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Abstract In the Jacobson formalism general relativity is
obtained from thermodynamics. This is done by using the
Bekenstein–Hawking entropy–area relation. However, as a
black hole gets smaller, its temperature will increase. This
will cause the thermal fluctuations to also increase, and these
will in turn correct the Bekenstein–Hawking entropy–area
relation. Furthermore, with the reduction in the size of the
black hole, quantum effects will also start to dominate. Just
as the general relativity can be obtained from thermodynam-
ics in the Jacobson formalism, we propose that the quantum
fluctuations to the geometry can be obtained from thermal
fluctuations.

The entropy of a black hole is equal to the quarter of the
area of its horizon in natural units [1,2]. This observation
establishes a connection between the thermodynamics and
the geometry of spacetime. This entropy associated with a
black hole is also the maximum entropy that can be associ-
ated with any object of the same volume [3,4]. It is inter-
esting to observe that this maximum entropy of a region of
space scales with its area and not with its volume [5]. In
fact, it is this observation that has motivated the holographic
principle [6,7]. Even though the holographic principle is a
very important principle in physics, it is expected that this
holographic principle will get modified near the Planck scale
due to quantum fluctuations [8,9]. This can also be observed
from the fact that the relation between the entropy and area
of a black hole is expected to get modified due to quan-
tum fluctuations. The leading order correction to the relation
between the area and entropy of a black hole is a logarithmic
correction in almost all approaches to quantum gravity. In
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particular, such logarithmic corrections have been obtained
using non-perturbative quantum gravity [11], the Cardy for-
mula [12], matter fields surrounding a black hole [13–15],
string theory [16–19], dilatonic black holes [20] the partition
function of a black hole [21], and the generalized uncertainty
principle [10,22]. Even though the form of the corrections
from various approaches to quantum gravity are logarithmic
corrections, the coefficient of such a logarithmic correction
is different for all these approaches to quantum gravity.

It may be noted that such logarithmic corrections can also
be obtained by considering the effects of thermal fluctua-
tions on the entropy of a black hole [29–31]. Now it is well
known that in the Jacobson formalism, spacetime emerges
from thermodynamics [23], in that general relativity can be
deduced from the Bekenstein–Hawking entropy–area rela-
tion combined with the first law of thermodynamics. Thus,
the correction to the Bekenstein–Hawking entropy–area rela-
tion would generate corrections to the structure of spacetime.
Furthermore, as the black hole becomes smaller due to hawk-
ing radiation, its temperature would increases, and this in
turn would increase the contribution coming from the ther-
mal corrections. However, as the black hole becomes smaller,
the effect of quantum fluctuations would also increase. Thus,
in this paper, we propose that both these effects are related,
due to the relation between the geometry and the black hole
thermodynamics. Furthermore, as the Jacobson formalism
explicitly relies on this connection, we will use the Jacobson
formalism to obtain quantum corrections to the metric by
analyzing the correction produced by thermal fluctuations to
the thermodynamics of a black hole.

Thus, we start from the Jacobson formalism, and in this
formalism the thermodynamics relation δQ = T dS is used
to obtain the geometry of spacetime. This is because it is
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possible to express Q in terms of the energy-momentum ten-
sor Tab, and one may use the Hawking–Bekenstein relation
to relate S to the event horizon area A. Thus, we obtain a
geometrical quantity which can be expressed in terms of the
Riemann tensor Rab, and so a relation between Tab and Rab

is obtained, and this can be demonstrated to be the Einstein
field equations.

