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Abstract Loop regularization (LORE) is a novel regular-
ization scheme in modern quantum field theories. It makes
no change to the spacetime structure and respects both gauge
symmetries and supersymmetry. As a result, LORE should be
useful in calculating loop corrections in supersymmetry phe-
nomenology. To further demonstrate its power, in this article
we revisit in the light of LORE the old issue of the absence
of quadratic contributions (quadratic divergences) in softly
broken supersymmetric field theories. It is shown explicitly
by Feynman diagrammatic calculations that up to two loops
the Wess–Zumino model with soft supersymmetry breaking
terms (WZ’ model), one of the simplest models with the
explicit supersymmetry breaking, is free of quadratic con-
tributions. All the quadratic contributions cancel with each
other perfectly, which is consistent with results dictated by
the supergraph techniques.
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1 Introduction

With the advent of the Higgs boson with a mass of approxi-
mately 125 GeV at LHC [1,2], the last missing piece of the
Standard Model (SM) has been found. After working hard
for more than 50 years, eventually we have gotten a mathe-
matically consistent theory at hand, which provides unprece-
dented agreement with numerous experiments up to the TeV
scale.

In SM, the mass of the Higgs is a free parameter, and at
the quantum level it receives large contributions from the
ultraviolet (UV) physics at some UV scale (say, Mc), due
to the presence of quadratic contributions in the Higgs self-
energy diagrams. In this article, we prefer to use the concept
“UV contribution” to refer to what is traditionally called “UV
divergence”, as the former is more compatible with the mod-
ern effective-field-theory approach to quantum field theories
suggested by Wilson, in which all quantum field theories
are defined at some physical UV scale, and the infrared (IR)
theories could be obtained from the UV theories by doing
renormalization-group transformations [3].

At the one-loop level [4], the effective Higgs mass param-
eter m2

H (Mc/μ) at the low-energy scale μ is related to the
UV parameter m2

H (Mc) at the UV scale Mc by

m2
H (Mc/μ) = m2

H (Mc) − 6

(4π)2

×
(
y2
t − 1

4
λH − 1

8
g2

1 − 3

8
g2

2

)(
M2

c − μ2
)

+ logarithmic contributions, (1.1)
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where yt , g1, g2, λH are the top-quark Yukawa coupling, the
U (1)Y gauge coupling, the SU (2)L gauge coupling and the
Higgs quartic coupling, respectively. Here we have ignored
the contributions from the remaining particles in SM, since
their couplings to the Higgs boson are much weaker. It
has been shown recently in Ref. [5] that quadratic contri-
butions from the SM Higgs sector can induce spontaneous
electroweak symmetry breaking at �EW � 750 GeV, given
the SM parameters measured at the low energy as boundary
conditions for the renormalization-group equations. Such a
mechanism is dubbed quantum electroweak symmetry break-
ing, as quadratic contributions that play a significant role
come from quantum loop effects. The symmetry breaking
scale �EW � 750 GeV could then be treated as another fun-
damental scale of SM besides the electroweak scale v = 246
GeV.

Although SM is an unprecedented triumph of human intel-
ligence, it is generally believed that SM is certainly not the
last words we can say about nature. And right now, the most
urgent question that confronts us is:What is the characteristic
scale for new physics? In the literature, this is often referred
to as the gauge hierarchy problem. At present, one of the
leading candidates for new physics beyond SM is supersym-
metry (SUSY). SUSY introduces bosonic/fermionic partners
for each SM fermionic/bosonic particle, and it puts stringent
constraints on their properties. To describe the real nature,
SUSY has to be broken at the low energy. In the high-
energy phenomenological studies, usually this is achieved
by introducing soft-SUSY-breaking terms into the supersym-
metric Lagrangian by hand. The state-of-the-art constraints
on SUSY in the real world could be found in Ref. [6].
Besides the doubling of particle species, SUSY and softly
broken SUSY are also characterized by other novel prop-
erties, among which the most important one is the absence
of quadratic contributions. Traditionally, this issue is han-
dled by the supergraph technique [7]. Although elegant and
powerful, supergraph techniques are quite baroque and less
useful in phenomenological studies, where, instead, the tra-
ditional Feynman diagrammatic calculations are more rele-
vant, and dimensional regularization (DREG) [8] and dimen-
sional reduction (DRED) [9] are usually adopted to redefine
UV divergent Feynman integrals.1 However, it is well known
that DREG and DRED cannot track quadratic contributions
in the 4 − ε dimension, which makes them less convenient
in studying theoretical aspects of softly broken SUSY such
as the aforementioned absence of quadratic contributions.

In this article, we would like to convince the reader that
loop regularization (LORE) proposed in Refs. [11,12] is
an ideal regularization scheme in studying both theoretical

1 Noticeably, it is shown in Ref. [10] that DREG and DRED can lead
to different running couplings in softly broken SUSY, due to the fact
the latter preserves SUSY, while the former does not.

and phenomenological properties of SUSY and softly bro-
ken SUSY. LORE is believed to be able to preserve various
symmetries, including Poincaré symmetry, gauge symmetry,
SUSY, etc.,2 and has already been applied in several stud-
ies, such as the one-loop renormalization of non-Abelian
gauge theories [13], the study of composite Higgs model
[14], the gravitational corrections to the running of gauge
couplings [15–17], the renormalization of supersymmetric
field theories [18], the trace anomaly in quantum electro-
dynamics (QED) [19], the diphoton channel of the Higgs
decay [20], the quadratic running of the effective Higgs mass
parameter. In Ref. [21,22], LORE has been used to calculate
two-loop quantum corrections of the λφ4 theory and QED.
In a recent review article [23], one of the authors (YLW)
presents a comprehensive review of the underlying philoso-
phy and application scenarios of LORE. Noticeably, LORE
provides not only useful tools for physicists to study quan-
tum field theories, but also new challenges for mathemati-
cians. Recently, Refs. [24,25] proved the three conjectures
concerning the asymptotics of sums of products of binomi-
als, powers and logarithms suggested in Ref. [11,12], and
one proposed closed-form expressions for Irreducible Loop
Integrals (ILIs), which are building blocks of LORE. These
studies show that LORE is applicable in arbitrary space-
time dimensions, which makes it suitable in studying quan-
tum loop effects of gravitational gauge field theory in six-
dimensional spacetime [26] and the unified field theory of
basic forces and elementary particles with gravitational ori-
gin of gauge symmetry in 19-dimensional hyper-spacetime
[27]. To demonstrate the power of LORE, we calculate in the
later parts of this article the two-loop quadratic contributions
of the WZ’ model, i.e., the Wess–Zumino model with soft
SUSY-breaking terms, and we show explicitly the cancella-
tion of all quadratic contributions.

