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Abstract An intermediate inflationary Universe model in
the context of non-minimal coupling to the scalar curva-
ture is analyzed. We will conduct our analysis in the slow-
roll approximation of the inflationary dynamics and the cos-
mological perturbations considering a coupling of the form
F(p) = k + &,¢". Considering the trajectories in the r—n;
plane from the Planck data, we find the constraints on the
parameter space in our model.

1 Introduction

It is well known that the inflationary era, or simply inflation,
has been a fundamental contributor to our understanding of
the early Universe. In this sense, inflation has been successful
in explaining some of cosmological puzzles, i.e., the horizon
and flatness problems etc. [1-3]. However, the most impor-
tant element in this scenario is that inflation gives us a the-
oretical framework within which to describe the large-scale
structure (LSS) [4-9], as well as the anisotropy of the cos-
mic microwave background (CMB) radiation from the early
Universe [10-12]. From an observational point of view, the
Planck satellite [13] together with the LSS experiments [14—
17] [in particular considering the baryon acoustic oscillations
(BAO) data], have been fundamental to our understanding of
the CMB anisotropies of the Universe.

Itis thought that the inflationary epoch is driven by a scalar
field, or simply inflaton, that can interact fundamentally with
other fields, and also with gravity. In this sense, it is natural to
consider the non-minimal coupling between the scalar field
and gravitation. Historically, the non-minimal coupling with
gravity, and in particular with the Ricci scalar, was originally
studied in radiation problems [18]. Within the context of the
renormalization of the quantum fields in curved backgrounds
it was considered in Refs. [19-22]. From the point of view of
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cosmology this non-minimal coupling of the scalar field was
originally analyzed in Ref. [23], and also by Brans and Dicke
[24]; see also Refs. [25,26]. In the literature of the 1980s, cos-
mic inflation in the framework of the induced-gravity scalar—
tensor theory has been studied in Refs. [27-29]. In particular,
a description of the inflationary models considering the non-
minimal coupling between the scalar field and the gravitation
has been developed in Refs. [30-39]. Particularly, in Ref. [34]
was studied the chaotic model considering this coupling. In
Ref. [40] was assumed the effective chaotic potential V ~ ¢"
in which n > 4, considering one large scale for the field
¢ within the framework to this coupling. Here, the authors
obtained different constraints on the parameter coupling &;
also see Refs. [41-44]. As regards the relation between the
tensor-to-scalar ratio and the scalar spectral index the consis-
tency relation was studied in Refs. [14,45] and applied to the
chaotic inflation model, and a global stability analysis also
was studied in Ref. [46]. Recently, the frame-independent
classification of single-field inflationary models was consid-
ered in Ref. [47], and the important case of Higgs inflation
in the non-minimally coupled inflation sector was studied in
Ref. [48].

In the context of the dynamics background for the infla-
tionary model, exact solutions within the framework of gen-
eral relativity (GR) can be found when the scale factor
expands exponentially from a constant potential, the de Sitter
inflationary model [2]. Similarly, an expansion of the power-
law type, in which we have the scale factor a(f) o ¢ with
p > 1, can be obtained from an exponential potential, giving
exact solutions [49]. Nevertheless, intermediate inflation is
another kind of exact solution, in which the expansion of the
scale factor is slower than de Sitter expansion, but faster than
power-law type. During intermediate expansion the scalar
factor a(t) expands as

a(t) = exp[At/], (1

where A and f are two constants, in which A > 0 and
0 < f < 1[50]. As mentioned previously, this inflation-
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ary model was originally studied in order to find an exact
solution to the background equations. Nevertheless from the
observational point of view, intermediate inflation is more
effectively motivated in the slow-roll approximation [51-60].
Here, we consider the slow-roll approximation; it is feasible
to find a scalar spectral index ng ~ 1, and this kind of spec-
trum is favored by the current CMB data. In particular, for
the specific value of f = 2/3 in which the scale factor varies
as a(t) o t?/3, the scalar spectral index becomes ng = 1,
i.e., we have the Harrison—Zel’dovich spectrum. However,
within the framework of GR this model presents a funda-
mental problem due to the fact that the tensor-to-scalar ratio
r > 0.1, wherewith the model is disfavored by observational
data, as a result of the Planck data’s establishment of an upper
bound for the ratio r at the pivot scale k,, = 0.002 Mpc™', in
which rg o2 < 0.1. In this form, the model of intermediate
inflation in the framework of GR does not work.

