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Abstract We present a Lorentz-covariant, Euclidean
coordinate-space expression for the hadronic vacuum polar-
isation, the Adler function and the leading hadronic con-
tribution to the anomalous magnetic moment of the muon.
The representation offers a high degree of flexibility for an
implementation in lattice QCD. We expect it to be particu-
larly helpful for the quark-line disconnected contributions.

1 Introduction

Two-point functions of the quark-flavor currents q̄γμq play
an importance role in precision tests of the Standard Model
of particle physics. The electromagnetic current jem

μ corre-
lator enters the running of the QED coupling constant, and
the non-diagonal correlation of jem

μ with the weak-isospin
current j3

μ contributes to the running of the weak mixing
angle [1]. Furthermore, the leading hadronic contribution
to the anomalous magnetic moment of the muon ahvp

μ can
be determined by non-perturbative theory methods from the
electromagnetic current correlator. The contribution ahvp

μ ,
where ‘HVP’ stands for hadronic vacuum polarization, rep-
resents the largest uncertainty in the Standard Model predic-
tion for this precision observable. Given the experiments in
preparation [2] at FermiLab [3] and JPARC [4], which are
expected to improve the accuracy of the direct measurement
by a factor 4, it is important to reduce the uncertainty on the
prediction by a comparable factor. While the phenomenolog-
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ical determination of ahvp
μ via its dispersive representation is

still the most accurate approach [5,6], a purely theoretical
prediction is both conceptually desirable and provides for an
independent check. Since the vacuum polarization is inserted
into an integral which is strongly weighted to the low-energy
domain, calculating the hadronic vacuum polarization has
become an important goal for several lattice QCD collabo-
rations [7–18].

In lattice QCD, which representation of the ahvp
μ is used

matters, since the choice affects the systematic and statisti-
cal uncertainties of the result. In the pioneering article [7],
ahvp
μ was written as an integral of the vacuum polarization

�(Q2) over all virtualities Q2. Later, other representations
were proposed, in particular the time-moment representa-
tion [19–21], where the vector correlation function is pro-
jected onto vanishing spatial momentum and integrated as
a function of Euclidean time. In this article we present a
manifestly Lorentz-invariant representation of the vacuum
polarization �(Q2), the Adler function Q2�′(Q2) and ahvp

μ

based on the coordinate-space representation of the vector
correlator. We call it the covariant coordinate-space (CCS)
representation. Besides its formal elegance, we expect it to be
helpful in lattice QCD calculations, as the Lorentz symmetry
present in the continuum leads to a high degree of flexibil-
ity and opportunities for cross-checks in its implementation.
We think it will be especially beneficial for disconnected-
diagram contributions [14,22–24], where, in the standard
algorithm, the noise-to-signal ratio on the coordinate-space
correlator increases rapidly at long distances.

The structure of this paper is as follows. Our basic defi-
nitions and the derivation of the position-space expressions
are presented in the next section. A test and illustration of
the method is also provided. Section 3 is devoted to some
aspects of the implementation of the method in lattice QCD.
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2 Derivation of the covariant coordinate-space
expressions

In this section we consider continuum QCD in infinite
Euclidean space. The conserved vector current is defined as
jμ(x) = ψ̄(x)γμψ(x), where the Dirac matrices are all her-
mitian and satisfy {γμ, γν} = 2δμν .

2.1 Definitions

The primary object is the position-space correlator

Gμν(x) = 〈 jμ(x) jν(0)〉. (1)

The polarization tensor is its Fourier transform,

�μν(Q) ≡
∫

d4x eiQ·xGμν(x), (2)

and O(4) invariance and current conservation imply the ten-
sor structure

�μν(Q) = (QμQν − δμνQ
2)�(Q2). (3)

With these conventions, the spectral function

ρ(q2) ≡ − 1

π
Im�(Q2)

∣∣∣
Q0=−iq0+ε, Q=q

(4)

is non-negative for a flavor-diagonal correlator. For the elec-
tromagnetic current, it is related to the R ratio via