The remaining parts of this article are organized as fol-
lows: In Sect. 2, we give a practical introduction to LORE. In
Sect. 3, we use LORE to calculate quadratic contributions in
the WZ’ model, up to two loops. In Sect. 4, we conclude with
some final remarks. We also include several appendices to
provide some technical details. Besides the aforementioned
motivation to provide new tools to study quadratic contri-
butions in SUSY phenomenology, the results of this article
could be interpreted further as follows. As mentioned in foot-
note 2, the SUSY preservation of LORE has been verified at
one loop by checking Slavnov–Taylor identities directly [18].
It is desirable to verify explicitly the applicability of LORE
to SUSY at two loops and beyond. As complete two-loop

2 These symmetry-preserving properties of LORE are believed to hold
at arbitrary loops. At present, the preservation of non-Abelian gauge
symmetries and SUSY has been verified at one loop by checking the
Slavnov–Taylor identities [13] and SUSY Ward identities [18], while
the preservation of Abelian gauge symmetries has been verified at two
loops by checking the Ward identities [22].
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calculations are quite complicated, it is wise to first verify
some important features of SUSY and softly broken SUSY,
such as the absence of quadratic contributions, and approach
the final goal step by step.

2 A practical guide to LORE

In this section, we shall give a practical introduction to
LORE. The viewpoint adopted here is slightly different from
Ref. [11,12]. And we mainly concentrate on how to use
LORE to do the realistic calculations in phenomenology.
Readers who want to know more about LORE are recom-
mended to go to Ref. [23] for a more comprehensive intro-
duction.

2.1 General features

In this subsection, we would like to provide a comparison
between LORE and other regularization schemes in the liter-
ature, making clear the differences between them. The com-
mon regularization schemes include sharp cut-off regulariza-
tion, Pauli–Villars regularization [28], higher derivative regu-
larization [29], DREG, DRED, etc.3 The philosophy under-
lying these regularization schemes can be summarized as
follows:

1. First, the Lagrangians of quantum field theories have to
be modified in some ways. In the sharp cut-off regular-
ization, the Lagrangians are reformulated on a discrete
lattice; in the Pauli–Villars regularization, extra Pauli–
Villars ghost fields and interaction vertices are added
into the Lagrangian; in the higher derivative regular-
ization, higher derivative interactions are added in; in
DREG and DRED, the Lagrangians are reformulated in
the D = 4−ε spacetime, rather than the ordinary D = 4
Minkowski spacetime, and one needs to introduce the
extra fields called ε-scalars when using DRED to regu-
larize gauge field theories.

2. The Feynman rules of the Lagrangian then have to be
modified correspondingly. In the sharp cut-off regulariza-
tion, the integrals over loop momenta are cut off at some
energy scale; in Pauli–Villars regularization, extra prop-
agators and vertices of the Pauli–Villars ghosts are intro-
duced; in the higher derivative regularization, no extra

3 For an introduction to recent developments and comparisons of regu-
larization scheme, we recommend Ref. [30], which also contains a dis-
cussion of other four-dimensional regularization schemes such as the
implicit regularization (IREG) [31–33] and four-dimensional renormal-
ization (FDR) [34]. Although not included in our current goals, com-
paring LORE with these regularization schemes would be interesting
and important. Hopefully, we could handle this issue in future studies.

Fig. 1 Mediation scenario for the regularization of Feynman integrals

fields are introduced, but the propagators of the exist-
ing fields are modified; in the DREG and DRED, the
dimension of the momentum integrals are changed from
4 to 4 − ε, and new propagators and interaction vertices
are needed where the ε-scalars mentioned above appear.
Also, when using DREG and DRED to handle mod-
els containing chiral fermions, one needs extra rules to
manipulate the Levi-Civita symbol εμνρσ and γ 5, which
can lead to mathematical inconsistencies [35].

3. Finally, the Feynman integrals corresponding to the Feyn-
man diagrams have to be reformulated using the new
Feynman rules derived above. For the regularization
schemes mentioned above, at this stage, all the Feyn-
man integrals become finite and thus mathematically well
defined.

The above steps are summarized diagrammatically in
Fig. 1. In the following, we shall call this way to construct reg-
ularization schemes the mediation scenario, just to empha-
size the role played by Feynman rules in transmitting the
modifications to the Lagrangians into the target Feynman
integrals, and we thereby make them mathematically well
defined.

LORE is different from all the aforementioned regular-
ization schemes in the sense that its underlying philosophy
is different. Instead of utilizing Feynman rules as messen-
gers, it redefines the divergent Feynman integrals directly.
So, when using LORE we do not need to modify either the
Lagrangians or the Feynman rules directly. We do not need
any unphysical fields, any extra vertices, any modifications
to the propagators of the existing fields, or any departures
from the ordinary spacetime structures. The essential reason
for the fact that LORE preserves SUSY is that SUSY can
be regarded as a spacetime symmetry as it extends the usual
Minkowski spacetime into the so-called superspace which
contains not only the usual commutative coordinates but also
anti-commutative coordinates. As emphasized above, unlike
the popular DREG and DRED, LORE does not change the
spacetime structure at all. So it is physically straightforward
to see that LORE should preserve SUSY perfectly.

For a general divergent Feynman integral, it is shown in
Ref. [21,22] that the structures of UV contributions can be
extracted in the following way:

I = IFP ⊗ IUVDP ⊗ IILI, (2.1)
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by exploiting Bjorken–Drell’s analogy between Feynman
diagrams and electrical circuits [36]. Here, I stands for the
divergent Feynman integral, IFP for integrals over Feyn-
man parameters, IUVDP for integrals over the ultraviolet-
divergence-preserving (UVDP) parameters introduced in
Ref. [21,22], and IILI for the ILIs. The ⊗ operation here is
introduced for heuristic reasons, and Ix ⊗ Iy roughly means∫

dx Ix
∫

dy Iy . Generally, Iy depends on both x and y. The
following discussions do not rely on the precise definition
of the operator ⊗. Before giving explicit definitions of these
concepts, we want to emphasize some general features of
IFP, IUVDP, IILI first [21,22]:

1. Generally, the UV-contribution structures of the Feynman
integral I are encoded entirely in IUVDP and IILI. In other
words, the Feynman parameter integrals IFP contain no
UV contributions.

2. The overall UV contribution of I is solely encoded in
IILI. If the Feynman integral I has any tensor structure,
the tensor structure is also encoded entirely in IILI.

3. The UV subcontributions in I are encoded in the UVDP
integrals IUVDP. And it is shown that there is a one-to-
one correspondence between UV subcontributions (UV
subdivergences) in I and the UV contributions in IUVDP.

For the one-loop Feynman integrals, there is no UV sub-
contribution in the Feynman integrals. Thus, in this case we
do not need UVDP integrals, and Eq. (2.1) can be simplified
to

I = IFP ⊗ IILI. (2.2)

2.2 ILI and LORE

Let us start with the definitions of ILIs (i.e. irreducible loop
integrals):

I−2α =
∫

d4k
1

(k2 − M2)2+α
. (2.3)

Here α = −1, 0, 1, 2, . . ., and the number (−2α) in the sub-
script labels the superficial degrees of UV contributions of
ILIs. M is generally a function of the physical masses mi ,
external momenta pi , and other parameters introduced dur-
ing the calculation, e.g. Feynman parameters xi . Formally,
one has M = M(mi , pi , xi , . . .).

One can also introduce extra tensor structures into ILIs:

Iμν
−2α =

∫
d4k

kμkν

(k2 − M2)3+α
, (2.4)

Iμνρσ
−2α =

∫
d4k

kμkνkρkσ

(k2 − M2)4+α
, (2.5)

etc. Here α = −1, 0, 1, 2, . . .. These tensor type ILIs are
common when doing calculations in gauge field theories.

