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Abstract The effective action for reggeized gluons is based
on the gluodynamic Yang–Mills Lagrangian with external
current for longitudinal gluons added, see Lipatov (Nucl
Phys B 452:369, 1995; Phys Rep 286:131, 1997; Subnucl
Ser 49:131, 2013; Int J Mod Phys Conf Ser 39:1560082,
2015; Int J Mod Phys A 31(28/29):1645011, 2016; EPJ Web
Conf 125:01010, 2016). On the base of classical solutions,
obtained in Bondarenko et al. (Eur Phys J C 77(8):527, 2017),
the one-loop corrections to this effective action in light-cone
gauge are calculated. The RFT calculus for reggeized gluons
similarly to the RFT introduced in Gribov (Sov Phys JETP
26:414, 1968) is proposed and discussed. The correctness of
the results is verified by calculation of the propagators of
A+ and A− reggeized gluons fields and application of the
obtained results is discussed as well.

1 Introduction

The action for the interaction of reggeized gluons was intro-
duced in the series of papers [1–6] and describes multi-Regge
processes at high energies; see [9–22]. There are the follow-
ing important applications of this action: it can be used for
the calculation of production amplitudes in different scat-
tering processes and calculation of sub-leading, unitarizing
corrections to the amplitudes and production vertices; see [1–
6,9–32]. The last task can be considered as a construction of
the RFT (Regge Field Theory) based on the interaction of
the fields of reggeized gluons, where different vertices of the
interactions are introduced and calculated. The phenomeno-
logical RFT based on the Pomeron degrees of freedom was
introduced in [8]. From this point of view we consider the
effective action for reggeized gluons as RFT calculus based
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on the degrees of freedom expressed through colored reggeon
fields (reggeized gluons).

The construction of an RFT based on a QCD Lagrangian
requires the knowledge of solutions of classical equations
of motion in terms of reggeon fields A+ and A−. Inserting
these solutions again in the Lagrangian we can develop field
theory fully in terms of reggeon fields, with loop corrections
to the action determined in terms of these fields as well. A
subsequent expansion of the action in terms of the reggeon
fields will produce all possible vertices of interactions of the
fields, with a precision determined by the precision of calcu-
lations in the framework of the QFT. From the QFT point of
view, therefore, the problem of interest is the calculation of
the one-loop effective action for gluon QCD Lagrangian with
added external current by use of the non-trivial classical solu-
tions expressed in terms of new degrees of freedom; see [7].
These calculations of the one-loop corrections to the effective
action we perform in light-cone gauge using classical solu-
tions from [7]. The correctness of the obtained results can be
checked by calculations of functions which are well known
in the small-x BFKL approach [33–38]. The basic function
is the gluon Regge trajectory, which determines the form of
the propagator of the reggeized gluon fields A+ and A−. This
propagator in the proposed framework can be considered as
an operator inverse to the effective vertex of interaction of
reggeon fields, and this check is performed in the paper. There
are also other possibilities to verify the self-consistency of
the approach. For example, it might be a calculation of the
BFKL kernel, which is an effective vertex of interactions of
four reggeons, or a calculation of the triple Pomeron vertex,
see [39–41], which is the interaction vertex of six reggeon
fields. These calculations will be considered further in sepa-
rate publications.

Thus, below, we calculate a one-loop effective action for
reggeized gluons and calculate propagators for A+ and A−
reggeon fields. Respectively, in Sect. 2, we recall the main
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results obtained for the classical solution of the effective
action for reggeized gluons. In Sect. 3 we consider the expan-
sion of the Lagrangian in terms of fluctuations around these
classical solutions, whereas in Sect. 4 we calculate the one-
loop correction to the classical action obtaining an effective
one-loop action in terms of the reggeon fields. In Sect. 5
we discuss RFT calculus based on the effective action and
in Sect. 6 we verify the correctness of the result calculating
the propagator of the reggeized gluon fields. Section 7 is the
conclusion of the paper, but we also have Appendices A, B,
and C where the main calculations related to the result are
presented.

2 Effective action for reggeized gluons and classical
equations of motion

The effective action, see [1–6], is a non-linear gauge invari-
ant action which correctly reproduces the production of the
particles in direct channels at a quasi-multi-Regge kinemat-
ics. It is written for the interactions local in rapidity of the
physical gluons in direct channels in some rapidity interval
(y − η/2, y + η/2). The interaction between the different
clusters of gluons at different though very close rapidities
can be described with the help of reggeized gluon fields1

A− and A+ interacting in crossing channels. Those interac-
tions are non-local in rapidity space. This non-local term is
not included in the action, the term of interaction between
the reggeon fields in the action is local in rapidity and can be
considered a kind of renormalization term in the Lagrangian.
The action is gauge invariant and is written in the covariant
form in terms of the gluon field v as

Seff = −
∫

d4x

(
1

4
Fa

μνF
μν
a + tr [v+ J+(v+)

−A+ j+reg + v− J−(v−) − A− j−reg]
)

, (1)

where

J±(v±) = O(x±, v±) j±reg, (2)

where the O(x±, v±) are operators, see [1–6], Appendix A
and

j±rega = 1

C(R)
∂2
i A

±
a (3)

is a reggeon current, where C(R) is the eigenvalue of a
Casimir operator in the representation R with C(R) = N in
the case of the adjoint representation used in the paper. Fur-
ther in the calculations we will use the form of the reggeon

1 We use the Kogut–Soper convention for the light cone for the light-
cone definitions with x± = (x0 ± x3)/

√
2 and x± = x∓.

current Eq. (3) borrowed from the CGC (Color Glass Con-
densate) approach, see [42–53], where this current is written
in terms of some color density function defined as

∂i∂−ρi
a = − 1

N
∂2⊥A+

a , (4)

or

ρi
a = 1

N
∂−1− (∂ i Aa−); (5)

see [7] for details. There are additional kinematical con-
straints for the reggeon fields

∂−A+ = ∂+A− = 0, (6)

corresponding to a strong ordering of the Sudakov compo-
nents in the multi-Regge kinematics; see [1–6]. Everywhere,
as usual, ∂i denotes the derivative on transverse coordinates.
Under variation of the gluon fields these currents reproduce
Lipatov’s induced currents

δ(v± J±(v±)) = (δv±) j ind∓ (v±) = (δv±) j±(v±), (7)

with the notation j ind∓ = j± introduced. This current pos-
sesses a covariant conservation property:

(D± j ind∓ (v±))a = (D± j±(v±))a = 0. (8)

Here and further we denote the induced current in the com-
ponent form in the adjoint representation2

j±a (v±) = −ı tr[Ta j±(v±)] = 1

N
tr[ faO fbO

T ](∂2
i A

b∓)

= 1

N
Uab(∂2

i A
b∓); (9)

see [7] and Appendix A as well. It was shown in [7] that if
the LO value of the classical gluon field in the solutions of
the equations of motion is fixed as

v± = A± (10)

and if the self-consistency of the solutions is required, the
currents of the Lagrangian in Eq. (1) are reproduced directly
in the form of Eq. (2) without any additional conditions.
Now, applying the light-cone gauge v− = 0, the equations of
motion can be solved; see the form of the classical solutions
in [7]. Therefore, the general expressions for the gluon fields
can be written in the following form:

vai → vaicl + εai , v
a+ → va+cl + εa+, (11)

where the integration on fluctuations around the classical
solutions provides loop corrections to the “net” contribution
which is based on the classical solutions only.

2 We use the definition (Ta)bc = −ı fabc of the matrices and write only
“external” indices of the fabc = ( fa)bc matrix in the trace.
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3 Expansion of the Lagrangian around the classical
solution

In this section we consider the first step in construction of the
effective action of the approach, expanding the Lagrangian
of Eq. (1) in terms of the fluctuations and classical fields.
Inserting Eq. (11) in the Lagrangian the only corrections to
orders g2 and ε2 will be preserved. This precision provides
a one-loop correction to the “net” effective action; contribu-
tions from higher order loops will be considered in a separate
publication.

The Lagrangian in light-cone gauge has the following
form:

L = −1

4
Fa
i j F

a
i j + Fa

i+Fa
i− + 1

2
Fa+−Fa+−, (12)

where Fa+−Fa+− term does not consist of transverse fluctu-
ations and the Fa

i j F
a
i j term does not consist of longitudinal

fluctuations.

3.1 The Fa
i+Fa

i− term

Inserting Eq. (11) in this term we obtain

Fa
i+ → Fa

i+(vcl+, vcli ) + (Di (v
cl
i )ε+)a

−(D+(vcl+)εi )
a + g fabcε

b
i ε

c+ (13)

and

Fa
i− → Fa

i−(vcli ) − ∂−εai . (14)

Therefore we have

Fa
i+Fa

i− = (Fa
i+Fa

i−)cl + Fa
i−(vcli )((Di (v

cl
i )ε+)a

−(D+(vcl+)εi )
a) − g fabc(∂−vacli )εbi ε

c+
−(∂−εai )F

a
i+(vcl+, vcli ) − (∂−εai )(Di (v

cl
i )ε+)a

+(∂−εai )(D+(vcl+)εi )
a − g fabc(∂−εai )ε

b
i ε

c+.