ρ(s) = R(s)

12π2 , R(s) ≡ σ(e+e− → hadrons)

4πα(s)2/(3s)
. (5)

The denominator is the treelevel cross-section σ(e+e− →
μ+μ−) in the limit s � m2

μ, and we have neglected QED
corrections. The vacuum polarization, and the Adler function

A(Q2) ≡ Q2 d

dQ2 �(Q2), (6)

are recovered through a dispersion relation,

�(Q2) − �(0) = Q2
∫ ∞

0
ds

ρ(s)

s(s + Q2)
, (7)

A(Q2) = Q2
∫ ∞

0
ds

ρ(s)

(s + Q2)2 . (8)

2.2 Derivation

As a motivation, we start from the expression [25] for ahvp
μ

in terms of the Adler function,

ahvp
μ = 2π2

(α

π

)2
∫ 1

0

dy

y
(1 − y)(2 − y)A(Q2(y)), (9)

where

Q2(y) = y2

1 − y
m2

μ ↔ y = 2|Q|
|Q| +

√
4m2

μ + Q2
. (10)

Returning to the integration variable Q2, we obtain

ahvp
μ =

∫ ∞

0
dQ2 A(Q2) ga(Q

2), (11)

ga(Q
2) = 2α2 m4

μ

|Q|6 y(|Q|)4. (12)

However, we will keep the derivation more general and con-
sider a general Lorentz-scalar physical quantity derived from
the vector correlator,

�[g] =
∫ ∞

0
dQ2 A(Q2) g(Q2), (13)

for some function g(Q2). Below, we reinterpret Eq. (13) as
a four-dimensional integral with spherical symmetry,1

�[g] = 1

π2

∫
d4Q

Q2 A(Q2) g(Q2). (14)

We project out the transverse component of the polarisa-
tion tensor,

πT (Q) =
(

δμν − QμQν

Q2

)
�μν(Q) = −3Q2�(Q2). (15)

The Adler function can be expressed via πT (Q) via

A(Q2) = 1

3Q2

[
πT (Q) − Qλ

2

∂

∂Qλ

πT (Q)

]
(16)

Inserting the position-space correlator,

πT (Q) =
(

δμν − QμQν

Q2

) ∫
d4x Gμν(x) e

iQ·x , (17)

we obtain

A(Q2) = 1

3Q2

(
δμν − QμQν

Q2

)
(18)

×
∫

d4x Gμν(x) ei Q·x
(

1 − i

2
(Q · x)

)
.

Inserting this expression into Eq. (14) and interchanging the
order of the momentum-space and position-space integrals,
one reaches

�[g] =
∫

d4x Gμν(x) Hμν(x), (19)

Hμν(x) = 1

3π2

(
1 − xλ

2

∂

∂xλ

)
Iμν(x), (20)

Iμν(x) =
∫

d4Q

(Q2)2 g(Q2)

(
δμν − QμQν

Q2

)
ei Q·x . (21)

The kernel Iμν(x) can be expressed as

Iμν(x) = (∂(x)
μ ∂(x)

ν − δμν
x )I (x
2), (22)

1 The unit sphere in four dimensions has a surface of 2π2.
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I (x2) =
∫

d4Q

(Q2)3 g(Q2) ei Q·x (23)

= 4π2

|x |
∫ ∞

0

d|Q|
|Q|4 g(Q2) J1(|Q||x |), (24)

where we performed the angular integration of the Fourier
transform and the Jn(z) are the Bessel functions of the first
kind. Using the chain rule, we obtain

Iμν(x) = −δμν

(
∂2 I

∂|x |2 + 2

|x |
∂ I

∂|x |
)

(25)

+ xμxν

x2

(
∂2 I

∂|x |2 − 1

|x |
∂ I

∂|x |
)

.

and(
1 − xλ

2

∂

∂xλ

)
Iμν(x) = −δμν

(
− |x |

2

∂3 I

∂|x |3 + 3

|x |
∂ I

∂|x |
)