In this paper we would like to study the possible actu-
alization of an expanding intermediate inflation within the
framework of a non-minimal coupling with the curvature.
We will explore the dynamics from the slow-roll approxima-
tion in this theory considering a function F(¢) = k + &,¢".
In this context, we will find the cosmological perturbations —
scalar perturbations and tensor perturbations — and the trajec-
tories in the r—ng plane, and we will establish whether or not
the model works. In our analysis, we shall resort to Planck
satellite data [13] in order to constrain the parameters in our
model.

The outline of the article is as follows. The next section
presents the background dynamics and we find the slow-
roll solutions for our model. In Sect. 3 we determine the
corresponding cosmological perturbations. Finally, in Sect.
4 we summarize our findings. We chose units so that ¢ =
h=1.

2 Intermediate inflation: background equations

We consider a generalized induced-gravity action in the Jor-
dan frame given by

F 1
S = /d4x«/—g [%R - Eglwfﬂ;uw;v - V((ﬂ)] , (@

where F'(p) can be an arbitrary function of the scalar field
in the Jordan frame, R is the Ricci scalar and V(p) is the
effective potential associated to the scalar field ¢.

Different types of functions F'(¢) have been studied in the
literature. In particular, we have the case that the function
F(p) = (1 —&£¢?) coincides with the non-minimal coupling
action; see Ref. [61]. Also, the special case in which the
function F(¢) (p2 was studied in [62]. In the following,
we will assume that the function F'(¢) is defined as

@ Springer

F(p) =k + &,9", (3)
1 My
where k = =G = 8—;, with M}, the reduced Planck mass

and the quantities n (dimensionless) and &, (with units of
Mg_”) being two constants. The particular case in which
the exponent of the function corresponds to n = 2 (§,=2 =
&), together with « = 0, coincides with the corresponding
induced-gravity model studied in Ref. [63].

From the action given by Eq. (2), the cosmological equa-
tions in a spatially flat Friedmann—Robertson—Walker (FRW)
cosmological model in the Jordan frame are given by

1 .
H2:_['2 2V—6HF], 4
F o+ “4)
g:_[_—z HF—F], 5
5F o+ (5)
and
Vy=3F ,(H+2H* ~3H¢ — ¢, (©6)

where H = a/a is the Hubble parameter and a corresponds
to the scale factor. Here, the dots mean derivatives with
respect to time and the subscript () means derivative with
respect to the scalar field ¢.

We introduce the slow-roll parameters defined by

H ) F
€1 = ——775, €= —", €3 = —,
'S THY T Hy T 2HF
d eg=——, 7
e S =SHE @

in which ¢; < 1 and its evolution ¢; ~ 0 during inflation.

Here, the quantity E is defined as E = F (1 + 23[5;2 ).
Considering the slow-roll parameter €3, we have % =

H é3; then we can neglect the last right side term in Eq. (5);

thus, during the slow-roll scenario we get

2FH +¢* — HF ~0. ®)

Now combining Egs. (1), (3) and (8) we find that the dif-
ferential equation for the scalar field is given by

2AF(f — Dt/ 2k + £,0") + 6% — Afngt! 19" 1o = 0.
)

The solution of Eq. (9) for the scalar field can be written
as

o) =ct™, (10)
where m and c are two constants. In order to satisfy the power-

law solution of the scalar field given by Eq. (10), we find that
we need the constraints
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m =

i’ szw, and ,1:4(1_1)_
2 f f

As we have mentioned previously, the parameter f lies
between 0 < f < 1, in order to obtain an acceleration of the
Universe; then the parameter n < 0.

By using the slow-roll approximation in Eq. (4) and com-
bining Egs. (1) and (10), the effective potential in terms of
the scalar field results:

V(p) ~3[H*F + HF] =3Afc™"
x [Afi+ Afeu + Eanmce" 2] g". (D)

Here, we note that considering the special case in which &, =
0 (or equivalently F' = const.), the effective potential given
by Eq. (11) coincides with that corresponding to the standard
intermediate inflation in general relativity, where V (¢)
<p4(1_«f71); see Refs. [51-60].

An important quantity during the background dynamics is
the number of e-folds N at the end of inflation and it becomes

(w) S 2 2
N = ’ Hd —/ e dy = Sl — f){wz—wl},
(12)

between two different values of cosmological times #; and #»
or between the values ¢ and ¢, of the scalar field.