(15)

In this expression we do not account for the term which is
cubic in the fluctuations, the linear terms for the fluctua-
tions are canceled because of the equations of motion. The
terms for the quadratic to transverse fluctuations contribute
to the corresponding propagator in the Lagrangian and the
term which is quadratic with respect to the combination of
transverse and longitudinal fluctuations we write as

− g fabc(∂−vacli )εbi ε
c+ − (∂−εai )(Di (v

cl
i )ε+)a = Jai εai .

(16)

Here the current

Jai = (εa+∂−∂i + g fabcε
c+(∂−vbcli − vbcli ∂−)) (17)

is some effective current in the Lagrangian.

3.2 The Fa
i j F

a
i j term

We have for the term Fa
i j F

a
i j

Fa
i j = Fa

i j (v
cl
i ) + (Diε j )

a − (Djεi )
a + g fabcε

b
i ε

c
j . (18)

Therefore, accounting for the contributions which are only
quadratic for the fluctuations, we obtain

− 1

4
Fa
i j F

a
i j = −1

4
(Fa

i j F
a
i j )cl − 1

2
Fa
i j (v

cl
i )((Diε j )

a

−(Djεi )
a) − g

2
Fa
i j (v

cl
i ) fabcε

b
i ε

c
j

−1

2
(Diε j )

a(Diε j )
a + 1

2
(Diε j )

a(Djεi )
a,

(19)

where as usual the linear terms for the fluctuations do not
contribute to the effective action.

3.3 The Fa+−Fa+− term

The term Fa+−Fa+− consists of contributions from only lon-
gitudinal fluctuations. We have

1

2
Fa+−Fa+− → 1

2
(∂−va+)(∂−va+) = −1

2
vacl+ (∂2−vacl+ )

−(∂2−vacl+ )εa+ − 1

2
εa+(∂2−εa+). (20)

The linear term in Eq. (20) is canceled due to the equation of
motion, therefore only the first and third terms are considered
further.

3.4 The current term

For the effective current term, taking into account that the lin-
ear term for the fluctuations is canceled due the equations of
motion, we obtain with the required precision the following
expansion in terms of longitudinal fluctuations:

va+ J+
a (v+) = vacl+ J+

acl(v
cl+) + 1

2

(
δ2(va+ J+

a )

δvb+δvc+

)xy

v+=vcl+
εb+xε

c+y .

(21)

We can write the same current’s term as

va+ J+
a (v+) = −vacl+ Oab(vcl+)(∂i∂−ρi

b)

−1

2

(
δUba(v+)

δvc+

)xy

v+=vcl+
(∂i∂−ρi

a)xε
b+xε

c+y .

(22)

In order to calculate this expression we have to know the
expansion of the following function:

Uab(v+) = tr[ faO(v+) fbO
T (v+)] (23)
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with respect to the fluctuation of Eq. (11),

va+ → va+cl + εa+. (24)

Using Appendix A we have

Uab
x (v+) = Uab

x (vcl+0) + g(Uab
1 )cxyε

c+y

+1

2
g2(Uab

2 )cdxyzε
c+yε

d+z + · · · , (25)

where the integration on repeating y, z indices is assumed.
The coefficients of the expansion read

(Uab
1 )cxy = tr[ faG+

xy fcOy fbO
T
x ] + tr[ fcG+

yx faOx fbO
T
y ]
(26)

and

(Uab
2 )cdxyz = tr[ faG+

xy fcG
+
yz fd Oz fbO

T
x ]

+tr[ faG+
xz fdG

+
zy fcOy fbO

T
x ]

+ tr[ fdG+
zx faG

+
xy fcOy fbO

T
z ]

+tr[ fcG+
yx faG

+
xz fd Oz fbO

T
y ]

+ tr[ fdG+
zy fcG

+
yx faOx fbO

T
z ]

+tr[ fcG+
yz fdG

+
zx faOx fbO

T
y ]; (27)

see [7] and Appendix A for details. Therefore we obtain for
Eq. (21) the expression

va+ J+
a = −vacl+ Oab(vcl+)(∂i∂−ρi

b)

−1

2
gεa+x (U

ab
1 )cxy(∂i∂−ρi

b)xε
c+y . (28)

4 One-loop effective action: integration over
fluctuations

We perform the computation of the one-loop correction
to the effective action in light-cone gauge using a non-
canonical method, integrating out subsequently transverse
and longitudinal fluctuations. The reason for the use of
this non-canonical method of the calculation is simple. The
Lagrangian Eq. (1) consists of a new term in comparison to
the usual gluon QCD Lagrangian. Consequently, instead of
the canonical equation of motion which relates transverse
and longitudinal fields, we have the following equation:

− (Di (∂−vi ))a − ∂2−va+ = j+a (v+); (29)

see [7]. This equation is different from the “canonical” one
and will lead to a different constraint in the canonical quan-
tization method; see [54,55]. Still, it is possible to make
the usual substitution in the Lagrangian which relates these
fields, see for example [55], and we define the canonical light-
cone Lagrangian in the usual form in the limit g → 0. But in
that case we will make a shift in the argument of the effective
current term, especially in light of the condition of Eq. (10),

and in turn that will lead to some complicated expression
of the induced current in the equations of motion to g2 and
higher orders of perturbative theory. Therefore, we prefer to
use the non-canonical method of introducing bare propaga-
tors in the theory, calculating the final one-loop expressions
in terms of these propagators; see Appendix B. As we shall
see there, after the resummation of one-loop terms, the well-
known light-cone propagators, see for example [44–49,56],
are arising in the expressions. So far it is not clear, whether
it os a result of the chosen precision of the calculations or
if it is a feature of the effective Lagrangian Eq. (1); we will
investigate this question in a separate publication.

4.1 Integration on transverse fluctuations

Collecting quadratic terms for the transverse fluctuation and
the effective current term we obtain

−1

2
εai (δac(δi j� + ∂i∂ j )

−2g fabc(δi j (v
bcl
k ∂k − vbcl+ ∂−)

−1

2
(vbclj ∂i + vbcli ∂ j − Fb

i j ))

−g2 fabc1 fc1b1c(δi jv
bcl
k v

b1cl
k − vbcli v

b1cl
j ))εcj

+Jai εai (30)

= −1

2
εai ((M0)

ac
i j + (M1)

ac
i j + (M2)

ac
i j )ε

c
j + Jai εai . (31)

There are the following operators with respect to the trans-
verse fluctuations, which we determine and which we will
use in the further calculations. The first one reads

G̃ac
i j = [(M0)

ac
i j + (M1)

ac
i j + (M2)

ac
i j ]−1, (32)

the second one is

Gac
i j = [(M0)

ac
i j + (M1)

ac
i j ]−1, (33)

and the third one, which is the bare propagator of the trans-
verse fluctuations, is

Gac
0i j = [(M0)

ac
i j ]−1. (34)

We write the inverse operator expressions of Eqs. (32)–(32)
in the following perturbative forms:

G̃ac
i j (x, y) = Gac

0i j (x, y) −
∫

d4zGab
0i j ′ (x, z)((M1(z))

bd
j ′ j ′′

+(M2(z))
bd
j ′ j ′′ )G̃

dc
j ′′ j (z, y) (35)

and

Gac
i j (x, y) = Gac

0i j (x, y)

−
∫

d4zGab
0i j ′ (x, z)(M1(z))

bd
j ′ j ′′G

dc
j ′′ j (z, y),

(36)
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with the bare propagator defined through

(M0(x))
ac
i j G

cb
0 jl(x, y) = δabδilδ

4(x − y), (37)

where

(M0)
ac
i j = δac(δi j� + ∂i∂ j ). (38)

The solution of Eq. (37) is simple:

Gab
0i j (x, y) = −δab

∫
d4 p

(2π)4

e−ı p(x−y)

p2

(
δi j − pi p j

2(p− p+)

)

= −δabG0i j (x, y) (39)

and determines the above operators as a perturbative series
based on Eqs. (35)–(36).

Integrating out the transverse fluctuation we obtain the
following expression for the effective action:

	 =
∫

d4x(LYM (vcli , vcl+ , ε+) − va+cl J
+
a (vcl+) − Aa+(∂2

i A
a−))

+ ı

2
ln(1 + G0M1) + ı

2
ln(1 + GM2) + 1

2

∫
d4x

∫
d4y

×(gεa+x (U
ab
1 )cxy(∂i∂−ρi

b)xε
c+y + Jaix G̃

ab
i j (x, y)Jbjy),

(40)

with all reggeon field terms in the Lagrangian included.