+ xμxν

x2

(
− |x |

2

∂3 I

∂|x |3 + 3

2

∂2 I

∂|x |2 − 3

2|x |
∂ I

∂|x |
)
. (26)

We note that an x-independent term in Hμν(x) would not

contribute to ahvp
μ , since∫

d4x Gμν(x) = 0 ∀μ, ν (27)

in the vacuum, when all correlation lengths are finite. We
make use of this property to subtract from Hμν(x) an x-
independent term proportional to δμν . The derivatives with
respect to |x | act on J1(|Q||x |)/|x |, resulting in Bessel func-
tions of higher order. We define

h1(z) = 3

8
+

(
− z

2

∂3

∂z3 + 3

z

∂

∂z

) J1(z)

z
(28)

= 3

8
+ 1

2
J0(z) − 5

2

J1(z)

z
+ 3

J2(z)

z2 , (29)

h2(z) =
(

− z

2

∂3

∂z3 + 3

2

∂2

∂z2 − 3

2z

∂

∂z

) J1(z)

z
(30)

= 1

2z3 (z(z2 − 24)J0(z) − 8(z2 − 6)J1(z)). (31)

We note that for z → 0, hi (z) ∼ λi z4 with

λ1 = 7

3072
, λ2 = 1

768
. (32)

Thus, inserting the explicit form of g(Q2), we obtain finally
the physical quantity of interest�[g] = ∫

d4x Gμν(x) Hμν(x)
with

Hμν(x) = −δμνH1(|x |) + xμxν

x2 H2(|x |),

Hi (|x |) = 2

3

∫ ∞

0

dQ2

Q2 hi (|Q||x |) g(Q2). (33)

Thus, for Eq. (19) to provide an explicit expression for
�[g], it suffices to pre-compute the weight functionsHi (|x |).
For now we note that once the spacetime indices of

Gμν(x) and Hμν(x) are contracted, the integral
∫
d4x →

2π2
∫ ∞

0 d|x | |x |3 becomes one-dimensional. Secondly, since

Iμν(x) and Hμν(x) are transverse tensors, ∂
(x)
μ Hμν(x) = 0,

a relation exists between the weight functions,

H ′
1(|x |) = H ′

2(|x |) + 3H2(|x |)
|x | . (34)

2.2.1 Computing the Adler function

To obtain the Adler function, �[g] .= A(Q2), we simply set

g(Q2
ref)

.= δ(Q2 − Q2
ref), (35)

and obtain immediately

Hi (|x |) = 2 hi (|Q||x |)
3Q2 . (36)

A particularly elegant expression results in the limit Q2 → 0
for the slope of the Adler function, or equivalently of the
vacuum polarisation,

A′(0) = �′(0)

= 1

1152

∫
d4x Gμν(x) (x2)2

(
− 7

4
δμν + xμxν

x2

)
. (37)

Since it is well-known that the leading hadronic contribu-
tion to the anomalous magnetic moment of a lepton in the
massless-lepton limit is given by the slope of the Adler func-
tion at the origin,

lim
mμ→0

ahvp
μ

m2
μ

= 4

3
α2A′(0), (38)

Equation (37) can be used to calculate the hadronic contri-
bution to the (g − 2) of the electron.

2.2.2 The subtracted vacuum polarisation

To obtain the subtracted vacuum polarisation,

�[g] .= �(Q2) − �(0), (39)

we set

g(Q2
ref)

.= 1

Q2
ref

θ(Q2 − Q2
ref), (40)

and obtain Hi (|x |) = x2 · H̄i (|Q||x |), where

H̄1(z) = z2

4608

{
24 2F3

(
1, 1; 2, 3, 3;− z2

4

)

−20 2F3

(
1, 1; 2, 3, 4;− z2

4

)

+3 2F3

(
1, 1; 2, 3, 5;− z2

4

)}
(41)
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and

H̄2(z) = z2

1152

{
6 2F3

(
1, 1; 2, 3, 3;− z2

4

)
(42)

−8 2F3

(
1, 1; 2, 3, 4;− z2

4

)

+4 2F3

(
1, 1; 2, 4, 4;− z2

4

)

− 2F3

(
1, 1; 2, 4, 5;− z2

4

)}
.