As mentioned in Sect. 2.2, at the one-loop level, one can
always decompose a Feynman integral I into a “product” of
IFP and IILI. Let us take the following example to see how
this kind of decomposition comes into being.

Example: Decompose I = ∫
d4k 1

k2−m2
1

1
(k+p)2−m2

2
into the

form IFP ⊗ IILI.
Using the standard Feynman parametrization, one can eas-

ily show that
∫

d4k
1

k2 − m2
1

1

(k + p)2 − m2
2

=
∫ 1

0
dx
∫

d4k
1

{(1 − x)(k2 − m2
1) + x[(k + p)2 − m2

2]}2

=
∫ 1

0
dx
∫

d4k
1

{(k + xp)2 − [(1 − x)m2
1 + xm2

2 − x(1 − x)p2]}2

=
∫ 1

0
dx

︸ ︷︷ ︸
IFP

∫
d4k

1

(k2 − M2)2︸ ︷︷ ︸
IILI

. (2.6)

In the last step, one uses the variable shift4 k → k − xp and
M2 = (1 − x)m2

1 + xm2
2 − x(1 − x)p2.

In the above, we have introduced the concept of ILIs and
shown explicitly that, at the one-loop level, one can decom-
pose Feynman integrals into “products” of IFP and IILI. As
emphasized in Sect. 2.1, the overall UV contribution and
the tensor structure of Feynman integrals should always be
encoded in IILI. And in LORE, in order to regularize the diver-
gent Feynman integral, one has to give proper redefinitions
to ILIs. These redefinitions could be found in Ref. [11,12],
and they are reproduced in the following:

Prescription 1 :∫
d4k

1

k2 − M2 := −iπ2

×
{
M2

c − (M2+μ2
s )

[
ln

M2
c

M2+μ2
s
−γω+1+y2

(M2+μ2
s

M2
c

)]}
,

Prescription 2 :∫
d4k

1

(k2 − M2)n+1 := 1

n

∂

∂M2

∫
d4k

1

(k2 − M2)n
, (n≥1)

Prescription 3 (Consistency Conditions) :
Iμν
−2α := 1

2(α + 2)
gμν I−2α,

Iμνρσ
−2α := 1

4(α + 2)(α + 3)
(gμνgρσ + gμρgνσ + gμσ gνρ)I−2α.

Here α = −1, 0, 1, 2, . . . For α = −1 or 0, one has

4 As shown in Ref. [18], such a kind of momentum shift is perfectly
legal in LORE, even though at this stage, one has not introduced any
regularization scheme yet. One can show explicitly that the order of
doing momentum shift and LORE does not matter at all, and differ-
ent orders should give the same results. So here we choose to do the
momentum shift first and then use LORE to regularize the integrals.
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Iμν
2 := 1

2
gμν I2, Iμνρσ

2 := 1

8
(gμνgρσ + gμρgνσ + gμσ gνρ)I2,

Iμν
0 := 1

4
gμν I0, Iμνρσ

0 := 1

24
(gμνgρσ + gμρgνσ + gμσ gνρ)I0.

Here Mc acts as the UV scale, while μs acts as the infrared
(IR) scale. For those theories that are free of IR divergences,
μs can be safely set to zero. γω equals the Euler constant γE .
y2(x) = ∫ x

0 dσ 1−e−σ

σ
+ 1

x (1 − x − e−x ), and it can easily be
shown that when x → 0, y2(x) → 0. In other words, when
Mc → ∞, y2 function in Prescription 1 goes to zero. Pre-
scription 3 plays an extremely important role in preserving
gauge symmetries in regularization schemes. It is shown in
great detail in Ref. [11,12] that a regularization scheme can
preserve gauge symmetries only if these consistency condi-
tions are satisfied. The sharp cut-off regularization scheme,
which is well known to break gauge symmetries, does not sat-
isfy these consistency conditions, while DREG and DRED
do.

By using the above prescriptions, one can derive explicit
expressions for ILIs other than I2, and many of the useful
results are summarized in the appendix. Before moving on
to the multi-loop calculations, we want to emphasize the fol-
lowing two points:

1. The above treatment of LORE is practically oriented, and
we aim to explain how to use LORE to do realistic cal-
culations. Although many results might seem ad hoc for
the reader, for instance, we explain neither why I2 should
be defined as that in Prescription 1, nor where the non-
trivial y2 function comes from, these are actually well
motivated and we recommend Refs. [11,12] for further
details.

2. In LORE, one can track quadratic contributions along
with logarithmic contributions at the same time. This can
be seen explicitly in Prescription 1, where the integral
on the left-hand side, i.e., I2, is quadratically divergent.
This is actually highly non-trivial, when taking into con-
sideration that LORE preserves also gauge symmetries.
In the popular DREG and DRED, which preserve gauge
symmetries as well, quadratic contributions can only be
extracted by tracing pole structures of the Feynman inte-
grals at dimensions lower than 4. Practically, this means
that one has to carry out a separate calculation to extract
quadratic contributions.

We can also extend the above treatment to multi-loop cal-
culations, although often much more complicated due to
the appearance of UV subcontributions. As mentioned in
Sect. 2.1, these subcontributions can be fully captured in the
UVDP integrals IUVDP, and we recommend Ref. [21,22] for
a discussion of what UVDP integrals are and how to extract
subcontributions from it. In this article, we shall continue
taking a practical viewpoint without going into details. Here,

instead of doing the decomposition shown in Eq. (2.1) and
regularize the divergent subintegrals one by one, we shall try
to give out the final results directly in a way that they can
be used repeatedly in practical calculations. The key obser-
vation is the fact that IUVDP ⊗ IILI actually comprises the
so-called αβγ integrals introduced by ‘t Hooft and Veltman
[8],

IUVDP ⊗ IILI = Iαβγ . (2.7)

For the two-loop scalar Feynman integrals, a typical Iαβγ is
given by5

Iαβγ =
∫

d4l1

∫
d4l2

1

(l21 − m2
1)

α

1

(l22 − m2
2)

β

1

[(l1 + l2 + p)2 − m2
3]γ

.

(2.8)

So, instead of Eq. (2.1), one has

I = IFP ⊗ Iαβγ . (2.9)

References [21,22] contain comprehensive discussions of
calculating the αβγ integrals with the help of the Bjorken–
Drell’s electrical-circuit analogy, and they show explicitly
the one-to-one correspondence between subcontributions in
the original αβγ integrals and those in the UVDP integrals.

The above equation just says that, given a general two-loop
Feynman integral, we can always using the standard Feyn-
man parametrization to reduce it to the form of a “product”
of Feynman parameter integral IFP and Iαβγ . Since IFP does
not contain any UV contributions, to regularize I , one just
needs to regularize the Iαβγ parts. So for practical purposes,
instead of doing the hard work of calculating IUVDP and IILI

case by case, one just needs the regularized results of Iαβγ .
For the cases that α, β or γ equals zero, Iαβγ can be

decomposed into two one-loop IILI, and to get the regular-
ized results, all one has to do is to use the one-loop results
twice. For α, β, γ �= 0, the only case that is relevant to
our calculations of quadratic contributions in the WZ’ model
in the next section is I111 whose quadratic contributions are
given by

I111 = π4M2
c

[
3

(
ln

M2
c

q2
0

− γω

)
+ 1

]
+ · · · . (2.10)

Here, q0 is an arbitrary mass scale introduced to balance the
dimension. The remaining cases (e.g. I112) just do not contain
any quadratic contributions by naive power counting. One
can find more discussion of Iαβγ in the appendix.