More precisely, and following the conventions of [23],
for any point p, one can choose a two-surface element P to
which orthogonal boosts are generated by a Killing field χa

such that the temperature T is taken as the Unruh temper-
ature [24] defined by T = h̄κ/2π where κ represents the
acceleration of the Killing orbit, and the heat flow is then
defined by the boost-energy current Tabχa . As for the area,
we consider a local Rindler horizon through p generated
by χa whose future points to the energy carried by matter.
The past-pointing heat flux through P , beyond which lies the
horizon denoted by H, is

δQ =
∫
H
Tabχ

ad�b, (1)

where d�a = kadλdA with ka a tangent vector to the hori-
zon, λ an affine parameter vanishing at P with negative val-
ues to the past of P , and dA is the area element. Thus, it is
possible to write

δQ = −κ

∫
H

λTabk
akbdλdA. (2)

As the entropy S is assumed to be proportional to the horizon
area, so dS = ηδA. Denoting the expansion of the horizon
generated by θ , we obtain

δA = −κ

∫
H

θdλdA. (3)

In order now to obtain the Einstein equations, it suffices to
neglect, near P , the shear σ 2 and the expansion θ terms,
which vanish at P by a suitable choice of the local Rindler
horizon, in the Raychaudhuri equation

dθ

dλ
= −1

2
θ2 − σ 2 − Rabk

akb. (4)

Thus, by integrating this equation, we find θ = −λRabkakb,
and Eq. (3) can be expressed as

δA = −
∫
H

λRabk
akbdλdA. (5)

Comparing Eqs. (2) and (5), we observe that δQ = T dS =
(h̄κ/2π)ηδA holds provided Tabkakb = (h̄η/2π)Rabkakb

for all null ka , which leads to (2π/h̄η)Tab = Rab + f gab
for some function f . Energy and momentum conservation,
combined with the contracted Bianchi identities, leads to f =
−R/2+� for some constant �, and thus we get the Einstein
equations

Rab − 1

2
+ �gab = 2π

h̄η
Tab. (6)

We would like to point out that the proportionality constant
η between the entropy and the area is related to Newton’s
constant as G = (4h̄η)−1, and hence to the Planck length,
but the cosmological constant � cannot be related to other
constants, and thus there remains a free parameter even in
the Jacobson formalism.

We would like to apply the former approach to determine
the quantum corrections on the black hole geometry due to
thermal fluctuations. We will consider a BTZ black hole as an
example, but the formalism developed here can be applied to
any black hole geometry. We first observe that in the Jacobson
formalism, the field equations near the horizon of a BTZ
black hole can be expressed as a thermodynamical identity,
dE = T dS+ PrdA, where E = M is the mass of BTZ black
hole, dA is the change in the area of the black hole horizon
when the horizon is displaced by an infinitesimally small
amount, and Pr is the radial pressure provided by the source
of Einstein equations. It may be noted that since we have a
2 + 1 dimensional black hole, its volume is in fact the area
it encloses. So, the term PrdA actually corresponds to PdV ,
from the general first law. Furthermore, the pressure Pr is
well defined for BTZ black holes, since they are embedded
in AdS spacetime. This term has occurred in earlier work on
such black holes [25–28].

Now we will analyze the corrections to the entropy of a
BTZ black hole due to thermal fluctuations [30,31]. Such
thermal fluctuations have been analyzed as perturbations
around the equilibrium, and this has been done by considering
the system to be very close to equilibrium. So, the approxima-
tion used in this approach is valid as long as the correction due
to the thermal fluctuations are small compared to the original
quantity, i.e., as long as �S0/S0 = (S−S0)/S0 << 1, where
S is the corrected entropy and S0 is the original entropy of the
system. Thus, the ratio of the corrections to the original quan-
tity should be small, and so the temperature should not be
large enough to produce very large thermal fluctuations [29].