The functions in the brackets are the generalized hypergeo-
metric functions.

2.2.3 The case of ahvp
μ

Here we set g(Q2) = ga(Q2), and the weight functions can
be written

Hi (|x |) = 8α2

3m2
μ

fi (mμ|x |), (43)

fi (mμ|x |) = m6
μ

∫ ∞

0

d|Q|
|Q|3

(
y(|Q|)
|Q|

)4

hi (|Q||x |). (44)

To study the dimensionless weight functions fi (z), we
perform the change of variables Q̄ = |Q|/mμ,

fi (z) =
∫ ∞

0

dQ̄

Q̄3

16hi (z Q̄)

(Q̄ +
√

4 + Q̄2)4
. (45)

Note that since the weight functions only depend on mμ|x |,
the small |x | behavior is at the same time the smallmμ behav-
ior. Making use of the integral

∫ ∞
0 dv 16v

(v+√
4+v2)4 = 1

3 , we

obtain

fi (z)
z→0= λi

3
z4. (46)

Thus in the limit of vanishing lepton mass, we recover Eqs.
(38–37).

The regime of large |x | is more easily investigated from
Eq. (44) by performing the change of variables v = |Q||x |,

fi (z) = z6
∫ ∞

0

dv

v3

16 hi (v)

(v + √
4z2 + v2)4

. (47)

Taking the limit of large argument (corresponding to large
|x |), fi (z)

z→∞= νi z2, with

νi =
∫ ∞

0

dv

v3 hi (v), ν1 = 5

192
, ν2 = 1

96
. (48)

By expanding the denominator of f2(z) further, one obtains
the first terms of a series in 1/z,

f2(z) = z2

96
− z

15
+ 1

4
− 5

8z
+ · · · (49)

The subleading terms cannot directly be obtained from the
representation (47).

We now derive an expression for the weight function in
terms of known special functions. From Eq. (34), since both
weight functions are proportional to z4 at small z, the inte-
gration yields

f1(z) = f2(z) + 3
∫ z

0
dz̄

f2(z̄)

z̄
. (50)

We will therefore first address f2(z), and then obtain f1(z)
from this equation.

Suppose that we want to calculate a function φ(z), and
that we are initially able to calculate the expression

− Lrφ(r) ≡ −
( d2

dr2 + 3

r

d

dr

)
φ(r) = ρ(r). (51)

The differential operator Lr appearing in this equation is
nothing but the four-dimensional Laplacian in spherical coor-
dinates, r playing the role of the radial coordinate. We are
then dealing with an electrostatic problem in 4 + 1 dimen-
sions for a spherically symmetric charge distribution. There-
fore, assuming ρ(r) falls off faster than 1/r2 at large r , the
function φ(r) can be obtained using the Green’s function
G0(x) = 1

4π2x2 ,

φ(|x |) =
∫

d4y G0(x − y) ρ(|y|). (52)

Defining

d0(|x |, |y|) = θ(x2 − y2)
1

|x |2 + θ(y2 − x2)
1

|y|2 , (53)

the convolution integral can be simplified using Gauss’s the-
orem and exploiting the spherical symmetry of ρ(r),

φ(|x |) = 1

2

∫ ∞

0
d|y| |y|3 d0(|x |, |y|) ρ(|y|)

= 1

2|x |2
∫ |x |

0
d|y| |y|3 ρ(|y|) + 1

2

∫ ∞

|x |
dy |y| ρ(|y|).