4.2 Integration on longitudinal fluctuations

Collecting only quadratic terms for the longitudinal fluctua-
tions we write the corresponding part of the action as

	ε2+ = −1

2

∫
d4x

∫
d4yεa+x ((N0)

++
ab

+(N1)
++
ab + (N2)

++
ab + (N3)

++
ab )xyε

b+y, (41)

with the inverse propagator term

(N0)
++
ab = δxyδ

ab∂2−y − (∂−x∂−y∂i x∂ j yG
ab
0i j (x, y)). (42)

Correspondingly, the other terms in the Lagrangian of Eq.
(41) are determined by the following expressions:

(N1)
++
ab = −g(Uac

1 )bxy(∂i∂−ρi
c)x , (43)

the third term,

(N2)
++
ab = −2g fcdb((∂−yv

dcl
j y )(∂−x∂i x G̃

ac
i j (x, y))

−vdclj y (∂−y∂−x∂i x G̃
ac
i j (x, y)))

−g2 fcc1a fdd1b((∂−v
c1cl
i ) − v

c1cl
i ∂−)x

×((∂−v
d1cl
j ) − v

d1cl
j ∂−)y G̃

cd
i j (x, y), (44)

and the last one,

(N3)
++
ab = −(∂−∂i )x (∂−∂ j )y(G̃

ab
i j (x, y) − Gab

0i j (x, y)).

(45)

The term of Eq. (42) determines the equation for the longi-
tudinal bare propagator:
∫

d4yN++
0ab (x, y)Gbc

0++(y, z) = δacδxz (46)

with solution

Gab
0++(x, y) = −2δab

∫
d4 p

(2π)4

e−ı p(x−y)

p2

p+
p−

= −δabG0++(x, y). (47)

Therefore, integrating out this fluctuation, we obtain

	 =
∫

d4x(LYM (vcli , vcl+) − va+cl J
+
a (vcl+) − Aa+(∂2

i A
a−))

+ ı

2
ln(1 + G0M1) + ı

2
ln(1 + GM2)

+ ı

2
ln(1 + Gba

0++((N1)
++
ab + (N2)

++
ab + (N3)

++
ab )),

(48)

which is a functional of the reggeized gluon fields only.

5 RFT calculus based on the effective action

The construction of the RFT calculus based on the effec-
tive action of Eq. (48) requires knowledge of the classical
solutions of Eq. (11) in terms of reggeon fields. This task
was performed in [7], the classical solutions found are the
following:

vacl+ = Aa+ − 2g�−1[ fabc(Ubb1(A+)ρi
b1

)(∂i A
c+)]

+4g2�−1[ fabc(Ubb1(A+)ρi
b1

)

×∂i {�−1[ fcb2c1(U
b2b3(A+)ρ

j
b3

)(∂ j A
c1+ )]}]

= Aa+ + g
a+1(A+) + g2
a+2(A+) (49)

and

vacli = vai0 + gvai1 = Uab(vcl+)ρbi (x
−, x⊥)

−g

[
�−1(∂ j Pa

ji + 1

g
∂i ((∂

jUab)ρb
j ) + ∂i∂

−1− j+a1)

]

= Uab(vcl+)ρbi + g�a
i1(A+), (50)

with some complicated Pji function; see [7], and

j+a1 = fabcv
b
j0(∂−v

jc
0 ). (51)

On the base of these solutions, the effective action of Eq. (48)
can be written as a functional of the reggeized fields only. We
have

(Fa
i+Fa

i−)cl = (∂−vai )(D+vi )
a − (∂−vai )(∂iv

a+)

= va+(Di (∂−vi ))
a + (∂−vai )(∂+vai ). (52)
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Taking into account an identity from the equation of
motion

(Di (∂−vi ))
a = ∂2−va+ +Uab(v+)(∂−∂iρ

b
i ), (53)

we obtain to g2 accuracy

(Fa
i+Fa

i−)cl = −g2(∂−
a+1)(∂−
a+1)

+vacl+ Uab(A+)(∂−∂iρ
b
i ) + (∂−vacli )(∂+vacli ).

(54)

Correspondingly, there are also the following terms of the
“net” effective action:

1

2
(Fa+−Fa+−)cl = 1

2
g2(∂−
a+1)(∂−
a+1)

= 2g2�−1[ fabc(Ubd (A+)(∂−ρi
d ))(∂i A

c+)]�−1

×[ fab1c1 (U
b1d1 (A+)(∂−ρ

j
d1

))(∂ j A
c1+ )] (55)

and

− 1

4
(Fa

i j F
a
i j )cl = −1

4
(Fa

i j )cl0(F
a
i j )cl0 (56)

with

(Fa
i j )cl0 = ρbj∂iU

ab(vcl+0) − ρbi∂ jU
ab(vcl+0)

+g fabc(U
bb1(vcl+0)ρb1i )(U

cc1(vcl+0)ρc1 j )

+g(∂i�
a
j1 − ∂ j�

a
i1)

+g2 fabc(U
bb1ρb1i�

c
j1 + �b

i1U
cc1ρc1 j ), (57)

where we notice that Eq. (56)’s minimal order is g2. Now,
based on the connection between the A− field and the ρi
operator

∂i∂−ρi
a = − 1

N
∂2
i A−, (58)

or

ρa
i (x−, x⊥) = 1

N

∫
d4zG−0

xz (∂i z A
a−(z−, z⊥)), (59)

see [7] and Appendix A, the effective action of Eq. (48) can
be expanded in terms of reggeon fields A− and A+ as

	 =
∑

n,m=0

(Aa1+ · · · Aan+ Ka1···an
b1···bm A

b1− · · · Abm− ), (60)

that determines this expression as a functional of the reggeon
fields and provides effective vertices of the interactions of the
reggeized gluons in the RFT calculus.

6 Interaction kernels and propagators of reggeized
gluons

The effective action of Eq. (60) can be fully determined in
terms of the effective vertices of reggeon fields interactions.

Calculating these vertices one after another we will recon-
struct the expression similar to introduced in [8], see also
[57–68], which can be considered as QCD Hamiltonian for
reggeized gluon fields. There are the following well-known
vertices of the interactions of reggeon fields. These are ver-
tices of the interaction of A+ and A− fields and the vertex
of the interaction of two A+ fields and two A−, which are
propagators of reggeized gluons and BFKL kernel, respec-
tively, see [33–38], the vertex of the interaction of six reggeon
fields, which can be identified with a triple Pomeron vertex,
see [39–41], or with an odderon one; see [69–77]. Equa-
tion (48) consists of these vertices plus many others with
different precision and different color representations. Cal-
culating the QFT corrections to this effective action we as
well will calculate the corrections to these vertices and will
determine the expressions for other complex vertices of inter-
actions of reggeized fields in RFT. Anyway, a recalculation
of the known vertices is a good test of the self-consistency
of the effective action. Therefore, in this paper we calculate
the propagator of reggeized gluons, which is the basic ele-
ment of the small-x BFKL approach, in the framework of the
effective action for reggeized gluons.

The interaction of reggeized gluons A+ and A− is defined
as an effective vertex of interactions of reggeon fields in Eq.
(60):

(Kab
xy )

+− = Kab
xy =

(
δ2	

δAa+xδA
b−y

)

A+,A−=0

, (61)

we can call this vertex as interaction kernel as well; see Eqs.
(68)–(71) below. The contributions to this kernel are provided
by the different terms in the action which are linear with
respect to the A+, A− fields. Namely, the variation of the
logarithms in Eq. (48) gives

−2ı K ab
xy =

(
δ2 ln(1 + GM)

δAa+xδA
b−y

)

A+,A−=0

=
[(

δ2G

δAa+xδA
b−y

M + δG

δAa+x

δM

δAb−y

+ δG

δAb−y

δM

δAa+x

+G
δ2M

δAa+xδA
b−y

)
× (1 + GM)−1

−
(

δG

δAb−y

M + G
δM

δAb−y

)
(1 + GM)−1

×
(

δG

δAa+x
M + G

δM

δAa+x

)
(1 + GM)−1

]
A+,A−=0

(62)

see the expression of the effective action of Eq. (48).
Therefore, we have the following contributions in the ker-

nel. The leading order contribution to Kab
xy0 is given by the
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second term in Eq. (54) and reads3

Kab
xy0 = −δabδxy∂

2
i x = δabδxy(∂i∂

i )x . (63)

The NLO and NNLO contributions are determined by the
logarithms in the r.h.s. of Eq. (48). Further the variation of
the ρ field with respect to A− field will be used as well, and
we have from Eq. (59)

δρa
i (x−, x⊥)

δAb−(y−, y⊥)
= δab

N

∫
d4zG−0

xz δ(y− − z−)δ2(y⊥ − z⊥)∂i z .

(64)

Taking into account that

G−0
xz = G̃−0

x−z−δ(x+ − z+)δ2(x⊥ − z⊥), (65)

we write Eq. (64) in the following form:

δρa
i (x−, x⊥)

δAb−(y−, y⊥)
= 1

N
δabδ2(x⊥ − y⊥)G̃−0

x−y−∂iy, (66)

where the regularization of the pole of the G̃−0
x−y− Green’s

function depends on its definition; see Appendix A.
The propagator corresponding to the kernel of Eq. (61) is

defined as a solution of the following equation:∫
d4z(Kab

xz )
−+(Dbc

zy )+− = δacδxy . (67)

For the propagator of the reggeized gluons, D+−, the fol-
lowing perturbative series can be defined therefore:

(Dac
xy)+− = (Dac

xy)0+−

−
∫

d4z
∫

d4w(Dab
xz )0+−((Kbd

zw)−+

−(Kbd
zw)−+

0 )(Dwc
wy)+−, (68)

or in brief notation

Dac
xy = Dac

xy0 −
∫

d4z
∫

d4wDab
xz0(K

bd
zw − Kbd

zw0)D
wc
wy , (69)

where

Kbd
zw =

∑
k=0

Kbd
zwk (70)

and∫
d4zKab

xz0D
bc
zy0 = δacδxy . (71)

3 We note also that there are also different kernel, related to <A+A+>

and <A−A−> propagators, in the approach. In leading order the con-
tributions to these kernels are zero:

(Kab
xy )

++
0 = (Kab

xy )
−−
0 = 0;

we do not calculate these propagators in the paper. This task will be
considered in a separate publication.