On the other hand, the parameter €1 from Eqgs. (7) and (10)
can be written as

81— f)? 1

T (13)

€] =

Here, we note that the slow-roll parameter €| diverges when
the scalar field ¢ — 0 and then €; > 1 (or equivalently
d < 0, deceleration). In this limit, when the field approaches
zero, the effective potential given by Eq. (11) also diverges
(since the exponentn < 0). Now, for large values of the scalar
field, we note that asymptotically the effective potential and
the slow-roll parameter €; tend to zero, in which €; < 1.
In this sense, since during the evolution of the Universe the
effective potential decreases, we consider the inflation sce-
nario to begin at the earliest possible epoch, in whiche; = 1,
where the scalar field ¢; = ¢(#1) results:

=\/§(l;f). (14)

Also, we note that the inflationary epoch takes place when
€1 < 1 (or equivalently @ > 0); then the scalar field satisfies
the condition ¢ > M.

In this way, we find that the value of the scalar field ¢, =
¢(t = tp) in terms of the number of e-folds N can be written
as

2 8k(l— )1+ f(N —1)
Y = 72 .

Here, we have used Eqgs. (12) and (14).

(15)

3 Cosmological perturbations

In this section we will study the cosmological perturbations in
our model of intermediate inflation in a generalized induced-
gravity scenario. In this framework, the perturbation metric
around the flat background can be written as

ds? = —(1 4+ 2®@)ds> + 2a(1)®© ;dx'dr + a*(1)
x[(1 = 2)8;; +2E ;. j + 2h;;]dx"dx/, (16)

where the quantities @, ®, ¥ and E correspond to the scalar-
type metric perturbations, and #;; denotes the transverse
traceless tensor perturbation. Also the perturbation in the
field p is givenby ¢ (t, X) = ¢(t)+38¢(t, X), in which §¢(¢, x)
is a small perturbation that corresponds to small fluctuations
of the scalar field. Thus, introducing the comoving curvature
perturbations, R defined as R = W + pr—“f [64], where the

new Hubble parameter is given by ‘H = % (a prime cor-
responds to the derivative with respect to a conformal time,
dn = a~'dr), the scalar density perturbation Ps in the Jordan
frame can be written as [65,60]

k3 5 5 k|77| 3—2vg
=— = A | — 17
Ps =5 5IRI S[ 2} , (17)

21 L0 12 g

where the amplitude AS = o (;)2(#‘77‘) [m
the quantities Qg and vy are defined as

/2 |:1+3§)1” (pn 2]
H4 ]
T2

respectively. Here, the parameter y; is given by ys =
(1+8(;(2—e£+5) in which 85 = 23

On the other hand, the scalar spectral index ng is defined
by ng = 1+ dt}rllnis. Thus, from Eq. (17) and considering
the slow-roll approximations, the scalar spectral index ng in

terms of the slow-roll parameters can be written as [65]

Os = , and Vs=\/Vs+1/4,

ng>~1—2Q2¢€ + € — €3+ €4). (18)

By considering the slow-roll parameters from Eq. (7), the
scalar spectral index ng as a function of the scalar field, i.e.,
ng = ng(p), results:

ng~1-—Cp?— Cg(p"_2
y 1 +3&,n(n — 1)e"2 B 1 19
K+ g + 352020200 Kk gt |

@ Springer
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where the constants C; and C, are defined as

o o= P =35

| and Cz:w_

IE ’ 7
From Eq. (19) we observe thatin the limit &, — O the spectral
index ng agrees with the appropriate standard intermediate
inflationary model, in which ng = 1 — C gp‘z with C =
8k(1 — £)(2 — 3f)/f?; see Refs. [51-60]. Also we note
that for the specific value f = 2/3 we clearly find from Eq.
(19) that ng # 1, contrary to standard intermediate inflation,
where for f = 2/3 the index ng = 1, i.e., we have the so-
called Harrison—Zel’dovish spectrum [51-60]. In this form,
we note from Eq. (19) that the spectral index includes two
free parameters (f, &,), unlike what occurs in the standard
intermediate inflation, where ng has only one free parameter,
namely f.Inrelation to the constants, we note that for values
of f < 2/3 the constant C; > 0. Similarly, we observe that
as the parameter n < 0, then the constant C; > 0 when the
parameter &, < 0.