(54)

We start from Eq. (45), note that

Lz(z
2h2(z)) = z2

2
J2(z), (55)

and compute the integral

Lz(z
2 f2(z)) = z2

2

∫ ∞

0

dQ̄

Q̄

16 J2(Q̄z)

(Q̄ +
√

4 + Q̄2)4
(56)

= z2

2
√

π
G2,2

2,4

(
z2|

1
2 , 1

1, 2,−2,−1

)
, (57)

where Gm,n
p,q represents Meijer’s function. In order to recover

f2(z) itself, we would like to apply Eq. (54). However,
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Fig. 1 The weight functions f1(z) and f2(z) needed to calculate ahvp
μ

using Eqs. (19, 33, 43, 62, 61). In the calculation of ahvp
μ , the argument

of the weight functions is (mμ|x |), so that z = 1 corresponds to 1.87 fm.
Note that limz→0 f1(z)/z4 = 7

9216 and limz→0 f1(z)/z4 = 1
2304 ; see

Eqs. (32) and (46)

z2 f2(z) ∼ z4 at large z. We therefore perform subtractions
using (49),

f sub
2 (z) ≡ f2(z) −

( z2

96
− z

15
+ 1

4
− 5

8z

)
, (58)

which obeys

− Lz(z
2 f sub

2 (z)) = −Lz(z
2 f2(z)) + z2

4
− z + 2 − 15

8z
.

(59)

We thus obtain the representation

z2 f sub
2 (z) = 1

2

∫ ∞

0
dz̄ z̄3d0(z, z̄)(−Lz̄(z̄

2 f sub
2 (z̄))). (60)

After expression (56) is inserted into Eq. (59) and the latter in
turn into Eq. (60), f sub

2 (z) can be expressed again in terms of
Meijer’s function. Reintroducing the subtracted terms from
(58), we finally obtain

f2(z) =
G2,2

2,4

(
z2|

7
2 , 4

4, 5, 1, 1

)
− G2,2

2,4

(
z2|

7
2 , 4

4, 5, 0, 2

)

8
√

π z4
.

(61)

From Eq. (50), we then obtain

f1(z) = f2(z) − 3

16
√

π
·
[
G2,3

3,5

(
z2| 1, 3

2 , 2
2, 3,−2, 0, 0

)

−G2,3
3,5

(
z2| 1, 3

2 , 2
2, 3,−1,−1, 0

) ]
(62)

The functions fi (z)/z4 are displayed in Fig. 1. The latter
ratios depend very weakly on z in the range where they will
be needed to compute ahvp

μ .

2.3 Test of the CCS method

To test the method, we construct a simple model for the
position-space correlator Gμν(x) based on its spectral repre-
sentation. The latter reads

Gμν(x) = (∂(x)
μ ∂(x)

ν − δμν
x )�̃(|x |), (63)

�̃(|x |) =
∫ ∞

0
ds ρ(s)G√

s(x), (64)

where

Gm(x) = m

4π2|x |K1(m|x |) (65)

is the scalar propagator. The derivatives in Eq. (63) act like in
Eq. (22), see Eq. (25). For illustration and testing purposes,
we choose as a model

ρ(s) = 2

3
f 2
V M

2δ(s − M2). (66)

We note that the physical quantities to be computed are linear
functions of the spectral function ρ(s), and in a finite-volume
system the most general spectral function is a linear combi-
nation of contributions of the type (66). We remark that in
the latter equation, the decay constant fV is dimensionless.
Then, with r = |x |, we obtain

Gμν(x)

= f 2
V M

3

6π2

[
− δμν

M

r2 (K2(Mr) + MrK1(Mr))

+ xμxν

x2

1

r3 (4MrK0(Mr) + (M2r2 + 8)K1(Mr))

]
.

(67)

In general, if the position-space correlator is written in the
form

Gμν(x) = −δμν G1(|x |) + xμxν

x2 G2(|x |), (68)

physical quantities derived from it can be obtained from the
scalar integral

�[g] = 2π2
∫ ∞

0
dr r3 [H1(4G1 − G2) + H2(G2 − G1)].