The calculation of the NLO kernel Kab
xy1 is performed in

Appendix B; the following answer is obtained:

−2ı K ab
xy1 = 1

2
g2Nδab

∫
d4zd4td4w(∂2

i zG
tz
0++)

×(δ2
x⊥w⊥δx+w+)(δ2

y⊥z⊥δy−z−) · [(G+0
zwG+0

wt + G+0
tw G+0

wz )

+2(G+0
zt G

+0
tw + G+0

zt G
+0
wz + G+0

zwG+0
t z + G+0

t z G+0
wt )]

−
∫

d4zd4t Ĝzt
i j

(
δ

δAa+x
(Mcd

1 j j1)t

)
Ĝtz

ji j2

(
δ

δAb−y

(Mdc
1 j2i )z

)

−1

2
g fcdb

∫
d4wd4td4w1(G

+0
tw − G+0

wt )(δ
2
t⊥y⊥δt−y−)

×Ĝww1+ j1

(
δ

δAa+x
(Mdc

1 j1 j2)w1

)(
∂2
i t Ĝ

w1t
j2+

)

+ 2g fcd1d

∫
d4wd4w1Ĝ

ww1+ j1

(
δ

δAa+x
(Mdc

1 j1 j2)w1

)

×
(

δ

δAb−y

((∂−v
d1cl
j ) − v

d1cl
j ∂−)w

)
Ĝw1w

j2 j
, (72)

where the expressions for all functional derivatives are pre-
sented in Appendix B. Nevertheless, the only non-zero con-
tributions to this kernel are the following:

− 2ı K ab
xy1 = 1

2
g2Nδab

∫
d4zd4td4w(∂2

i zG
tz
0++)

×(δ2
x⊥w⊥δx+w+)(δ2

y⊥z⊥δy−z−)G+0
tw G+0

wz

+1

2
g fcdb

∫
d4wd4td4w1G

+0
wt (δ

2
t⊥y⊥δt−y−)

×Ĝww1+ j1

(
δ

δAa+x
(Mdc

1 j1 j2)w1

)
(∂2

i t Ĝ
w1t
j2+); (73)

see Appendix C. Therefore, using Eq. (C.7) and Eq. (C.22)
we have

− 2ı K ab
xy1 = ıg2N

4π
∂2
i x

(∫
dp−
p−

∫
d2 p⊥
(2π)2

×
∫

d2k⊥
(2π)2

k2⊥
p2⊥(p⊥ − k⊥)2

e−ıki (xi−yi )
)

(74)

and performing the Fourier transform we write Eq. (69) as

D̃ab(p) = δab

p2⊥
− g2N

32π3

∫
dk−
k−

∫
d2k⊥

p2⊥
k2⊥(p⊥ − k⊥)2

D̃ab(p),

(75)

where we used

Dab
0 (x, y) = δab

∫
d4 p

(2π)4

e−ı p(x−y)

p2⊥
, (76)

see the definitions of Eqs. (63) and (71). Introducing the
rapidity variable y = 1

2 ln(�k−) and taking into account the
physical cut-off of the rapidity related with particles cluster
size η, we obtain after integration on the variable k− in the
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limits y0 − η/2 and y0 + η/2

D̃ab(p⊥, η) = δab

p2⊥
− g2N

16π3

∫ η

0
dη′

∫
d2k⊥

p2⊥
k2⊥(p⊥ − k⊥)2

D̃ab(p⊥, η′) (77)

with

ε(p2⊥) = −αs N

4π2

∫
d2k⊥

p2⊥
k2⊥(p⊥ − k⊥)2

(78)

as intercept of the propagator of reggeized gluons. Rewriting
this equation as a differential one:

∂ D̃ab(p)

∂η
= D̃ab(p)ε(p2⊥) (79)

we obtain the final expression for the propagator:

D̃ab(p) = δab

p2⊥

(
s

s0

)ε(p2⊥)

(80)

with some rapidity interval 0 < η < ln(s/s0) introduced of
the problem of interest. We note that the propagator obtained
is precisely the well-known one, see [33–38], and thereby
we demonstrated the self-consistency of the obtained effec-
tive action of Eq. (48). It is interesting to note also that
the obtained intercept, Eq. (78), is known as well in CGC
approach, this is a color charge density; see for example the
work of Kovner et al. in [44–49].

7 Conclusion

The main result of this paper is the expression for the one-
loop effective action for reggeized gluons in Eq. (48). On one
hand, this effective action can be considered as the one-loop
effective action for gluodynamics with added gauge invari-
ant source of longitudinal gluons, calculated on the base of
non-trivial classical solutions for gluon fields. These clas-
sical solutions are fully determined in terms of reggeized
gluons fields, and, therefore, the same action can be consid-
ered as the one-loop effective action for reggeized gluons.
The expansion of this action in terms of the reggeons, see
Eq. (60), determines the vertices of the interactions of these
reggeized fields. There are all possible vertices in here, the
only limitation is the precision of Eq. (48). Whereas the A+
reggeized field is the argument of the ordered exponential
in the classical solutions and the number of derivatives with
respect to this field is not limited, see Eqs. (49)–(50) and
[7], the A− reggeon field is presented in Eq. (48) in a com-
bination which allows only a limited number of derivations
with respect to this field. Therefore, the calculation of the
complex vertices related to large number of A− reggeized

fields will require or increase of the precision of the calcula-
tions, or calculation of the same effective action in a different
gauge, where two types of the ordered exponential, with A+
and A− fields in arguments, will be presented in the classical
solutions. In both cases, the precision of the computations
will be determined by the QFT methods, namely it will be
limited by the orders of the classical solutions, order of loops
included in calculations and by combinations of the fields in
the final expression, which will survive after application of
the A+, A− → 0 limit.

Another important result of the paper is the calculation
of the propagator of reggeized gluons of Eq. (80) in the
framework of the approach. Although this propagator is well
known and widely used in all applications of the effective
action, see [9–22] and [33–38], the full computation of the
propagator in the framework of interest was done for the first
time. We can consider this calculation as a check of the self-
consistency of the approach and also as an explanation of the
methods of the calculation of small-x BFKL-based vertices
in the framework. There are other important vertices which
can be similarly calculated based on Eq. (48). These vertices
are important ingredients of the unitary corrections to differ-
ent production and interaction amplitudes of the processes at
high energies and they will be considered in separate publi-
cations.

As we mentioned above, Eq. (48) describes the inter-
actions of the reggeized gluons inside a cluster of parti-
cles in a limited range of rapidity. Therefore, following
[8], we can define this expression as an RFT Hamiltonian
written in terms of the QCD reggeized gluons. The per-
formed calculations, in turn, can be considered as a con-
struction of QCD RFT in terms of QCD degrees of freedom.
This RFT construction is interesting because it allows one
to consider the field theory in terms of A− and A+ fields
only, developing an approach to the calculation of reggeon
loops, applications of the Hamiltonian in the integrable sys-
tems frameworks and in condensed matter physics, [78–80],
and use of the methods in the effective gravity approach,
see [1–6].

In conclusion we emphasize that the paper is considered
as an additional step to developing of the effective theory
for reggeized gluons, which will be useful in a variety of
applications in high energy physics and other research fields.
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ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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to the original author(s) and the source, provide a link to the Creative
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Appendix A: Representation and properties of O and
OT operators

For the arbitrary representation of the gauge field v+ =
ıT ava+ with D+ = ∂+ − gv+, we can consider the following
representation of O and OT operators4:

Ox = δab + g
∫

d4yG+aa1
xy (v+(y))a1b

= 1 + gG+
xyv+y (A.1)

and correspondingly

OT
x = 1 + gv+yG

+
yx , (A.2)

which is a redefinition of the operator expansions used in [1–
6] in terms of Green’s function instead of integral operators;
see [7] for more details. The Green’s function in the above
equations we understand as the Green’s function of the D+
operator and express it in the perturbative sense by

G+
xy = G+0

xy + gG+0
xz v+zG

+
zy (A.3)

and

G+
yx = G+0

yx + gG+
yzv+zG

+0
zx , (A.4)

with the bare propagators defined as (there is no integration
on the variable x)

∂+xG
+0
xy = δxy,G

+0
yx

←−
∂ +x = −δxy . (A.5)

The following properties of the operators can be derived:

1.

