ and one Z̄. Fault-tolerant cir-
cuit implementing exp(iθ Z̄) for the subgroup Q2X is shown
in Fig. 3. In the case of Q2X, it is easily verified that the
normalizer is generated by

X̄ = XXII, Z̄ = ZZZZ (94)
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Fig. 3 Fault-tolerant circuit for
the Q2X subgroup, where the
transformed Z̄ is shown at each
gate, and directly below the
original normalizer element
with which it anticommutes

where X̄ is single-body Hamiltonian and therefore it can
be implemented directly, while Z̄ can be implemented as
a Hamiltonian using at most two-body interactions. It is gen-
erated by k−d = 1 elements for subgroupQ2X, and encodes
d = 1 qubits, with states given by

|0〉d = (|0000〉 + 0011〉 + 0101〉 + 0110〉
+ |1001〉 + |1010〉 + |1100〉 + |1111〉)/√8, (95)

|1〉d = (|0001〉 + 0010〉 + 0100〉 + 0111〉
+ |1000〉 + |1011〉 + |1101〉 + |1110〉)/√8. (96)

In the case of two qubits, the encoding space is of two dimen-
sions. The two codewords are given by

|k = 0,mk = 0〉1 = 1√
2
(|10〉 − |01〉)(|1〉d − |0〉d), (97)

|k = 1,mk = −1〉2 = |00〉, (98)

which are sufficient to encode one qubit of information. The
efficiency is 1/2. We find a two-dimensional DFS, i.e. Q2X,
spanned by these two states. This DFS thus encodes a sin-
gle qubit. To simulate random errors in values of the cou-
plings between physical qubits when implementing gates,
we can add random Gaussian noise to the exp(iθZ̄) param-
eters, where the Gaussian distribution has mean 0 and stan-
dard deviation Δ ∈ [0, 0.05]. Charge fluctuations for QEAC
can be regarded as an example of such errors. Furthermore,
we calculate the process fidelity over 200 iterations taken
from a normal standard derivation Δ and mean 0. The results
are shown in Fig. 4, with one set of results being shown,
since one- and three-qubit encoding give very similar results.
The process fidelity falls off slowly and stays above 0.9 for
Δ ≤ 0.05. Since a reasonable estimate of these fluctuations in
gate couplings would have fidelity about 0.99, we can verify
that these gates have high fidelity even at high-noise regime.
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Fig. 4 The average process fidelity when performing the gate with
random fluctuations in gate times, subgroups Q4 and Q2X encoding of
QEAC are, respectively, shown, whereQ4 has three-qubit encoding and
Q2X has one-qubit encoding

5 Conclusions

The proposed QEACs are shown to be immune to both the
environmental decoherence and the channel noise in com-
parison with existing results. The most critical point is that
multiqubit quantum states can be efficiently transferred via
QEACs, which has the ability to predict intrinsically so as
to construct the DFSs by means of multiple qubits. We can
readily use the direct sum of the one-dimensional represen-
tation of the C(S). In principle, this elegant result allows us
to design DFSs (or noiseless) quantum codes. However, in
practical applications, encounter some difficulties, e.g. the
preparation of codewords and the large coherence length
required. Hence, One open question is if the code stability
can be addressed in the framework of the Liouville–von Neu-
mann equation formalism. Another open question is whether
the proposed approach may possibly be extended to the case
when H is infinite dimensional. Furthermore, every single
common eigenvector of the Lindblad operators with any
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eigenvalue can be chosen the basic vector of the DFSs. This
provides various selections to implement the DFSs scheme
and can be used to find the best scheme in implementation
of the DFSs program.
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