(69)

Using Eq. (37), one then finds

A′(0) = 2

3

f 2
V

M2 . (70)

This matches the value obtained directly from Eq. (8),

A′(0) =
∫ ∞

0
ds

ρ(s)

s2 = 2

3

f 2
V

M2 . (71)

123



616 Page 6 of 8 Eur. Phys. J. C (2017) 77 :616

As a test of the expression for ahvp
μ , using Eq. (109) in the

review [5], we obtain

ahvp
μ = 8

9
α2 f 2

V

m2
μ

M2 K̂ (M2), (72)

where the kernel K̂ (s) appropriate for the timelike region
is given in terms of elementary functions in [5]. Setting
M/mμ = 2mπ± = 2.64187, we have K̂ (M2) = 0.63344

and we thus obtain ahvp
μ = 0.0806733α2 f 2

V . On the other
hand, performing numerically the integral (69) with the Hi

given by Eqs. (61–62) and the Gi read off from Eq. (67), we
obtain the same value of ahvp

μ to all indicated digits.

2.4 Comparison with the time-momentum representation

In order to prepare the discussion in the next section, it is
interesting to compare the derived formulae with the time-
momentum representation, in which only the spatial rotations
are kept as manifest symmetries. The starting point in the
TMR is the mixed-representation Euclidean correlator,

G(x0)δk� = −
∫

d3x Gkl(x), (73)

which has the spectral representation [19]

G(x0) =
∫ ∞

0
dω ω2ρ(ω2) e−ω|x0|, x0 �= 0. (74)

The vacuum polarization and the Adler function can be
expressed as an integral over G(x0) [19,21],

�(Q2
0) − �(0)

=
∫ ∞

0
dx0 G(x0)

[
x2

0 − 4

Q2
0

sin2
(1

2
Q0x0

)]
, (75)

A(Q2
0) ≡ Q2

0
d �

dQ2
0

= 1

Q2
0

∫ ∞

0
dx0 G(x0)

(2 − 2 cos(Q0x0) − Q0x0 sin(Q0x0)) . (76)

In particular, the slope of the Adler function is given by

A′(0) = lim
Q2→0

A(Q2)

Q2 = 1

12

∫ ∞

0
dx0 x4

0 G(x0). (77)

The integrand for A′(0) is displayed as a dashed curve in
Fig. 2. Finally, the quantity ahvp

μ is given by [18,19]

aHLO
μ =

(α

π

)2
∫ ∞

0
dx0 G(x0) f̃ (x0), (78)

f̃ (x0) = 2π2

m2
μ

(
−2 + 8γE + 4

x̂2
0

− 2π x̂0

+ x̂2
0 − 8

x̂0
K1(2x̂0) + 8 log(x̂0) + 8Ip(x̂0)

)
, (79)

Integrand 4d x- space

Integrand TMR

0 5 10 15 20

0.00

0.05

0.10

0.15

0.20

M r

In
te
gr
an

d
/(
M

A'
(0
))

Fig. 2 The integrand in the integral over |x | in Eq. (37) to obtain the
Adler function at the origin, A′(0), is displayed as a continuous curve.
For comparison, the dashed curved is the integrand in the integration
over Euclidean time in the time-momentum representation; see Eq. (77)
with (r

.= x0). In both cases, the model for the spectral function is given
by Eq. (66) and the displayed functions are normalized such that the
area under the curves is unity. Note that for M = 800 MeV, Mr = 4
corresponds to 1 fm

where x̂0 = mμx0. Here γE = 0.577216.. is Euler’s constant
and

Ip(z) = π z

4
+ 1

8
G2,1

1,3

(
z2|

3
2

0, 1, 1
2

)
. (80)

One aspect that is common between the CCS method and the
TMR method is that, in continuum QCD, the integrand for
A′(Q2), �(Q2)−�(0) and ahvp

μ is of order |x | (respectively
order x0) at short distances.