5 In the real calculations, one encounters extra complications from non-
trivial numerators other than 1. The discussion here only deals with the
simplest case of Iαβγ , and the general cases can be treated in a similar
way.
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Now we have accumulated sufficient information as
regards LORE to finish our calculations. Let us move on
to a discussion of the WZ’ model and try to calculate the
possible quadratic contributions up to two loops.

3 Quadratic contributions in the WZ’ model

The WZ’ model, i.e., the Wess–Zumino model [37,38] with
soft SUSY-breaking terms, is the simplest model for the softly
broken SUSY, and it is an illuminating toy model that shares
many important properties of MSSM. The treatment here
can be extended straightforwardly to the more complicated
models that include gauge bosons since LORE preserves the
gauge symmetries as well. The Lagrangian of the WZ’ model
is given by

LWZ ′ = 1

2
(∂μA)2 − 1

2
m2

A A
2 + 1

2
(∂μB)2

− 1

2
m2

B B
2 + 1

2
ψ̄(i�∂ − mψ)ψ

− (mψg − λ)A3 − (mψg + 3λ)AB2

− g(ψ̄ψ A + iψ̄γ 5ψB) − 1

2
g2(A2 + B2)2. (3.1)

In this article, we adopt the (+,−,−,−) convention and
γ 5 = iγ 0γ 1γ 2γ 3. A and B are real scalar fields, and ψ is
a Majorana fermion. g is a dimensionless real coupling and
λ is the dimension-one soft SUSY-breaking parameter. In
Eq. (3.1) we have integrated out the so-called auxiliary fields,
which is a common practice in phenomenology. The conven-
tions of Feynman rules we adopt in the following calculations
are quite standard and can be found in Refs. [39–41].

In this section, we shall calculate the quadratic contribu-
tions in the self-energy diagrams of the scalar particle A and
the pseudoscalar particle B up to two loops. In these calcula-
tions, we have used the Mathematica package FeynArts [42]
to generate the relevant Feynman diagrams.

3.1 One-loop calculations

Beyond the tree level, one needs to introduce extra coun-
terterms in order to make the radiative corrections finite. To
calculate radiative corrections at two loops, one has to first
figure out counterterms at the one-loop level. At the one-loop
level, the counterterm Lagrangian is given by

Lct = 1

2
δZ (1)

A (∂μA)2 − 1

2
δZ (1)

AAm
2
A A

2 + 1

2
δZ (1)

B (∂μB)2

(3.2)

− 1

2
δZ (1)

BBm
2
B B

2 + 1

2
δZ (1)

ψ ψ̄i�∂ψ − 1

2
δZ (1)

ψ̄ψ
mψψ̄ψ

− δZ (1)
AAAmψgA

3−δZ (1)
ABBmψgAB

2−δZ (1)

ψ̄ψ A
gψ̄ψ A

− δZ (1)

ψ̄ψB
igψ̄γ 5ψB − 1

2
δZ (1)

AAAAg
2A4

− 1

2
δZ (1)

BBBBg
2B4 − δZ (1)

AABBg
2A2B2.

At the one-loop level, there are 114 Feynman diagrams that
can contribute to the one-loop counterterms. It would be too
messy to draw all of these diagrams here. Instead, we choose
to present the final results in Table 1 directly. Here we have
used the MS renormalization scheme and the parameter μ is
the so-called renormalization scale. Apparently, there is no
quadratic contribution at the one-loop level.

When taking the supersymmetric limit mA = mB =
mψ = m, λ = 0, one has

δZ (1)
A = δZ (1)

B = δZ (1)
ψ = − g2

4π2 ln
M2

c

μ2 , (3.3)

δZ (1)
AA = δZ (1)

BB = δZ (1)
AAA = δZ (1)

ABB

= δZ (1)
AAAA = δZ (1)

BBBB = δZ (1)
AABB = g2

4π2 ln
M2

c

μ2 ,

(3.4)

δZ (1)

ψ̄ψ
= δZ (1)

ψ̄ψ A
= δZ (1)

ψ̄ψB
= 0, (3.5)

which are nothing but the celebrated non-renormalization
theorem [18,37,38].

Table 1 One-loop counterterms for WZ’ model

Counterterm Result

δZ (1)
A − g2

4π2 ln M2
c

μ2

δZ (1)
AA

[
3g2

8π2 + g2m2
B

8π2m2
A
− 3g2m2

ψ

2π2m2
A
+ 9(−λ+gmψ )2

8π2m2
A

+ (3λ+gmψ )2

8π2m2
A

]

ln M2
c

μ2

δZ (1)
B − g2

4π2 ln M2
c

μ2

δZ (1)
BB

[
3g2

8π2 + g2m2
A

8π2m2
B

− g2m2
ψ

2π2m2
B

+ (3λ+gmψ )2

4π2m2
B

]
ln M2

c
μ2

δZ (1)
ψ − g2

4π2 ln M2
c

μ2

δZ (1)

ψ̄ψ
0

δZ (1)
AAA

(
g2

4π2 − 3gλ
4π2mψ

)
ln M2

c
μ2

δZ (1)
ABB

(
g2

4π2 + 9gλ
4π2mψ

)
ln M2

c
μ2

δZ (1)

ψ̄ψ A
0

δZ (1)

ψ̄ψB
0

δZ (1)
AAAA

g2

4π2 ln M2
c

μ2

δZ (1)
BBBB

g2

4π2 ln M2
c

μ2

δZ (1)
AABB

g2

4π2 ln M2
c

μ2

123
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Fig. 2 Two-loop self-energy diagrams for scalar particle A

3.2 Two-loop calculations

Now we are ready to calculate quadratic contributions in
the self-energy diagrams of the scalar particle A and pseu-
doscalar particle B in the WZ’ model at the two-loop level.
The relevant Feynman diagrams are given in Figs. 2 and 3.
Here, we only include diagrams that are quadratically diver-
gent according to power counting.

The results for the self-energy diagrams of the scalar par-
ticle A are given in Table 2. For our current purposes, we
only track the quadratic contributions in our calculations.

Here, we see explicitly that the total quadratic contribu-
tions vanish. Microscopically, one has

(a1) + (c1) + (i1) ∼ 0, (3.6)

(b1) + (d1) + ( j1) ∼ 0, (3.7)

(e1) + ( f 1) + (v1) + (y1) ∼ 0, (3.8)

(g1) + (k1) + (m1) + (o1) + (r1) ∼ 0, (3.9)

(h1) + (l1) + (n1) + (p1) + (q1) ∼ 0, (3.10)

(s1) + (t1) + (u1) + (w1) + (x1) ∼ 0, (3.11)

123
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Fig. 3 Two-loop self-energy diagrams for pseudoscalar particle B

up to logarithmic contributions and finite terms.
Similar results can be obtained for the pseudoscalar parti-

cle B. The corresponding quadratic contributions in the self-
energy diagrams of B are given in Table 3.