δG+
xy = gG+0

xz (δv+z)G
+
zy + G+0

xz v+zδG
+
zy

= gG+0
xz (δv+z)G

+
zy + G+0

xz v+z(δG
+
zp)D+pG

+
py

= g(G+0
xz (δv+z)G

+
zy − G+0

xz v+zG
+
zp(δD+p)G

+
py)

= g(G+0
xp + G+0

xz v+zG
+
zp)δv+pG

+
py

= gG+
xpδv+pG

+
py; (A.6)

2.

δOx = gG+
xy(δv+y) + g(δG+

xy)v+y

= gG+
xpδv+p(1 + gG+

pyv+y) = gG+
xpδv+pOp;

(A.7)

4 Due the light-cone gauge we consider here only O(x+) operators.
The construction of the representation of the O(x−) operators can be
done similarly.

3.

∂+xδOx = g(∂+xG
+
xp)δv+pOp

= g(1 + gv+xG
+
xp)δv+pOp = gOT

x δv+x Ox ;
(A.8)

4.

∂+x Ox = g(∂+xG
+
xy)v+y = gv+x (1 + gG+

xyv+y)

= gv+x Ox ; (A.9)

5.

OT
x
←−
∂ +x = gv+y(G

+
yx

←−
∂ +x ) = −g(1 + v+yG

+
yx )v+x

= −gOT
x v+x . (A.10)

We see that the operator O and OT have the properties of
ordered exponents. For example, choosing bare propagators
as

G+0
xy = θ(x+ − y+)δ3

xy,G
+0
yx = θ(y+ − x+)δ3

xy, (A.11)

we immediately reproduce

Ox = Peg
∫ x+
−∞ dx

′+v+(x
′+), OT

x = Peg
∫ ∞
x+ dx

′+v+(x
′+).

(A.12)

The form of the bare propagators which corresponds to
another possible integral operator will lead to the more com-
plicated representations of the O and OT operators; see [1–
6].

Now we consider a variation of the action’s full current:

δtr[v+x Ox∂
2
i A

+] = 1

g
δtr[(∂+x Ox )∂

2
i A

+]

= 1

g
tr[(∂+xδOx )∂

2
i A

+]
= tr[OT

x δv+x Ox (∂
2
i A

+)], (A.13)

which can be rewritten in the familiar form of Lipatov’s
induced current used in the paper:

δ(v+ J+) = δtr[(v+x Ox∂
2
i A

+)]
= δva+tr[TaOTbO

T ](∂2
i A

+
b ). (A.14)

We note also that with the help of Eq. (A.1) for the repre-
sentation of the O operator the full action’s current can we
written as

tr[(v+x Ox − A+)∂2
i A

+]
= tr[(v+ − A+ + v+xG

+
xyv+y)(∂

2
i A

+)]. (A.15)
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Appendix B: Calculation of Kab
x y1 effective kernel

Below we present all contributions to the vertex of interest
and present the general answer for the kernel. We note that
there are new effective propagators which arise in the calcula-
tions, see Eqs. (B.22) and (B.30)–(B.31) below. Introducing
these propagators the effective resummation of the differ-
ent contributions occurs, see Eqs. (B.23) and (B.37). This
resummation can be performed directly in the expansion of
logarithms in Eq. (48), before taking the derivatives. Whether
these redefinitions of the propagators are valid for all order
contributions, i.e. whether it can be done on the level of the
Lagrangian is a subject of a separate publication. We do not
consider this problem in the present paper.

Transverse loop terms contributions

First of all, consider the M2 term in Eq. (48) to g2 accuracy:

(M2)
ab
i j = −g2 facc1 fc1c2b(δi jv

ccl
k0 v

c2cl
k0 − vccli0 v

c2cl
j0 ). (B.1)

We note that this term is quadratic with respect to the
ρ field and therefore it does not contribute to the kernel of
interest.

For the M1 term in Eq. (48) we have

−2ı(Kab
xy1)1 =

[
G0

δ2(Mcl
1 )cc

δAa+xδA
b−y

(1 + G0M1)
−1

−G0
δ(Mcl

1 )cd

δAb−y

(1 + G0M1)
−1G0

δ(Mcl
1 )dc

δAa+x
(1 + G0M1)

−1
]
A+,A−=0

.

(B.2)

Taking into account that

Mab
1i j = −2g facb

(
δi j (v

ccl
k ∂k − vccl+ ∂−)

−1

2
(vcclj ∂i + vccli ∂ j − (Fc

i j )cl)

)
, (B.3)

which with the required accuracy reads

Mab
1i j = −2g facb M̃

ccl
1i j = −2g facb

(
Ucc1δi jρ

c1
k ∂k

−1

2
Ucc1(ρ

c1
j ∂i + ρ

c1
i ∂ j ) − δi j A

c+∂−
)

, (B.4)

we obtain

−2ı(Kab
xy1)1 = −

∫
d4zd4t

(
δ

δAb−y

(Mcd
1i j )z

)
G0 jk(z, t)

×
(

δ

δAa+x
(Mdc

1kl)t

)
G0li (t, z). (B.5)

Longitudinal loop terms contribution

A few contributions arise from the last logarithm in Eq. (48).
We account for only non-zero ones and calculate them one
by one.

(N1)
++
ab term contribution

The variation of the first term of the last logarithm in Eq. (48)
gives

− 2ı(Kab
xy1)2 =

[
G0++

δ2(N1)
++
cc

δAa+xδA
b−y

(1 + G0++N++
1 )−1

−G0++
δ(N1)

++
cd

δAb−y

(1 + G0++N++
1 )−1G0++

×
δ

(
N1

)++

dc

δAa+x

(
1 + G0++N++

1

)−1]
A+,A−=0

,

(B.6)

where we used Gab
0++ → δabG0++ definition. The N1 term,

which is determined by Eq. (43), is quadratic with respect to
the reggeon fields, therefore only the first term in Eq. (B.6)
gives the non-zero contribution:

− 2ı(Kab
xy1)2 =

[
G0++

δ2(N1)
++
cc

δAa+xδA
b−y

]
A+,A−=0

. (B.7)

We have

δ2(N1)
++
cc

δAa+xδA
b−y

= g

N

δ(Ucd
1 )czt

δAa+x

δ∂2
i A

d−z

δAb−y

= g2

N
(Ucb

2 )
ca1
ztw

δv
a1cl+w

δAa+x
(δ2

y⊥z⊥δy−z−)∂2
i z . (B.8)

At required accuracy we have

δv
a1cl+w

δAa+x
= δaa1(δ2

x⊥w⊥δx+w+), (B.9)

see Eq. (49), and

((Ucb
2 )caztw)A+,A−=0 = 1

2
N 2δab[(G+0

zwG+0
wt + G+0

tw G+0
wz )

+ 2(G+0
zt G

+0
tw + G+0

zt G
+0
wz

+G+0
zwG+0

t z + G+0
t z G+0

wt )]. (B.10)

Therefore, we obtain

−2ı(Kab
xy1)2 = 1

2
g2Nδab

∫
d4zd4td4w(∂2

i zG
tz
0++)(δ2

x⊥w⊥δx+w+ )

×(δ2
y⊥z⊥δy−z− ) · [(G+0

zwG+0
wt + G+0

tw G+0
wz )

+2(G+0
zt G

+0
tw + G+0

zt G
+0
wz + G+0

zwG+0
t z + G+0

t z G+0
wt )].

(B.11)
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(N2)
++
ab term contribution

The only contribution from the term (N2)
++
ab in the vertex of

interest comes from the expression

− 2ı(Kab
xy1)3 =

[
G0++

δ2(N2)
++
cc

δAa+xδA
b−y

]
A+,A−=0

, (B.12)

which are determined by the following derivatives:

δ2(N2)
++
cc

δAa+xδA
b−y

= −2g fc1dc
δ

δAb−y

((∂−vdclj ) − vdclj ∂−)t

× δ

δAa+x
(∂−z∂i z G̃

cc1
i j (z, t)). (B.13)

Taking into account that

δ

δAa+x
(∂−z∂i z G̃

cc1
i j (z, t)) = −

∫
d4w(∂−z∂i zG0i j1(z, w))

×δ(M1(w))
cc1
j1 j2

δAa+x
G0 j2 j (w, t),

(B.14)

we collect all terms together obtaining

−2ı(Kab
xy1)3 = 2g fc1dc

∫
d4td4zd4wG0++(t, z)(∂−z∂i zG0i j1 (z, w))

× δ(Mcc1
1 j1 j2

)w

δAa+x
(

δ

δAb−y

((∂−vdclj )

−vdclj ∂−)t G0 j2 j (w, t)). (B.15)

Here we see from Eq. (58)

∂−ρa
i = 1

N
∂i A

a− (B.16)

that

δ

δAb−y

((∂−vdclj ) − vdclj ∂−)t = −δdbδ2
y⊥t⊥ (δy−t− − G̃−0

t− y−∂−t )∂ j t .