Also, we find that the spectral index ng in terms of the
number of e-folds, N, becomes

~ G C
R
1 +3&n(n — l)K(n—Z)/2'3n—2 |
e + Ecn2Bn 4 38202 (=D g=D) ke o Eic /2 BN
(20)
where the quantity B is given by g = %

V81— Hd + fIN — 1D.

Numerically from Eq. (20) we find a constraint for the
parameter &,. Certainly, we can find the value of the param-
eter &, giving a specific value of the parameter f, when the
number of e-folds N and the index ng are given. Particularly,
for the values ng = 0.967, N = 60 and f = 0.9 (or equiva-
lently n >~ —0.44), we obtain from Eq. (20) that the real solu-
tion for &,—_0.44 corresponds to &,—_g44 =~ —5.84M§'44.
For the case in which f = 2/3 corresponds to &,—_» =~
—7.42M§, when f = 0.5 the parameter §,—_4 results:
ey —70.01M§, and for the case where f = 0.46 the
parameter &,—_4 70 is given by &,—_4.70 =~ —170.82M§'7O.

On the other hand, the generation of tensor perturbations
during inflation would produce gravitational waves, where
its power spectrum Pr, following Ref. [66], can be written
as

ki 7727
Py = A2 [7 , @1
where now the tensor amplitude A7 = %(%)Z(M}MQZ
[ LQr) 1%, and the quantities vz, yr and 87 are defined as

TG/2)
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Fig. 1 The tensor-to-scalar ratio r versus the spectral index ng. Here,
from Planck data, two dimensional marginalized constraints on the ratio
r and ng (at 1o confidence level, i.e., 68 % and at 2o confidence level, i.e.,
95%). In this plot, the dotted, solid, and dashed lines correspond to the
values of f = 0.46 together with the value &,——47 = —170, 82M77,
(f =05,8=—4 = —70.01M§ and (f = 2/3,&=—0 = —7.42M3),
respectively. Here, we have used the value M}, = 1

(I+87)(2 — €1 +97)
vr = Vyr +1/4, yr = T—e)? ;

ng

2Ho'

In this context, an important observational quantity is the
tensor-to-scalar ratio r, given by r = Pr/Ps. This ratio r

can be written in terms of the slow-roll parameters results
[65],

and 87 =

r >~ | —13.8(e1 + €3)|. (22)

In this form, considering the slow parameters given by Eq.
(7), we write the tensor-to-scalar ratio as

1= o"
Y0352 T tae

—13.8
r | C

-2
> ]w L (23)

and in terms of the number of e-folds, N, we have

,Bn Kn/2
g K + En’(n/zﬂn

,\,|_

13.8Kﬂ2 [cla )
2 (1—3f/2)

here, we have used Egs. (12) and (22).

In Fig. 1 shows the contour plot for the tensor-to-scalar
ratio r versus the spectral index ng, for distinct values of
the parameter f associated to intermediate expansion of
the scale factor. From Ref. [67], we have two dimensional
marginalized constraints on the ratio ro o2 and index ng (at
1o confidence level i.e., 68% and at 20 confidence level
i.e., 95%). Here, the dotted, solid, and dashed lines corre-
spond to the values of f = 0.46 together with the value

} l. (24
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Enm—a7 = —170,82M57, (f = 0.5, &=—4 = —70.01MJ)
and (f = 2/3, &= = —7.42M§), respectively. In order
to write down the ratio r on the spectral index ng, we use
Egs. (20) and (24) and we numerically obtain the paramet-
ric plot for the relation r = r(ng). We observe that for
the values of f 2 0.46 (or equivalently n 2 —4.7) and
Enm—a1 = —171M§'7 the model is well corroborated by
the Planck data, as visualized by this figure. For the val-
ues of the parameter f < 0.46 and &, < —171M§’" the
model becomes disfavored by the Planck data, because the
tensor-to-scalar ratio rg g2 > 0.1. Also, we observe that, for
values of the parameter f ~ 1, the tensor-to-scalar ratio
r tends to zero. In this way, we find that the constraints
for the parameter f associated to intermediate expansion
of the scale factor is given by 0.46 < f < 1 and for
the parameter —171M§_” < & < 0, from the Planck
data.