Also, one sees explicitly that the quadratic contributions
in self-energy diagrams of B vanish as expected. Microscop-
ically, one has

(a2) + (c2) + (i2) ∼ 0, (3.12)

(b2) + (d2) + ( j2) ∼ 0, (3.13)

(e2) + ( f 2) + (v2) + (y2) ∼ 0, (3.14)

(g2) + (k2) + (m2) + (o2) + (r2) ∼ 0, (3.15)

(h2) + (l2) + (n2) + (p2) + (q2) ∼ 0, (3.16)

(s2) + (t2) + (u2) + (w2) + (x2) ∼ 0, (3.17)

up to logarithmic contributions and finite terms.
At the two-loop level, Feynman diagrams other than the

self-energy diagrams of A and B, although they cannot be
overall quadratic divergent by naive power counting, can
also contain quadratic subcontributions. These quadratic sub-

123
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Table 2 Quadratic contributions in the two-loop self-energy diagrams
of scalar particle A

Diagram Quadratic contributions

(a1) − 27g2(−λ+gmψ )2

32π4 M2
c

∫ 1
0 dx x

m2
A−x(1−x)k2

1

(b1) − 3g2(3λ+gmψ )2

32π4 M2
c

∫ 1
0 dx x

m2
B−x(1−x)k2

1

(c1) − 9g2(−λ+gmψ )2

32π4 M2
c

∫ 1
0 dx x

m2
A−x(1−x)k2

1

(d1) − g2(3λ+gmψ )2

32π4 M2
c

∫ 1
0 dx x

m2
B−x(1−x)k2

1

(e1) − g4

8π4 M
2
c

[
3

(
ln M2

c
q2

0
− γω

)
+ 1

]

(f1) g4

8π4 M
2
c

[
3

(
ln M2

c
q2

0
− γω

)
+ 1

]

(g1) − g4

8π4 M
2
c

[
3

(
ln M2

c
q2

0
− γω

)
+ 1

]

(h1) − g4

8π4 M
2
c

[
3

(
ln M2

c
q2

0
− γω

)
+ 1

]

(i1) 9g2(−λ+gmψ )2

8π4 M2
c

∫ 1
0 dx x

m2
A−x(1−x)k2

1

(j1) g2(3λ+gmψ )2

8π4 M2
c

∫ 1
0 dx x

m2
B−x(1−x)k2

1

(k1) 9g4

64π4 M
2
c

(
ln M2

c
m2

A
− γω

)

(l1) 3g4

64π4 M
2
c

(
ln M2

c
m2

B
− γω

)

(m1) 3g4

64π4 M
2
c

(
ln M2

c
m2

A
− γω

)

(n1) g4

64π4 M
2
c

(
ln M2

c
m2

B
− γω

)

(o1) 3g4

32π4 M
2
c

(
ln M2

c
q2

0
+ 2 ln

m2
A

q2
0

− γω + 1

)

(p1) g4

32π4 M
2
c

(
ln M2

c
q2

0
+ 2 ln

m2
B

q2
0

− γω + 1

)

(q1) 3g4

32π4 M
2
c

[
3

(
ln M2

c
q2

0
− γω

)
+ 1

]

(r1) g4

32π4 M
2
c

[
3

(
ln M2

c
q2

0
− γω

)
+ 1

]

(s1) g4

4π4 M
2
c ln M2

c
μ2

(t1) − 3g4

32π4 M
2
c ln M2

c
μ2

(u1) − g4

32π4 M
2
c ln M2

c
μ2

(v1) 0

(w1) − 3g4

32π4 M
2
c ln M2

c
μ2

(x1) − g4

32π4 M
2
c ln M2

c
μ2

(y1) 0

Total 0

contributions are resulted from the embedding of the one-
loop self-energy diagrams of A and B into the Feynman dia-
grams and thus should cancel with each other since we have
shown explicitly that there is no quadratic contribution at

Table 3 Quadratic contributions in the two-loop self-energy diagrams
of pseudoscalar particle B

Diagram Quadratic contributions

(a2) − 3g2(3λ+gmψ )2

32π4 M2
c

∫ 1
0 dx x

(1−x)m2
B+xm2

A−x(1−x)k2
1

(b2) − g2(3λ+gmψ )2

32π4 M2
c

∫ 1
0 dx x

(1−x)m2
A+xm2

B−x(1−x)k2
1

(c2) − g2(3λ+gmψ )2

32π4 M2
c

∫ 1
0 dx x

(1−x)m2
B+xm2

A−x(1−x)k2
1

(d2) − 3g2(3λ+gmψ )2

32π4 M2
c

∫ 1
0 dx x

(1−x)m2
A+xm2

B−x(1−x)k2
1

(e2) g4

8π4 M
2
c

[
3

(
ln M2

c
q2

0
− γω

)
+ 1

]

(f2) − g4

8π4 M
2
c

[
3

(
ln M2

c
q2

0
− γω

)
+ 1

]

(g2) − g4

8π4 M
2
c

[
3

(
ln M2

c
q2

0
− γω

)
+ 1

]

(h2) − g4

8π4 M
2
c

[
3

(
ln M2

c
q2

0
− γω

)
+ 1

]

(i2) g2(3λ+gmψ )2

8π4 M2
c

∫ 1
0 dx x

(1−x)m2
B+xm2

A−x(1−x)k2
1

(j2) g2(3λ+gmψ )2

8π4 M2
c

∫ 1
0 dx x

(1−x)m2
A+xm2

B−x(1−x)k2
1

(k2) 3g4

64π4 M
2
c

(
ln M2

c
m2

A
− γω

)

(l2) 9g4

64π4 M
2
c

(
ln M2

c
m2

B
− γω

)

(m2) g4

64π4 M
2
c

(
ln M2

c
m2

A
− γω

)

(n2) 3g4

64π4 M
2
c

(
ln M2

c
m2

B
− γω

)

(o2) g4

32π4 M
2
c

(
ln M2

c
q2

0
+ 2 ln

m2
A

q2
0

− γω + 1

)

(p2) 3g4

32π4 M
2
c

(
ln M2

c
q2

0
+ 2 ln

m2
B

q2
0

− γω + 1

)

(q2) 3g4

32π4 M
2
c

[
3

(
ln M2

c
q2

0
− γω

)
+ 1

]

(r2) g4

32π4 M
2
c

[
3

(
ln M2

c
q2

0
− γω

)
+ 1

]

(s2) g4

4π4 M
2
c ln M2

c
μ2

(t2) − g4

32π4 M
2
c ln M2

c
μ2

(u2) − 3g4

32π4 M
2
c ln M2

c
μ2

(v2) 0

(w2) − g4

32π4 M
2
c ln M2

c
μ2

(x2) − 3g4

32π4 M
2
c ln M2

c
μ2

(y2) 0

Total 0

the one-loop level in Sect. 3.1. In this way, it is shown by
explicit Feynman diagrammatic calculations that up to the
two-loop level the WZ’ model is free of quadratic contribu-
tions.
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4 Conclusions and remarks