(B.17)

(N3)
++
ab term contribution

The

(
N3

)++

ab
term with required accuracy reads

(N3)
++
ab =

∫
d4z(∂−x∂i x G0i j1 (x, z))(M1(z))

ad
j1 j2 (∂−y∂ j y G̃

db
j2 j (z, y))

=
∫

d4z(∂−x∂i x G0i j1 (x, z)(M1(z))
ab
j1 j2 (∂−y∂ j yG0 j2 j (z, y))

−
∫

d4zd4t (∂−x∂i x G
xz
0i j1

)(Mad
1 j1 j2 )zG

zt
0 j2 j3

(Mdb
1 j3 j4 )t (∂−y∂ j yG

ty
0 j4 j

),

(B.18)

where we have the brief notation G0i j1(x, z) → Gxz
0i j1

in
the last expression and only the M1 term was preserved in
comparison with Eq. (35). The M2 does not contribute to

the vertex of interest. Therefore, the first contribution to the
kernel is given by the following expression:

−2ı(Kab
xy1)4−a =

[
G0++

δ2(N3)
++
cc

δAa+xδA
b−y

]
A+,A−=0

= −
[
G0++

δ2

δAa+xδA
b−y

( ∫
d4zd4t (∂−w∂iwG

wz
0i j1

)(Mcd
1 j1 j2 )z

×Gzt
0 j2 j3

(Mdc
1 j3 j4 )t (∂−s∂ jsG

ts
0 j4 j ))

]
A+,A−=0

= −2
∫

d4wd4sd4zd4t

(
Gsw

0++(∂−w∂iwG
wz
0i j1

)
δ(Mcd

1 j1 j2
)z

δAa+x
Gzt

0 j2 j3

× (Mdc
1 j3 j4

)t

δAb−y

(
∂−s∂ jsG

ts
0 j4 j

))
A+,A−=0

. (B.19)

The second contribution of this term to the kernel is given
by

−2ı(Kab
xy1)4−b

= −
[
G0++

δ(N3)
++
cd

δAb−y

G0++
δ(N3)

++
dc

δAa+x

]
A+,A−=0

. (B.20)

Inserting the leading contribution from Eq. (B.18) in Eq.
(B.20) we obtain

−2ı(Kab
xy1)4−b = −

∫
d4wd4sd4zd4t

∫
d4w1d4t1

×(Gsw
0++(∂−w∂iwG

ww1
0i j1

)

(
δ

δAa+x
(Mcd

1 j1 j2)w1

)

×
(

∂−z∂ j zG
w1z
0 j2 j

)
Gzt

0++
(

∂−t∂ltG
tt1
0ll1

)

×
(

δ

δAb−y

(Mdc
1l1l2)t1

)
(∂−s∂msG

t1s
0l2m

)

)
A+,A−=0

. (B.21)

We introduce now an additional operator:

Ĝi j (x, y) = G0i j (x, y) +
∫

d4zd4t

(
∂−z∂kzG0ik(x, z)

)

×G0++(z, t)(∂−t∂ltG0l j (t, y))

= −δi j

∫
d4 p

(2π)4

e−ı p(x−y)

p2 (B.22)

and rewrite the sum

(Kab
xy1)1,4 = (Kab

xy1)1 + (Kab
xy1)4−a + (Kab

xy1)4−b (B.23)

as

− 2ı(Kab
xy1)1,4 = −

∫
d4zd4t Ĝzt

i j

(
δ

δAa+x
(Mcd

1 j j1)t

)

×Ĝtz
ji j2

(
δ

δAb−y

(Mdc
1 j2i )z

)
. (B.24)
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The functional derivatives in the above expression are
given by

δ

δAa+x
(Mcd

1 j j1)t = 2gδ j j1δ
2
t⊥x⊥δt+x+ fcad∂−t (B.25)

and

δ

δAb−y

(Mdc
1 j2i )z = 2g fdbcG̃

−0
z−y−δ2

z⊥y⊥(δ j2i (∂⊥z)
2 − ∂ j2z∂i z).

(B.26)

(N1)
++
ab and (N3)

++
ab terms contribution

For the non-diagonal contribution from the (N1)
++
ab and

(N3)
++
ab terms we have

− 2ı(Kab
xy1)5 = −

[
G0++

δ(N1)
++
cd

δAb−y

G0++
δ(N3)

++
dc

δAa+x

]
A+,A−=0

.

(B.27)

Using results from the previous chapters, we obtain

−2ı(Kab
xy1)5 = − g

N

∫
d4wd4sd4zd4td4w1

×(Gzt
0++((Ucb

1 )dtw)A+,A−=0(δ
a
t⊥y⊥δt−y−∂2

i t )

·Gws
0++(∂−s∂isG

sw1
0i j1

)

(
δ

δAa+x
(Mdc

1 j1 j2)w1)(∂−z∂ j zG
w1z
0 j2 j

)

)
.

(B.28)

Here we have

((Ucb
1 )dtw)A+,A−=0 = 1

2
N fcdb(G

+0
tw − G+0

wt ); (B.29)

see Eq. (26). Now we introduce new operators:

Ĝ+ j (x, y) =
∫

d4zG0++(x, z)

(
∂−z∂i zG0i j (z, y)

)

= −
∫

d4 p

(2π)4

e−ı p(x−y)

p2

p j

p−
(B.30)

and

Ĝ j+(x, y) =
∫

d4z

(
∂−z∂i zG0i j (x, z)

)
G0++(z, y)

= Ĝ+ j (y, x). (B.31)

Finally, with the help of these operators, we rewrite Eq.
(B.28) as

− 2ı(Kab
xy1)5 = −1

2
g fcdb

∫
d4wd4td4w1((G

+0
tw − G+0

wt )(δ
a
t⊥ y⊥δt− y− ) ·

·Ĝww1+ j1

(
δ

δAa+x
(Mdc

1 j1 j2 )w1 )(∂
2
i t Ĝ

w1t
j2+)

)
. (B.32)

(N2)
++
ab and (N3)

++
ab terms contribution

For the non-diagonal contribution from the terms (N2)
++
ab

and (N3)
++
ab we have

− 2ı(Kab
xy1)6 = −

[
G0++

δ(N2)
++
cd

δAb−y

G0++
δ(N3)

++
dc

δAa+x

]
A+,A−=0

.

(B.33)

Using the results of previous calculations we write

δ((N2)
++
cd )tw

δAb−y

= −2g fc1d1d

(
δ

δAb−y

((∂−v
d1cl
j ) − v

d1cl
j ∂−)w

)

×(∂−t∂i t G̃
cc1
i j (t, w)) (B.34)

and

δ(N3)
++
dc

δAa+x
=

∫
d4w1(∂−s∂isG

sw1
0i j1

)

(
δ

δAa+x
(Mdc

1 j1 j2 )w1

)
(∂−z∂ j zG

w1z
0 j2 j

).

(B.35)

Therefore, we have for the contribution of Eq. (B.33)

−2ı(Kab
xy1)6 = 2g fcd1d

∫
d4zd4td4wd4sd4w1

×
(
Gzt

0++
(

δ

δAb−y

((∂−v
d1cl
j ) − v

d1cl
j ∂−)w

)

(∂−t∂i tG
tw
0i j )G

ws
0++(∂−s∂isG

sw1
0i j1

)(
δ

δAa+x
(Mdc

1 j1 j2)w1

)
(∂−z∂ j zG

w1z
0 j2 j

)

)

= 2g fcd1d

∫
d4wd4w1

(
δ

δAb−y

((∂−v
d1cl
j ) − v

d1cl
j ∂−

)
w

×(Ĝw1w
j2 j

− Gw1w
0 j2 j

))Ĝww1+ j1

(
δ

δAa+x
(Mcd

1 j1 j2)w1

)
. (B.36)

Now the sum

(Kab
xy1)6,3 = (Kab

xy1)6 + (Kab
xy1)3 (B.37)

can be written as

−2ı(Kab
xy1)6,3

= 2g fcd1d

∫
d4wd4w1Ĝ

ww1+ j1

(
δ

δAa+x
(Mdc

1 j1 j2)w1

)
·

·
((

δ

δAb−y

((∂−v
d1cl
j ) − v

d1cl
j ∂−)w

)
Ĝw1w

j2 j

)
, (B.38)

with the derivatives in the expression given by Eqs. (B.17)
and (B.25).
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Final expression for the kernel

Taking all contributions together we obtain the following
expression for the kernel to required order:

−2ı K ab
xy1 = 1

2
g2Nδab

∫
d4zd4td4w(∂2

i zG
tz
0++)

×(δ2
x⊥w⊥δx+w+)(δ2

y⊥z⊥δy−z−) ·
[
(G+0

zwG+0
wt + G+0

tw G+0
wz )

+2(G+0
zt G

+0
tw + G+0

zt G
+0
wz + G+0

zwG+0
t z + G+0

t z G+0
wt )

]

−
∫

d4zd4t Ĝzt
i j

(
δ

δAa+x
(Mcd

1 j j1)t

)
Ĝtz

ji j2

(
δ

δAb−y

(Mdc
1 j2i )z

)

−1

2
g fcdb

∫
d4wd4td4w1(G

+0
tw − G+0

wt )(δ
2
t⊥y⊥δt−y−)Ĝww1+ j1

×
(

δ

δAa+x
(Mdc

1 j1 j2)w1

)(
∂2
i t Ĝ

w1t
j2+

)

+2g fcd1d

∫
d4wd4w1Ĝ

ww1+ j1

(
δ

δAa+x
(Mdc

1 j1 j2)w1

)

×
(

δ

δAb−y

((∂−v
d1cl
j ) − v

d1cl
j ∂−)w

)
Ĝw1w

j2 j
, (B.39)

where the expressions for all functional derivatives are deter-
mined above.