Now for a canonical ensemble with partition function [30,
31],

Z =
∫ ∞

0
dEρ(E) exp(−βE), (7)

the density of states for a system can be written as

ρ(E) = 1

2π i

∫ β0+i∞

β0−i∞
dβ exp[S(β)], (8)

where S = βE + ln Z . It may be noted that usually the
entropy is measured around the equilibrium temperature β0,
and all thermal fluctuations are neglected. This is done by
making the identification T = β−1. However, it is possible
to consider the thermal fluctuations, and expand the entropy
S(β) around the equilibrium temperature β0 [30,31],
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S = S0 + 1

2
(β − β0)

2
(

∂2S(β)

∂β2

)
β=β0

, (9)

where β is a temperature close to the equilibrium temperature
β0, and

S0 = [S(β)]
∣∣∣∣
β=β0

, S′′
0 =

[
∂2S(β)

∂β2

] ∣∣∣∣
β=β0

. (10)

Now the density of states can be expressed as

ρ(E) = exp(S0)

2π i

∫ β0+i∞

β0−i∞
dβ

× exp

(
1

2
(β − β0)

2
(

∂2S(β)

∂β2

)
β=β0

)
. (11)

Furthermore, by a change of variables, we obtain

ρ(E) = exp(S0)√
2π

[(
∂2S(β)

∂β2

)
β=β0

]−1/2

. (12)

Thus, it is possible to express S as

S = S0 − ln S′′
0

2
, (13)

It is also possible to express the second derivative of the
entropy in terms of fluctuations of the energy, and so the
corrected entropy can be written as [31]

S = S0 − 1

2
ln(S0T

2). (14)

So, the thermal fluctuations decrease entropy of the BTZ
black hole. It may be noted that black holes have a nega-
tive heat capacity; therefore, as the temperature of a black
hole increases, its entropy decreases. This unusual behav-
ior of black holes even occurs when thermal fluctuations are
neglected. Furthermore, the behavior of the original [32], and
the correct entropy [31], is well known, and this is not the
aim of this paper. The main aim of this paper is to use this
corrected entropy to obtain quantum corrections using the
Jacobson formalism.

Let us consider a non-rotating BTZ black hole in three-
dimensions with metric [43]

ds2 = −
(
r2

l2
− 8G3M

)
dt2

+
(
r2

l2
− 8G3M

)−1

dr2 + r2dθ2. (15)

Its Bekenstein–Hawking entropy and Hawking temperature
are given by

S0 = 2πr

4G3
(16)

and

T = r

2πl2
=

[
G3

π2l2

]
S0 (17)

where r = √
8G3Ml is the radius of the horizon (G3 =

3-dimensional Newton constant), M being the mass of the
black hole and l is related to the cosmological constant by
� = −1/ l2. Now, let us suppose that the corrected metric
has the form

ds′2 = −F(r)dt2 + (F(r))−1dr2 + r2dθ2, (18)

where F(r) is a function of (r). Here we have assumed that
the fluctuations are only r dependent, and they do not have
any angular dependence. The justification for this is that any
fluctuation that causes a shear to the black hole surface is
highly unstable [50,51]. Since we have started with a spher-
ically symmetric BTZ black holes, it is justified to assume
that the relevant fluctuations are only r dependent. In fact,
as we consider a black hole near equilibrium, and one that is
non-rotating, it is necessary for its stability to only consider
spherically symmetric fluctuations [52].

It also known that these thermal fluctuations become dom-
inant at high temperatures. As the temperature of a black
holes increases as its size decreases, these thermal fluctua-
tions also increase as the black hole reduces its size. How-
ever, as the black hole becomes smaller, quantum effects also
become dominant. As these thermal fluctuations scale with
the quantum fluctuations, in the Jacobson formalism (where
spacetime emerges from thermodynamics), we can argue that
these thermal fluctuations actually produce quantum cor-
rections to this emergent spacetime [23]. It may be noted
that the correction to the entropy produced by these ther-
mal fluctuations is a logarithmic correction, and it scales as
ln

(
S0T 2

)
. This also indicates that these thermal corrections

in the thermodynamics are related to the quantum correc-
tions to the geometry of spacetime. This is because in almost
all approaches to quantum gravity, we obtain a logarithmic
correction term as the leading order quantum correction to
the black hole entropy [10–22]. Even though a logarithmic
correction term is produced in almost all approaches to quan-
tum gravity, this term is proportional to a constant, and that
constant depends on the details of the various approaches to
quantum gravity. In fact, this constant is usually proportional
to some new constant in that theory. As this constant depends
on the details of the model used, we will use an arbitrary con-
stant α and define the corrected microcanonical entropy as
[33–42]