In this article, we revisit the absence of the quadratic contri-
butions in models with softly broken SUSY using LORE. In
previous studies, supergraph techniques have been used to
show that models with softly broken SUSY should be free of
quadratic contributions. Although elegant, supergraph tech-
niques are less useful in phenomenological studies, where
the traditional Feynman diagrammatic approach is more suit-
able. On the other hand, LORE has been shown in previous
studies to be a powerful tool to regularize quantum field the-
ories with gauge symmetries and supersymmetry, and it is
an ideal regularization scheme for traditional Feynman dia-
grammatic calculations. We use LORE to calculate the two-
loop quadratic contributions in the WZ’ model, the simplest
model with softly broken SUSY, which contains a scalar par-
ticle A, a pseudoscalar B and a Majorana fermion ψ , and we
show that they do cancel with each other perfectly, which
is consistent with the results in literature. Moreover, there
should be no obstacle to extend our methods to models con-
taining gauge bosons, such as MSSM, thanks to the fact that
LORE preserves gauge symmetries as well. Also, given the
fact that quadratic contributions play a crucial role in deriv-
ing the gap equations to describe the dynamically generated
spontaneous chiral symmetry breaking of QCD [14,43], the
absence of quadratic contributions in SUSY may reveal the
fact that its spontaneous breaking has to be carried out in
a different manner. We will return to these issues in future
publications.

Acknowledgements The author DB would like to thank Zhuo Liu
for enlightening discussions during the preparation of this work,
and G. Gnendiger and A. Signer for helpful correspondence after
the manuscript was submitted to arXiv. This work was supported
in part by the National Science Foundation of China (NSFC) under
Grant Nos. 11690022 and 11475237, and by the Strategic Priority
Research Program of the Chinese Academy of Sciences (CAS), Grant
No. XDB23030100, and by the CAS Center for Excellence in Particle
Physics (CCEPP).

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

A Useful formulas for LORE

Feynman parametrization

1

AB
=
∫ 1

0
dx

1

[x A + (1 − x)B]2 , (A.1)

1

ABn
=
∫ 1

0
dx

nxn−1

[(1 − x)A + x B]n+1 , (A.2)

1

A1A2 · · · An
=
∫ 1

0
dx1 · · · dxnδ(�xi − 1)

× (n − 1)!
(x1A1 + x2A2 + · · · + xn An)n

, (A.3)

1

Am1
1 Am2

2 · · · Amn
n

=
∫ 1

0
dx1 · · · dxnδ(�xi − 1)

×
∏

xmi−1
i

(�xi Ai )�mi

�(m1 + · · · + mn)

�(m1) · · · �(mn)
.

(A.4)

LORE-regularized ILIs

∫
d4k

1

k2 − M2

:= −iπ2
{
M2

c − (M2 + μ2
s )

[
ln

M2
c

M2 + μ2
s

− γω + 1

+y2

(M2 + μ2
s

M2
c

)]}
, (A.5)

∫
d4k

1

(k2 − M2)2 = iπ2
[

ln
M2

c

M2 + μ2
s

− γω

+y0

(M2 + μ2
s

M2
c

)]
, (A.6)

∫
d4k

1

(k2 − M2)3 = −iπ2 1

2(M2 + μ2
s )

×
[

1 − y−2

(M2 + μ2
s

M2
c

)]
, (A.7)

∫
d4k

1

(k2 − M2)α

= (−1)αiπ2 �(α−2)

�(α)

1

(M2+μ2
s )

α−2

×
[

1 − y−2(α−2)

(M2 + μ2
s

M2
c

)]
, (α ≥ 3) (A.8)

∫
d4k

kμkν

(k2 − M2)2

= − i

2
gμνπ2

{
M2

c −(M2+μ2
s )

[
ln

M2
c

M2+μ2
s
−γω+1

+y2

(M2 + μ2
s

M2
c

)]}
, (A.9)

∫
d4k

kμkν

(k2 − M2)3 = i

4
gμνπ2

[
ln

M2
c

M2 + μ2
s

− γω

+y0

(M2 + μ2
s

M2
c

)]
, (A.10)

∫
d4k

kμkν

(k2 − M2)4 = − i

6
gμνπ2 1

2(M2 + μ2
s )
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×
[

1 − y−2

(M2 + μ2
s

M2
c

)]
, (A.11)

∫
d4k

kμkν

(k2 − M2)α+1

= (−1)α
i

2
gμνπ2 �(α − 2)

�(α + 1)

1

(M2 + μ2
s )

α−2

×
[

1 − y−2(α−2)

(M2 + μ2
s

M2
c

)]
, (A.12)

∫
d4k

kμkνkρkσ

(k2 − M2)3

:= − i

8
g{μνρσ }π2

{
M2

c −(M2 + μ2
s )

[
ln

M2
c

M2+μ2
s
−γω

+ 1 + y2

(M2 + μ2
s

M2
c

)]}
, (A.13)

∫
d4k

kμkνkρkσ

(k2 − M2)4 = i

24
g{μνρσ }π2

[
ln

M2
c

M2 + μ2
s

− γω

+y0

(M2 + μ2
s

M2
c

)]
, (A.14)

∫
d4k

kμkνkρkσ

(k2 − M2)5
= − i

48
g{μνρσ }π2 1

2(M2 + μ2
s )

×
[

1 − y−2

(M2 + μ2
s

M2
c

)]
, (A.15)

∫
d4k

kμkνkρkσ

(k2 − M2)α+2

= (−1)α
i

4
g{μνρσ }π2 �(α − 2)

�(α + 2)

1

(M2 + μ2
s )

α−2

×
[

1 − y−2(α−2)

(M2 + μ2
s

M2
c

)]
. (A.16)

Here

g{μνρσ } := gμνgρσ + gμρgνσ + gμσ gρν. (A.17)

Mc and μs in the above formulas regularize the UV contri-
butions and IR divergences, respectively. The y functions are
given by

y2(x) := 1

x
(1 − x − e−x ) +

∫ x

0
dσ

1 − e−σ

σ
, (A.18)

y0(x) =
∫ x

0
dσ

1 − e−σ

σ
, (A.19)

y−2(x) = 1 − e−x , (A.20)

y−2(α−1)(x) = y−2(α−2)(x) − 1

α − 2
x

∂

∂x
y−2(α−2)(x),

(A.21)

for α ≥ 3. It is easy to show that these y functions approach
zero when x → 0.