Appendix C: Calculation of the final answer for Kab
x y1

effective kernel

Below we present the final answer for the vertex of interest
after the calculations of integrals in Eq. (B.39). First of all,
we calculate the integrals from Eq. (B.39) which give non-
zero contributions, we consider the other integrals from Eq.
(B.39) in the end of the appendix. We also recall that in the
framework of the approach we consider the cluster of the
particles with5 p− > 0, therefore we have

1

p2 → 1

2p−
(
p+ − p2⊥

2p− + ıε

) , ε > 0, (C.1)

which determines the form of the integration contours in the
p+ integrals.

Non-zero contribution: first integral of Eq. (73)

This contribution reads

I1 = 1

2
g2Nδab

∫
d4zd4td4w

(
∂2
i zG

tz
0++

) (
δ2
x⊥w⊥δx+w+

)

×
(
δ2
y⊥z⊥δy−z−

) (
G+0
tw G+0

wz − 2
(
G+0
zwG+0

t z + G+0
t z G+0

wt

))

(C.2)

5 The full answer Eq. (B.39) is symmetrical with respect to sign of p−
momentum and the final answer does not depend on it.

or, using the results of Appendix A and Eq. (47), we write it
as

I1 = g2Nδab∂2
i x

(
δ2
x⊥y⊥

∫
dt+θ(t+ − x+)

∫
dz+θ(x+ − z+)

×
∫

dp−
∫

dp+
∫

d2 p⊥
(2π)4

p+
p2 p−

e−ı p+(t+−z+)

)
.

(C.3)

The integrals are found after the regularization:∫
dt+θ(t+ − x+)e−ı p+t+ = − ı

p+ − ıε
e−ı p+x+

(C.4)

and∫
dz+θ(x+ − z+)eıp+z+ = ı

p+ − ıε
eıp+x+

. (C.5)

Inserting these expressions in Eq. (C.3) we obtain

I1 = −g2Nδab∂2
i x

(
δ2
x⊥y⊥

∫
dp−
2p2−

×
∫

d2 p⊥
(2π)4

∫
dp+

1

p+ − p2⊥
2p− + ıε

1

p+ − ıε

)
, (C.6)

which after the integration on p+ gives finally

I1 = ı
g2N

(2π)3 δab∂2
i x

( ∫
dp−
p−

∫
d2 p⊥
p2⊥

∫
d2k⊥
(2π)2 e

−ık⊥(x⊥−y⊥)

)
.

(C.7)

Non-zero contribution: second integral of Eq. (73)

This contribution reads

I2 = 1

2
g fcdb

∫
d4wd4td4w1G

+0
wt (δ

2
t⊥y⊥δt−y−)

×Ĝww1+ j1

(
δ

δAa+x
(Mdc

1 j1 j2)w1

)
(∂2

i t Ĝ
w1t
j2+). (C.8)

Here we have

δ

δAa+x
(Mdc

1 j1 j2)w1 = 2gδ j1 j2δ
2
w1⊥x⊥δw+

1 x+ fdac∂−w1 (C.9)

and

G+0
wt = θ(w+ − t+)δ2

w⊥t⊥δw−t−; (C.10)

see Eq. (B.25) and Appendix A. Inserting these expressions
in Eq. (C.8) we obtain for the first contribution

I2 = g2Nδab
∫

dw+θ(w+ − t+)

∫
dt+

∫
dw+

1 δw+
1 x+

×
∫

dw−δw−t−
∫

dt−δt−y− (C.11)
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∫
dw−

1

∫
d2w⊥δ2

w⊥t⊥

∫
d2t⊥δ2

t⊥y⊥

×
∫

d2w1⊥δ2
w1⊥x⊥ Ĝ

ww1+ j (∂−w1∂
2
i t Ĝ

w1t
j+ ). (C.12)

The propagator in Eq. (C.11) is defined above, see Eq.
(B.30); it is

Ĝww1+ j = −
∫

d4 p

(2π)4

e−ı p(w−w1)

p2

p j

p−
, (C.13)

and correspondingly

∂−w1∂
2
i t Ĝ

w1t
j+ = −ı∂2

i t

∫
d4k

(2π)4 e
ık(w1−t) k j

k2 . (C.14)

Now, performing the integration on the delta-functions, we
obtain

I2 = ıg2Nδab∂2
i x

( ∫
dt+

∫
dw+θ(w+ − t+)

×
∫

dw−
1 eıw

−
1

(
p−+k−

) ∫
d4 p

(2π)4 (C.15)

∫
d4k

(2π)4

p j

p− p2

k j
k2 e

−ı y−(p−+k−)e−ı(xi−yi )(pi+ki )

×e−ı p+(w+−x+)eık+(x+−t+)

)
. (C.16)

The integral on the variable w−
1 leads to

∫
dw−

1 eıw
−
1 (p−+k−) = 2πδp−−k− , (C.17)

and integration on the variable w+ gives

∫
dw+θ(w+ − t+)e−ı p+w+ =

∫ ∞

t+
dw+e−ıw+(

p+−ıε
)

= − ı

p+ − ıε
e−ı p+t+ .

(C.18)

Therefore, we obtain for Eq. (C.15)

I2 = −2πg2Nδab∂2
i x

( ∫
dk+

∫
dt+e−ı t+(p++k+)

∫
dp−
p−

×
∫

dp+
∫

d2 p⊥
(2π)4

∫
d2k⊥
(2π)4

1

p+ − ıε

× p j

2p−
(
p+ − p2⊥

2p− + ıε

) k j

2p−
(
k+ + k2⊥

2p− − ıε

)

×e−ı(pi−ki )(xi−yi )e−ı x+(k+−p+)

)
. (C.19)

Integrating now on the variables t+ and k+ we have

I2 = (2π)2g2Nδab∂2
i x

( ∫
dp−
p−

∫
d2 p⊥
(2π)4

×
∫

d2k⊥
(2π)4

(
p j k j

)
e
−ı

(
pi+ki

)(
xi−yi

)

×
∫

dp+
4p2−

1(
p+ − k2⊥

2p− + ıε

) 1(
p+ − p2⊥

2p− + ıε

) 1

(p+ − ıε)

)
,

(C.20)

and performing the p+ integration we obtain

I2 = ıg2N

2π
δab∂2

i x

(∫
dp−
p−

∫
d2 p⊥
(2π)2

×
∫

d2k⊥
(2π)2

p j k j
p2⊥k2⊥

e−ı
(
pi+ki

)(
xi−yi

))
. (C.21)

Performing the variable change p⊥+k⊥ → k⊥ we rewrite
the integral in the more familiar form

I2 = ıδab
g2N

4π
∂2
i x

(∫
dp−
p−

∫
d2 p⊥
(2π)2

×
∫

d2k⊥
(2π)2

k2⊥

p2⊥
(
p⊥ − k⊥

)2 e
−ıki (xi−yi )

)

−ıδab
g2N

(2π)3 ∂2
i x

( ∫
dp−
p−

∫
d2 p⊥
p2⊥

∫
d2k⊥
(2π)2 e

−ıki (xi−yi )
)

.

(C.22)

Zero contributions in Eq. (B.39)

First of all, consider the term G+0
zwG+0

wt in the first integral
term in Eq. (B.39). With the help of Appendix A and per-
forming the calculation above we are left with the following
expression for this term:

θ(z+ − t+)

∫
dp+ eıp+(z+−t+)

p+ − p2⊥
2p− + ıε

∝ θ(z+ − t+)θ(t+ − z+)

= 0; (C.23)

see the definition of Eq. (C.1). The same holds for the
G+0

zt G
+0
tw and G+0

zt G
+0
wz terms and for the second and fourth

terms in Eq. (B.39). Two last terms in the first term in Eq.
(B.39) are equal to zero after the integration on the transverse
momentum in the corresponding integrals.

References

1. L.N. Lipatov, Nucl. Phys. B 452, 369 (1995)
2. L.N. Lipatov, Phys. Rep. 286, 131 (1997)
3. L.N. Lipatov, Subnucl. Ser. 49, 131 (2013)
4. L.N. Lipatov, Int. J. Mod. Phys. Conf. Ser. 39, 1560082 (2015)
5. L.N. Lipatov, Int. J. Mod. Phys. A 31(28/29), 1645011 (2016)

123



Eur. Phys. J. C (2017) 77 :630 Page 15 of 15 630

6. L.N. Lipatov, EPJ Web Conf. 125, 01010 (2016)
7. S. Bondarenko, L. Lipatov, A. Prygarin, Eur. Phys. J. C 77(8), 527

(2017)
8. V.N. Gribov, Sov. Phys. JETP 26, 414 (1968)
9. L.N. Lipatov, Nucl. Phys. Proc. Suppl. 99A, 175 (2001)

10. M.A. Braun, M.I. Vyazovsky, Eur. Phys. J. C 51, 103 (2007)
11. M.A. Braun, M.Y. Salykin, M.I. Vyazovsky, Eur. Phys. J. C 65,

385 (2010)
12. M.A. Braun, L.N. Lipatov, M.Y. Salykin, M.I. Vyazovsky, Eur.