On the other hand, an analysis of all data taken by the
BICEP2 and Keck Array CMB polarization experiments
together with the Planck data, were analyzed in Ref. [68].
Here, combining the results from BICEP2 and Keck Array
with the constraints from Planck analysis of the CMB temper-
ature, plus BAO and other data, a combined limit is obtained
for the tensor-to-scalar ratio  at pivot scale ky, = 0.05Mpc ™!,
given by rgo5 < 0.07 at 95% (20 confidence level). In
this sense, the value of f = 0.46 together with the value
Eim—47 = —171Mg'7 (see Fig. 1) are disfavored by Ref.
[68], since the tensor-to-scalar ratio » > 0.7. In this form,
considering Ref. [68] we see that the constraints for the quan-
tity f associated with intermediate expansion of the scale
factor is given by 0.46 < f < 1 and for the parameter
—171M§—” <&, <O.

This suggests that the function F(¢) can be written as
F(p) = k — |&]¢~ ", and assuming that the function
F(¢) > 0, then the range for the scalar field during interme-
diate inflation in this framework satisfies ¢ > (|&,|/«x)1/1"D.
Also, we note that in the limit ¢ — o0, the function F(¢)
takes the asymptotic value F(¢)ysoco — K = @8rG)~ L.
Thus, from the observational point of view (in particular from
the consistency relation » = r(ng)), we found that the inter-
mediate inflation in a generalized induced-gravity scenario is
less limited than the standard intermediate inflation in which
GR is utilized, due to the incorporation of a new parameter,
ie., &,.

In the following we will mention some constraints on the
coupling parameter &, obtained in the literature, in order
to compare with our results. We assume the framework of
induced-gravity inflation where the function F(p) = £¢>
was studied in Ref. [62]. Here, for the chaotic potential case
we found the constraint by the coupling £, = & > 1073,
and for the new inflation case £ < 4 x 1073, assuming
the constraint from scalar spectral index ng found in [62].
For the case in which the function F(¢) = 1 + £¢? with

¢ self-interaction, it was found that & > 4 x 1073 [62].
For the same coupling function and analyzing the poten-
tials ¢” and exponential, the constraints on & considering
the Wilkinson Microwave Anisotropy Probe (WMAP) data
were obtained in Ref. [69]. Here, for the value p = 4 it was
found that £ < —0.17 and £ > 0.01, and for the exponen-
tial potential 0.271 < & < 0.791. In Ref. [66] the function
F(p) = (1 — £%¢?)/k? was analyzed together with the
potential V (¢) o ¢”. The constraint obtained for the param-
eter £ from the r—ng plane, for the quadratic potential (p = 2)
is& > —1.1 x 1072 (20 bound) and for the case in which
p=4§&<-3.0x 10~* (20 bound) [66]. In virtue of these
results, our constraint indicates that in order to have values of
the coupling | &, | / Mg_" O (1), necessarily the parameter
f tends to one, wherewith the tensor-to-scalar ratio r ~ 0.

4 Conclusions

In this paper we have studied the intermediate inflationary
model in the context of generalized induced-gravity scenario.
From the function F(¢) = « + &,¢", we have found solu-
tions to the background dynamics under the slow-roll approx-
imation. Also, we have found expressions for the scalar and
tensor power spectrum, scalar spectral index, and tensor-to-
scalar ratio. In this sense, we have found the constraints on
some parameters from the Planck data. In this context, we
have found from Egs. (20) and (24) that the trajectories in
the r—ng plane are well supported by the data (see Fig. 1), and
we have obtained the constraints on the parameters f and &,
given by 0.46 < f < 1 and —171M§_” < &, < 0, respec-
tively. However, considering the combined limit of Ref. [68]
in which rg 95 < 0.7 at 20 confidence level, i.e., 95%, we
have found the constraints on the parameters f and &, to
be given by 0.46 < f < 1 and —17IM;™" < & < O,
respectively.

Also, we have noted that intermediate inflation in a gen-
eralized induced-gravity scenario is less restricted than the
standard intermediate inflation, due to the incorporation of a
new parameter, i.e., &,. Thus, the inclusion of this parameter
from the function F(¢) permits us freedom on the consis-
tency relation r = r(ny).

Finally, we should mention that the effective potential
given by Eq. (11) does not have a minimum. In this form,
the scalar field does not oscillate around this minimum [70-
75], and therefore is a problem for the standard mechanism
of reheating in these types of intermediate models [76]. We
hope to return to the subject of reheating in the near future.
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