3 Lattice QCD aspects

In this section we discuss some of the possible implementa-
tion strategies of the covariant coordinate-space method. In
the master relation (19), the O(4) symmetry of the integrand
in the continuum allows for a high degree of flexibility when
implementing an estimator for ahvp

μ in lattice QCD. The finite
lattice spacing as well as the toric boundary conditions break
the O(4) symmetry. Therefore, for a number of classes �

of lattice vectors on a lattice of dimensions L4, it is use-
ful to investigate consistency and statistical precision of the
estimators

aest
μ (�) = 2π2 |ε(.)|

|�|
|�|∑
k=1

nmax∑
n=1

[
|x |3 Gμν(x) Hμν(x)

]∣∣∣
x=nε(k)

(81)

where the lattice vectors ε(k) belong to an orbit � of the
hypercubic group (for instance, � = {a(±1,±1,±1, 0),

a(±1,±1, 0,±1), . . . }, for which |�| = 32 and |ε(.)| =
a
√

3). Of course, a more sophisticated integration scheme

123



Eur. Phys. J. C (2017) 77 :616 Page 7 of 8 616

may also be applied. If a T × L3 lattice is used (T �= L), the
orbit is restricted to vectors related by the three-dimensional
hypercubic symmetry group.

One may wonder how the signal-to-noise will compare
between a position-space and the momentum-space method
in a lattice QCD simulation. We argue that, in a large volume,
one may expect an advantage with the covariant coordinate-
space method. The reason is simple and stems from the fact
that the ‘signal’, Gμν(x) ∼ e−M|x |, falls off faster than the
square-root of its variance σ . The latter is expected to drop
only like σ ∼ e−mπ |x | for the isovector contribution. In the
case of disconnected diagrams, σ is asymptotically indepen-
dent of |x | with the standard algorithm. With the proposed
CCS method, one may sum in the variable |x | up to a maxi-
mum R (effectively performing a weighted average over all
orbits),

aeff
μ (R) = a4

∑
x : |x |<R

Gμν(x) Hμν(x), (82)

with |x | the Euclidean norm of the position vector x . The
truncation distance R is chosen so that the incurred error is
sufficiently small. In practice, an extrapolation to R = ∞
based on Eq. (67), or a more sophisticated version involv-
ing the two-pion continuum, may be used. The important
point is that only those points in x are included in the sum
which contribute up to a certain precision. By contrast, in
a momentum-space method, the input data �μν(Q) already
involves a sum over the correlator Gμν(x) over the whole
volume, even though points very distant from the origin end
up barely contributing to ahvp

μ . We therefor expect the CCS
method to be superior.

In the TMR method, the variable x0 plays a role analo-
gous to |x | in the CCS method. The sum in x0 is trun-
cated at some xmax

0 , beyond which the correlator is esti-
mated using an extrapolation based on its spectral repre-
sentation. Although less severe than in the four-momentum
space method, the unfavorable aspect that spatially very dis-
tant points ([∑3

i=1 x
2
i ]1/2 large) are included in the estimator

for ahvp
μ remains present. The CCS method should be at an

advantage here, particularly for disconnected diagram con-
tributions computed on a large volume.

Having made this point, there are other considerations that
contribute to choosing a computational method. One impor-
tant consideration is the control over finite-volume effects.
The nature of these corrections are by now quite well under-
stood in the TMR method [18], although more direct numer-
ical studies (involving several volumes, all other parameters
being held fixed) are desirable. It remains to be studied how
large the finite-size effects are in the CCS method. If the
spatial torus size is L , the sum (82) would have to be trun-
cated at Rmax ≤ L/2. However, one may be able to probe
the long-distance part of the correlator further, since one can

choose for instance the orbit of the vector ε = a · (1, 1, 1, 1)

and apply the estimator (81) for distances beyond Rmax. This
procedure effectively extends the distance reach by a factor
of two, at the cost of having less volume averaging.

Finally, we remark that the framework presented could
also be used to calculate the transverse part of the axial-
current correlator. In particular, the explicit projection onto
the transverse part via the tensor Hμν(x) takes care of remov-
ing the pion pole present in the longitudinal channel.
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