αβγ integrals

I121 :=
∫

d4l1

∫
d4l2

1

l21 − m2
1

1

(l22 −m2
2)

2

1

(l1+l2+ p)2−m2
3

= −π4

(
ln

M2
c

q2
0

− γω + 1

)(
ln

M2
c

m2
2

− γω

)

+ finite terms, (A.22)

I111 :=
∫

d4l1

∫
d4l2

1

l21 − m2
1

1

l22 − m2
2

1

(l1 + l2 + p)2 − m2
3

= π4M2
c

[
3

(
ln M2

c
q2

0
− γω

)
+ 1

]

− π4m2
2

(
ln M2

c
q2

0
− γω + 2

)

×
(

ln M2
c

m2
2

− γω + 1

)

− π4

56

[
−4π2m2

1 + 4π2m2
3 + 3(m2

1 − m2
2)ψ

(1)
( 1

6

)

+ 3
(
−m2

2 + m2
3

)
ψ(1)

( 1
3

)

+3
(
−m2

1 + m2
2

)
ψ(1)

( 2
3

)+ 3(m2
2 − m2

3)ψ
(1)
(

5
6

)]

×
(

ln M2
c

m2
2

− γω + 1

)

− π4m2
1

(
ln M2

c
m2

1
− γω + 1

)(
ln M2

c
q2

0
− γω − 2π

3
√

3

)

− π4m2
3

(
ln M2

c
m2

3
− γω + 1

)(
ln M2

c
q2

0
− γω − 2π

3
√

3

)

− π4

18

[
−54m2

2 + 36m2
3 + 4

√
3π(m2

1 + m2
3)

+ 4
3π2(m2

1 − m2
2) + (2m2

2 − m2
1 − m2

3)ψ
(1)
( 1

6

)
+ (m2

2 − m2
3)ψ

(1)
( 1

3

)
+(m1

1−2m2
2+m2

3)ψ
(1)
( 2

3

)+(−m2
2+m2

3)ψ
(1)
(

5
6

)]

×
(

ln M2
c

m2
1(m

2
3)

− γω + 1

)

+ π4

108 p
2
[
54
(

ln M2
c

−p2 − γω + 1
)

+ 81

+2ψ(1)
( 1

6

)+ 2ψ(1)
( 1

3

)− 2ψ(1)
( 2

3

)− 2ψ(1)
(

5
6

)]

+ finite terms. (A.23)

Here q2
0 is an arbitrary mass scale introduced to balance

the dimension, and ψ(1)(z) = d2

dz2 ln �(z) is the first order

polygamma function. We have assumed m2
1 ∼ m2

3 in
Eq. (A.23). It is difficult to obtain an explicit analytic expres-
sion of I111 for general cases.
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B Derivations of Eq. (A.23)

Here, we give a brief introduction to the UVDP parametriza-
tion, using the Feynman integral I111 as an explicit exam-
ple, the only αβγ integral relevant to the two-loop quadratic
contribution calculations. The UVDP methods are aimed to
give proper treatments to subcontributions at two loops. In
this approach, the UV contributions arising from large loop
momenta are transmitted to the asymptotic regions of UVDP
parameter space.

I111 =
∫

d4l1

∫
d4l2

1

l21 − m2
1

1

l22 − m2
2

1

(l1 + l2 + p)2 − m2
3

= iπ2 �(1)

�(1)�(1)�(1)

∫ ∞

0

3∏
i=1

dvi

(1 + vi )3 δ

×
⎛
⎝1 −

3∑
j=1

1

1 + v j

⎞
⎠

× (1 + v1)
2(1 + v2)

2(1 + v3)
2

(3 + v1 + v2 + v3)2

∫
d4l

1

l2 − M2

= iπ2
∫ ∞

0

3∏
i=1

du

(1 + u)3

∫ ∞

0

dw

(1 + w)2

∫ ∞

0

dv

(1 + v)2 δ

×
(

1 − 1

1 + w
− 1

1 + v

)

× (1 + u)4(1 + w)2(1 + v)2

[u(1 + w)(1 + v) + 1]2

∫
d4l

1

l2 − M2

= π4
∫ ∞

0

dw

(1 + w)2

∫ ∞

0

dv

(1 + v)2 δ

×
(

1 − 1

1 + w
− 1

1 + v

)∫ ∞

0
du

1 + u[
u + 1

(1+w)(1+v)

]2

×
{
M2

c − M2
[

ln
M2

c

M2 − γω + 1

]}

= I (0)
111 + I (1)

111 + I (2)
111 + I (3)

111 + I (4)
111, (B.1)

with

M2 = m2
1

1 + v1
+ m2

2

1 + v2
+ m2

3

1 + v3
− p2

3 + v1 + v2 + v3

= m2
1

(1 + u)(1 + w)
+ m2

2u

1 + u
+ m2

3

(1 + u)(1 + v)

− u

1 + u

p2

u(1 + w)(1 + v) + 1
. (B.2)

The transition between the old UVDP parameters (v1, v2, v3)

and the new ones (u, v, w) is given by

1

1 + v1
= 1

(1 + u)(1 + w)
, (B.3)

1

1 + v2
= u

1 + u
, (B.4)

1

1 + v3
= 1

(1 + u)(1 + v)
. (B.5)

The following identity plays a crucial role in the UVDP treat-
ment of I111 integral:

1

A1A2 · · · An
=
∫ ∞

0

n∏
i=1

dvi

(1 + vi )2 δ

(
n∑

i=1

1

1 + vi
− 1

)

× (n − 1)![∑n
i=1

Ai
1+vi

]n . (B.6)

The integrals I (0)
111, I (1)

111, I (2)
111, I (3)

111 and I (4)
111 introduced in

the last step of Eq. (B.1) are analyzed in detail as fol-
lows. The I (0)

111 integral contains the quadratic contributions
only,

I (0)
111 = π4M2

c

∫ ∞

0

dw

(1+w)2

dv

(1+v)2 δ

(
1− 1

1+w
− 1

1+v

)

×
∫ ∞

0
du

1 + u[
u + 1

(1+w)(1+v)

]2

= π4M2
c

∫ ∞

0

dw

(1+w)2

dv

(1+v)2 δ

(
1− 1

1+w
− 1

1+v

)

×
{

ln
M2

c

q2
0

+ln(1+w)(1+v)−γω+(1+w)(1+v)−1

}

= π4M2
c

∫ ∞

0

dw

(1 + w)2

{
ln

M2
c

q2
0

− γω − 1

+ ln

(
2 + w + 1

w

)
+
(

2 + ω + 1

ω

)}

= π4M2
c

[
3

(
ln

M2
c

q2
0

− γω

)
+ 1

]
, (B.7)

while the logarithmic contributions are encapsulated in
I (1)
111, . . . , I

(4)
111,

I (1)
111 + I (2)

111 + I (3)
111 + I (4)

111

= π4
∫ ∞

0

dw

(1 + w)2

dv

(1 + v)2 δ

(
1 − 1

1 + w
− 1

1 + v

)

×
{
−M2

[
ln

M2
c

M2 − γω + 1

]}

= −π4
∫ ∞

0

dw

(1 + w)2

dv

(1 + v)2 δ

(
1 − 1

1 + w
− 1

1 + v

)

×
∫ ∞

0
du

1+u[
u+ 1

(1+w)(1+v)

]2

[
m2

1

(1+u)(1+w)
+ m2

2u

1 + u
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+ m2
3

(1 + u)(1 + v)

− u

1 + u

p2

u(1 + w)(1 + v) + 1

]
×
[

ln
M2

c

M2 − γω + 1

]
.

(B.8)

Here, I (1)
111, . . . , I

(4)
111 correspond to logarithmic contributions

in the following asymptotic UVDP parameter regions:

• I (1)
111: u → ∞, vw = 1, M2 → m2

2,

• I (2)
111: v → ∞, u → 0, w → 0, M2 → m2

1,

• I (3)
111: w → ∞, u → 0, v → 0, M2 → m2

3,

• I (4)
111: −p2 � m2

1,m
2
2,m

2
3.