S = S0 + α ln(S0T
2). (19)

It may be noted that the corrected metric should reduce to the
original metric, as α → 0, and this occurs if thermal fluctua-
tions are neglected. If we neglect the higher order terms, we
write

dS =
(

2π

4G3
+ α

r

)
dr. (20)
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As M = r2

8G3l2
, we find that

dM = r

4G3l2
dr. (21)

By substituting Eqs. (17), (20), and (21) in the first law of
thermodynamics,

dM = T dS + PrdA, (22)

we find

r

4G3l2
= r

2πl2

(
2π

4G3
+ α

r

)
+ Pr (8πr) (23)

where A = 4πr2. By simplifying the last equation we find

− 8G3π Pr = − 1

4l2
+ 1

4l2
+ α

G3

πl2 (2r)
. (24)

Now, the Einstein equation is given by

Gab + �gab = −8πG3Tab. (25)

The Einstein equation for the metric (18) when evaluated at
the radius of the horizon reads [44]

− 8G3πT 0
0 = 1

2r
F ′(r) − 1

l2
(26)

where the prime indicates the derivative with respect to r . If
we suppose that the static BTZ black hole for the entropy (19)
is consistent with Jacobson’s approach, then we can find the
corrected metric by identifying between (24) and Eq. (26).
Then we get the differential equation

1

2r
F ′(r) − 1

l2
= α

G3

2πl2r
. (27)

By solving it we find

F(r) = r2

l2
+ α

G3r

2πl2
+ C (28)

whereC is the integral constant which is equal to −8MG3 as
F(r) is equal to f (r) for α → 0. Thus, the corrected metric
of (15) is given by

ds′2 = −
(
r2

l2
+ α

G3r

2πl2
− 8MG3

)
dt2

+
(
r2

l2
+ α

G3r

2πl2
− 8MG3

)−1

dr2 + r2dθ2. (29)

Thus, the thermal fluctuations to the thermodynamics can
give rise to quantum corrections to the metric in the Jacob-
son formalism. Furthermore, by considering the logarithmic
corrections to the thermodynamics, we only analyze the first
order corrections to the metric.

It would be interesting to study the corrected thermo-
dynamics based on this quantum corrected metric. Even
though α is a constant, its value depends on the details of

the approach. So, here we will analyze the corrected thermo-
dynamics for different values of α. The corrected outer and
inner horizons are given by

r ′± =
√
G3

√
α2G3 + 128π2l2M ± αG3

4π
. (30)

Now using the formula for the temperature [46],

T = r2+ − r2−
2πr+

, (31)

the corrected temperature can be written as

T ′ =
√
G3(α

2G3 + 64π2l2M)

2π2(
√

α2G + 128π2l2M − α
√
G3)

. (32)

We may calculate the corrected entropy from the area law,

S′ = 4πr ′+ = √
G3

√
α2G3 + 128π2l2M − αG3. (33)

We may also study the PV criticality from this corrected
metric in the extended phase space [47]. So we can use the
definition of the thermodynamics pressure,

P = T

v
, (34)

with v = 2(V/π)1/2, where V is the BTZ black hole volume,
given by

V = 16πr2+ = (αG3 − √
G3

√
α2G3 + 128π2l2M)2

π
.

(35)

Thus, the thermodynamics pressure is

P =
√
G3(α

2G3 + 64π2l2M)

4π(ζ − α
√
G)

√
(αG3 − √

G3 ζ )2
(36)

with ζ = √
α2G3 + 128π2l2M .