Phys. J. C 71, 1639 (2011)
13. M.A. Braun, M.Y. Salykin, M.I. Vyazovsky, Eur. Phys. J. C 72,

1864 (2012)
14. M. Hentschinski, A.S. Vera, Phys. Rev. D 85, 056006 (2012)
15. M.A. Braun, M.Y. Salykin, S.S. Pozdnyakov, M.I. Vyazovsky, Eur.

Phys. J. C 72, 2223 (2012)
16. J. Bartels, L.N. Lipatov, G.P. Vacca, Phys. Rev. D86, 105045 (2012)
17. M.A. Braun, S.S. Pozdnyakov, M.Y. Salykin, M.I. Vyazovsky, Eur.

Phys. J. C 73(9), 2572 (2013)
18. G. Chachamis, M. Hentschinski, J.D.M. Martnez, A.S. Vera, Phys.

Part. Nucl. 45(4), 788 (2014)
19. M.A. Braun, Eur. Phys. J. C 75(7), 298 (2015)
20. M.A. Braun, M.I. Vyazovsky, Phys. Rev. D 93(6), 065026 (2016)
21. M.A. Braun, Eur. Phys. J. C 77(5), 279 (2017)
22. M.A. Braun, M.Y. Salykin, Eur. Phys. J. C 77(7), 498 (2017)
23. J. Bartels, Nucl. Phys. B 175, 365 (1980)
24. J. Kwiecinski, M. Praszalowicz, Phys. Lett. B 94, 413 (1980)
25. J. Bartels, V.S. Fadin, L.N. Lipatov, G.P. Vacca, Nucl. Phys. B 867,

827 (2013)
26. L.V. Gribov, E.M. Levin, M.G. Ryskin, Phys. Rep. 100, 1 (1983)
27. I. Balitsky, Nucl. Phys. B 463, 99 (1996)
28. Y.V. Kovchegov, Phys. Rev. D 60, 034008 (1999)
29. Y.V. Kovchegov, Phys. Rev. D 61, 074018 (2000)
30. I. Balitsky, Phys. Rev. D 60, 014020 (1999)
31. I. Balitsky, in At the frontier of particle physics, vol. 2*, ed. by *M.

Shifman (1999), pp 1237–1342
32. I.I.Balitsky, A.V.Belitsky, Nucl. Phys. B 629, 290 (2002)
33. L.N. Lipatov, Sov. J. Nucl. Phys. 23, 338 (1976)
34. L.N. Lipatov, Yad. Fiz. 23, 642 (1976)
35. E.A. Kuraev, L.N. Lipatov, V.S. Fadin, Sov. Phys. JETP 45, 199

(1977)
36. E.A. Kuraev, L.N. Lipatov, V.S. Fadin, Zh. Eksp. Teor. Fiz. 72, 377

(1977)
37. I.I. Balitsky, L.N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978)
38. I.I. Balitsky, L.N. Lipatov, Yad. Fiz. 28, 1597 (1978)
39. J. Bartels, Z. Phys. C 60, 471 (1993)
40. J. Bartels, M. Wusthoff, Z. Phys. C 66, 157 (1995)
41. J. Bartels, C. Ewerz, JHEP 9909, 026 (1999)
42. L. McLerran, R. Venugopalan, Phys. Rev. D 49, 2233 (1994)
43. L. McLerran, R. Venugopalan, Phys. Rev. D 49, 3352 (1994)
44. J. Jalilian-Marian, A. Kovner, L. McLerran, H. Weigert, Phys. Rev.

D 55, 5414 (1997)

45. J. Jalilian-Marian, A. Kovner, A. Leonidov, H. Weigert, Nucl. Phys.
B 504, 415 (1997)

46. J. Jalilian-Marian, A. Kovner, A. Leonidov, H. Weigert, Phys. Rev.
D 59, 014014 (1998)

47. E. Iancu, A. Leonidov, L.D. McLerran, Nucl. Phys. A 692, 583
(2001)

48. E. Iancu, A. Leonidov, L.D. McLerran, Phys. Lett. B 510, 133
(2001)

49. E. Ferreiro, E. Iancu, A. Leonidov, L. McLerran, Nucl. Phys. A
703, 489 (2002)

50. I. Balitsky, Phys. Rev. D 72, 074027 (2005)
51. Y. Hatta, Nucl. Phys. A 768, 222 (2006)
52. Y. Hatta, E. Iancu, L. McLerran, A. Stasto, D.N. Triantafyllopoulos,

Nucl. Phys. A 764, 423 (2006)
53. Y. Hatta, Nucl. Phys. A 781, 104 (2007)
54. A. Basseto, G. Nardelli, R. Soldati,YangMills theories in algebraic

non-covariant gauges (World Scientific, Singapore, 1991)
55. S.J. Brodsky, H.C. Pauli, S.S. Pinsky, Phys. Rep. 301, 299 (1998)
56. A. Ayala, J. Jalilian-Marian, L.D. McLerran, R. Venugopalan,

Phys. Rev. D 52, 2935 (1995)
57. M.A. Braun, Phys. Lett. B 483, 115 (2000)
58. M.A. Braun, Eur. Phys. J. C 33, 113 (2004)
59. S. Bondarenko, M.A. Braun, Nucl. Phys. A 799, 151 (2008)
60. S. Bondarenko, Nucl. Phys. A 792, 264 (2007)
61. D. Amati, L. Caneschi, R. Jengo, Nucl. Phys. B 101, 397 (1975)
62. R. Jengo, Nucl. Phys. B 108, 447 (1976)
63. M. Ciafaloni, Nucl. Phys. B 146, 427 (1978)
64. S. Bondarenko, E. Gotsman, E. Levin, U. Maor, Nucl. Phys. A 683,

649 (2001)
65. E. Levin, A. Prygarin, Eur. Phys. J. C 53, 385 (2008)
66. N. Armesto, S. Bondarenko, J.G. Milhano, P. Quiroga, JHEP 0805,

103 (2008)
67. S. Bondarenko, Eur. Phys. J. C 71, 1587 (2011)
68. S. Bondarenko, L. Horwitz, J. Levitan, A. Yahalom, Nucl. Phys. A

912, 49 (2013)
69. L. Lukaszuk, B. Nicolescu, Nuovo Cimento Lett. 8, 405 (1973)
70. L.N. Lipatov, Phys. Lett. B 251, 284 (1990)
71. P. Gauron, L. Lipatov, B. Nicolescu, Phys. Lett. B 304, 334 (1993)
72. P. Gauron, L.N. Lipatov, B. Nicolescu, Z. Phys. C 63, 253 (1994)
73. L.N. Lipatov, Nucl. Phys. B 548, 328 (1999)
74. R.A. Janik, J. Wosiek, Phys. Rev. Lett. 82, 1092 (1999)
75. M.A. Braun, P. Gauron, B. Nicolescu, Nucl. Phys. B 542, 329

(1999)
76. J. Bartels, L.N. Lipatov, G.P. Vacca, Phys. Lett. B 477, 178 (2000)
77. L.N. Lipatov, A.I.P. Conf. Proc. 1523, 247 (2012)
78. H.J. de Vega, L.N. Lipatov, Phys. Lett. B 578, 335 (2004)
79. L.N. Lipatov, J. Phys. A 42, 304020 (2009)
80. J. Bartels, L.N. Lipatov, A. Prygarin, J. Phys. A 44, 454013 (2011)

123


	One-loop light-cone QCD, effective action for reggeized gluons and QCD RFT calculus
	Abstract 
	1 Introduction
	2 Effective action for reggeized gluons and classical equations of motion
	3 Expansion of the Lagrangian around the classical solution
	3.1 The  Fi+a Fi-a  term
	3.2 The  Fija Fija  term
	3.3 The F+-a F+-a term
	3.4 The current term

	4 One-loop effective action: integration over fluctuations
	4.1 Integration on transverse fluctuations
	4.2 Integration on longitudinal fluctuations

	5 RFT calculus based on the effective action
	6 Interaction kernels and propagators of reggeized gluons
	7 Conclusion
	Appendix A: Representation and properties of O and OT operators
	Appendix B: Calculation of  Kx y 1a b effective kernel

	Transverse loop terms contributions
	Longitudinal loop terms contribution
	( N1)a b+ + term contribution
	( N2)a b+ + term contribution
	( N3)a b+ + term contribution
	( N1)a b+ + and ( N3)a b+ + terms contribution
	( N2)a b+ + and ( N3)a b+ + terms contribution
	Final expression for the kernel
	Appendix C: Calculation of the final answer for  Kx y 1a b effective kernel

	Non-zero contribution: first integral of Eq. (73)
	Non-zero contribution: second integral of Eq. (73)
	Zero contributions in Eq. (B.39)
	References