Explicitly, we have

• I (1)
111 = −π4

∫ ∞

0

dw

(1 + w)2

dv

(1 + v)2 δ

×
(

1 − 1

1 + w
− 1

1 + v

)

×
∫ ∞

0
du

1

u+ 1
(1+w)(1+v)

[
m2

1

(1+u)(1+w)
+ m2

2u

1 + u

+ m2
3

(1 + u)(1 + v)

]
×
[

ln
M2

c

m2
2

− γω + 1

]

= −π4m2
2

(
ln

M2
c

q2
0

+ 2 − γω

)(
ln

M2
c

m2
2

− γω + 1

)

− π4

56

{
− 4m2

1π
2+4m2

3π
2+3(m2

1 − m2
2)ψ

(1)
( 1

6

)
+ 3(−m2

2 + m2
3)ψ

(1)
( 1

3

)
+ 3(−m2

1+m2
2)ψ

(1)
( 2

3

)+3(m2
2 − m2

3)ψ
(1)
(

5
6

) }

×
(

ln
M2

c

m2
2

− γω + 1

)
, (B.9)

• I (2)
111 + I (3)

111 = −π4
∫ ∞

0

dw

(1 + w)2

dv

(1 + v)2 δ

×
(

1 − 1

1 + w
− 1

1 + v

)

×
∫ ∞

0
du

[
1 − 1

(1 + w)(1 + v)

]
1[

u + 1
(1+w)(1+v)

]2

×
[

m2
1

(1 + w)(1 + u)
+ m2

2u

1 + u

+ m2
3

(1 + u)(1 + v)

](
ln

M2
c

M2 − γω + 1

)

= −π4m2
1

(
ln

M2
c

m2
1

− γω + 1

)

×
∫ ∞

0
dv

v2

(1 + v)(1 + v + v2)

− π4m2
3

(
ln

M2
c

m2
3

− γω + 1

)

×
∫ ∞

0
dw

w2

(1 + w)(1 + w + w2)

− π4
∫ ∞

0

dw

(1 + w)2

1

1 + w + 1
w

{
(m2

1 − m2
2 + m2

3)

×
(

w + 1

w

)
+ (2m2

1 − m2
2 + 2m2

3)

+
[

2m2
2 − m2

3 − m2
1

(
1 + 1

w

)
+ m2

2

w

]

× ln

(
w + 1

w
+ 2

)}

×
[

ln M2
c − γω + 1 − ln

(
m2

3

1 + 1
w

+ m2
1

1 + w

)]

= −π4m2
1

(
ln

M2
c

m2
1

− γω + 1

)(
ln

M2
c

q2
0

− γω − 2π

3
√

3

)

− π4m2
3

(
ln

M2
c

m2
3

− γω + 1

)(
ln

M2
c

q2
0

− γω − 2π

3
√

3

)

− π4

18

(
ln

M2
c

M2 − γω + 1

){
− 54m2

2 + 36m2
3

+ 4
√

3(m2
1 + m2

3)π + 4

3
(m2

1 − m2
2)π

2

− (m2
1 − 2m2 + m2

3)ψ
(1)
( 1

6

)
+ (m2

2 − m2
3)ψ

(1)
( 1

3

)+ (m2
1 − 2m2 + m2

2)ψ
(1)
( 2

3

)

+ (−m2
2 + m2

3)ψ
(1)
(

5
6

)}
, (B.10)

• I (4)
111 = π4

∫ ∞

0

dw

(1 + w)2

dv

(1 + v)2 δ

(
1 − 1

1 + w
− 1

1 + v

)

×
∫ ∞

0
du

u

(1 + w)(1 + v)
[
u + 1

(1+w)(1+v)

]3 p2

×
(

ln
M2

c

M2 − γω + 1

)

= π4 p2

108

{
54

(
ln

M2
c

−p2 − γω+1

)
+81

+ ψ(1)
( 1

6

)+2ψ(1)
( 1

3

)−2ψ(1)
( 2

3

)−2ψ(1)
(

5
6

)}
.

(B.11)

When putting I (0)
111, . . . , I

(4)
111 together, one obtains Eq. (A.23).
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C Details for Feynman diagrammatic calculations

Here, we present some technical details of Feynman dia-
grammatic calculations by choosing Diagram (e1), (f1), (v1)
and (y1) as sample diagrams and calculating their quadratic
contributions explicitly. The remaining diagrams could be
calculated in a similar way.

(e1) = − (−2ig)4

512π8

∫
d4q1

∫
d4q2

1

q2
1 − m2

ψ

1

q2
2 − m2

ψ

1

(q1 + q2)2 − m2
A

1

(q1 − k1)2 − m2
ψ

(C.1)

× 1

(q1 + k1)2 − m2
ψ

tr
{
(mψ + �q2 − �k1)(mψ + �q2)(mψ − �q1)(mψ − �q1 − �k1)

}

= − g4

8π8

∫ 1

0
dx
∫ 1

0
dy
∫

d4l1

∫
d4l2

1{
l21 + x(1 − x)k2

1 − m2
ψ

} {
l22 + y(1 − y)k2

1 − m2
ψ

} {[l1 + l2 + (y − x)k1]2 − m2
A

}
+ logarithmic contributions + finite terms

= − g4

8π8

∫ 1

0
dx
∫ 1

0
dyπ4M2

c

[
3

(
ln

M2
c

q2
0

− γω

)
+ 1

]
+ logarithmic contributions + finite terms

= − g4

8π4 M
2
c

[
3

(
ln

M2
c

q2
0

− γω

)
+ 1

]
+ logarithmic contributions + finite terms.

( f 1) = (2g)4

32π8

∫
d4q1

∫
d4q2

1

q2
1 − m2

ψ

1

q2
2 − m2

ψ

× 1

(q1 + q2)2 − m2
B

1

(q2 − k1)2 − m2
ψ

(C.2)

× 1

(q1 + k1)2 − m2
ψ

tr

{
(mψ + �q2 − �k1)(mψ + �q2)γ

5(mψ − �q1)(mψ − �q1 − �k1)γ
5
}

= g4

8π8

∫ 1

0
dx
∫ 1

0
dy
∫

d4l1

∫
d4l2

1{
l21 + x(1 − x)k2

1 − m2
ψ

} {
l22 + y(1 − y)k2

1 − m2
ψ

} {[l1 + l2 + (y − x)k1]2 − m2
B

}
+ logarithmic contributions + finite terms

= g4

8π8

∫ 1

0
dx
∫ 1

0
dy π4M2

c

[
3

(
ln

M2
c

q2
0

− γω

)
+ 1

]
+ logarithmic contributions + finite terms

= g4

8π4 M
2
c

[
3

(
ln

M2
c

q2
0

− γω

)
+ 1

]
+ logarithmic contributions + finite terms.

The counterterm diagrams (v1) and (y1) are given by

(v1) = (y1) = 0, (C.3)

as the counterterm vertices δZ (1)

ψ̄ψ A
= δZ (1)

ψ̄ψB
= 0. In this

article, we are interested in the quadratic contributions only,

and we have not tracked the logarithmic (sub)contributions
and finite terms. The technical subtleties associated with
LORE’s treatment of overlapping contributions have already
been demonstrated in Refs. [21,22], and we recommend the
interested reader to those references for a comprehensive
treatment.
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