Now we are able to calculate the Gibbs free energy
G(T, l, α), from the definition

G = M + PV − T S. (37)

The Gibbs free energy determines the critical behavior of the
BTZ black hole; if G > 0 we say the black hole is critical.
However, if G < 0, the black hole is not critical, and the sad-
dle points of the G(M, α) plot indicate the phase transition.
The explicit formula of the Gibbs free energy is given by

G = −α2G2
3

2π2 − 32G3l
2M + M

+
√
G3(α

2G3 + 64π2l2M)

√
(αG3 − √

G3

√
α2G3 + 128π2l2M)2

4π2(
√

α2G3 + 128π2l2M − α
√
G3)

.

(38)

As we can see from the plot ofG(M, α), for this black hole no
critical phenomena exist, and the black hole always remains
uncritical (as G remains less than zero).
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Fig. 1 A plot of the BTZ temperature and its mass for a fixed l = 0.5
in Planck units. Observe how quantum corrections lead to a significant
increase of temperature at low masses (small scale). Here quantum
fluctuations are expected to be most prominent

It should be noted that as the thermal fluctuations increase
we will have to include higher order corrections to this per-
turbative expansion [45]. However, near the Planck scale the
temperature is expected to become sufficiently large to break
this perturbative expansion, and at this stage the system can-
not be analyzed as a perturbation around equilibrium tem-
perature. This is expected as general relativity emerges from
thermodynamics in the Jacobson formalism [23], and so we
expect that thermal fluctuations will occur because of quan-
tum fluctuations. It is also known that such logarithmic cor-
rection to the entropy are leading order corrections generated
from various different approaches to quantum gravity [10–
22]. Furthermore, we also expect that as the black hole will
become small and its temperature increases, we have to con-
sider higher order thermal corrections as seen from Fig. 1
[45], which will correspond to higher order quantum cor-
rections in the Jacobson formalism [23]. However, near the
Planck scale it is expected that the manifold description of the
spacetime will break down, so we cannot analyze the system
using a quantum correction to classical geometry [48,49].
Similarly, it is expected that the equilibrium description of
the thermodynamics will break down at the Planck scale, and
we cannot analyze the system using thermal fluctuations to
the equilibrium thermodynamics (Figs. 2 and 3).

It would be interesting to analyze this connection between
the breaking of the manifold structure of spacetime and the
breaking of the equilibrium description of the thermody-
namics. It might also be interesting to note that by using
non-equilibrium thermodynamics, we might be able to ana-
lyze some purely quantum gravitational states of spacetime
near the Planck scale. The effects of large fluctuations on the
behavior of black holes has been studied [53], and it would
be interesting to analyze such effects using the Jacobson for-
malism. However, in this paper, we have only analyzed the
first order corrections to the equilibrium entropy from ther-

Fig. 2 A plot of the BTZ entropy and its mass for a fixed l = 0.5 in
Planck units. Quantum corrections are mainly relevant for small mass

Fig. 3 A 3D plot of G(M, α) of a quantum corrected BTZ black hole
for a fixed l = 0.5. We observe that, for different masses and perturba-
tion parameters, the BTZ black hole does not show any critical behavior,
G < 0

mal fluctuations around an equilibrium. The important thing
to note here is that just as general relativity can emerge from
thermodynamics in the Jacobson formalism, quantum gravity
can emerge from thermal fluctuations to the thermodynam-
ics. Furthermore, it is just possible to analyze small quantum
fluctuations to the geometry by analyzing small thermal fluc-
tuations to the metric. However, at the Planck scale, just as we
expect a manifold description to spacetime to break down,
we also expect the equilibrium discretion to the thermody-
namics to break down. We would like to point out that such
thermal fluctuations have been studied for various kinds of
dynamical black objects [33–42]. It would be interesting to
analyze the effects of such thermal fluctuations on the space-
time metric using the formalism developed in this paper. The
black hole thermodynamics for time dependent Vaidya black
holes has also been studied [54–57]. It would be interesting
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to analyze the thermal fluctuations for such black holes, and
then use the formalism of this paper to obtain the corrected
quantum corrected metric for Vaidya black holes.
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