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Abstract We analyze the non-leptonic decays B/Bs →
ψ(2S)V with V = (ρ, ω, K ∗, φ) by employing the per-
turbative QCD (pQCD) factorization approach. Here the
branching ratios, the CP asymmetries and the complete set
of polarization observables are investigated systematically.
Besides the traditional contributions from the factorizable
and non-factorizable diagrams at the leading order, the next-
to-leading order (NLO) vertex corrections could also provide
considerable contributions. The pQCD predictions for the
branching ratios of the B(s) → ψ(2S)K ∗, ψ(2S)φ decays
are consistent with the measured values within errors. As
for B → ψ(2S)ρ, ψ(2S)ω decays, the branching ratios
can reach the order of 10−5 and could be measured in the
LHCb and Belle-II experiments. The numerical results show
that the direct CP asymmetries of the considered decays
are very small. Thus the observation of any large direct
CP asymmetry for these decays will be a signal for new
physics. The mixing-induced CP asymmetries in the neu-
tral modes are very close to sin 2β(s), which suggests that
these channels can give a cross-check on the measurement
of the Cabbibo–Kobayashi–Maskawa (CKM) angle β and
βs . We find that the longitudinal polarization fractions f0
are suppressed to ∼ 50% due to the large non-factorizable
contributions. The magnitudes and phases of the two trans-
verse amplitudes A‖ and A⊥ are roughly equal, which is an
indication for the approximate light-quark helicity conser-
vation in these decays. The overall polarization observables
of B → ψ(2S)K ∗0 and Bs → ψ(2S)φ channels are also
in good agreement with the experimental measurements as
reported by LHCb and BaBar. Other results can also be tested
by the LHCb and Belle-II experiments.
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1 Introduction

Studies of the decays of B mesons into a charmonium meson
plus a light vector meson contribute a lot to our knowledge
about the CP violation and mixing in the B meson system
[1], and also provide a particularly important place to look for
the physics beyond the standard model (SM). For example,
the mode B0

s → J/ψφ is the so-called “golden mode” for
measuring βs , which is extracted from the angular analysis of
the time-dependent differential decay rate [2–4]. The coun-
terpart phase β in the B meson system can also be extracted
in B0 → J/ψK ∗ decay [5]. The decay B0 → J/ψφ, which
would proceed mainly via a Cabibbo-suppressed and color-
suppressed transition (b̄d → c̄cd̄d) with rescattering of dd̄
into ss̄, provide useful information for understanding rescat-
tering mechanisms [6–8]. In addition, combining the decays
B0 → J/ψφ and B0 → J/ψω can be helpful to study
the ω − φ mixing [9]. These decays are dominated by tree
diagrams and the contributions from penguin diagrams are
expected to be small. With continuously increasing high-
precision measurements, the penguin effects, which play an
important role in the extraction of the above phases, can be
measured by means of an analysis of the angular distribution
of B0 → J/ψρ0 [10] and B0

s → J/ψ K̄ ∗0 [11].
In the framework of SM, these decay modes are induced

by transitions b → qcc̄ with q = d, s. In principle, any
mode involving various excitations of the cc̄ mesons such
as B → ψ(2S)V decays could be an alternative to that for
J/ψ analogues, and they could give additional and comple-
mentary information. Experimentally, the ψ(2S) meson can
be reconstructed in the decay channels ψ(2S) → μ+μ−
and ψ(2S) → J/ψπ+π−, with the J/ψ meson decay-
ing into two muons [12]. Nowadays, several experimental
Collaborations have measured the decays B0

s → ψ(2S)φ

[13], B → ψ(2S)K ∗(892) [14–18], B0 → ψ(2S)π0 [19],
B+ → ψ(2S)π+ [20], Bs → ψ(2S)η(′) [21,22]. Some rel-
ative ratios of the branching ratios for B meson decays into
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ψ(2S) and J/ψ mesons are also measured by several exper-
iments [23–26].

On the theory side, these B → ψ(2S)V modes do
have some special properties. Since there are three possi-
ble values of the total angular momentum with different
CP eigenvalues (L = 1 is odd, while L = 0, 2 are even),
the angular analysis is needed to separate the contributions
from the CP-even and CP-odd partial waves. Therefore
the final state can be decomposed into three helicity ampli-
tudes (one longitudinal and two transverse components ).
The information about the phases of the transverse decay
amplitudes provides a test of the factorization hypothesis
[27]. Furthermore, B → ψ(2S)V are the color-suppressed
modes and therefore a significant impact of non-factorizable
contributions is expected. Both improvements in the accu-
racy of the experimental measurements and the observa-
tion of new modes, especially involving ψ(2S) in the final
states, can be helpful in understanding the role of any non-
factorizable corrections [28–30] and differentiating various
theory approaches. Nowadays there exist several theoretical
approaches as described in Refs. [31–46] which shed more
light on the S-wave ground state charmonium decays of B
mesons. The non-leptonic B decays with radially excited
charmonium mesons in final state, however, have received
less attention in the literature.

Based on the kT factorization theorem, The perturba-
tive QCD (pQCD) approach [47,48] is suitable for describ-
ing different types of heavy hadron decays. After includ-
ing the parton transverse momentum kT , which is not neg-
ligible in the end-point region, both factorizable and non-
factorizable contributions are calculable without end-point
singularity. The Sudakov resummation has also been intro-
duced to suppress the long-distance contributions effectively.
Therefore, the pQCD approach is a self-consistent frame-
work and has a good predictive power. In our previous works
[49–51], the semi-leptonic, two-body and three-body non-
leptonic decays of the Bc(B) mesons to ψ(2S) are studied
in the pQCD framework. Here, furthermore, we will extend
our previous analysis to the B → ψ(2S)V decays. In a
recent work [52], The authors applied the pQCD approach
to the study of B → J/ψV decays and also obtained the
theoretical predictions in good agreement with currently
available data. Therefore we have good reasons to believe
that it is appropriate to analyze B → ψ(2S)V in this
framework.

This work is organized as follows. In Sect. 2 we present
some basic formulas such as the effective Hamiltonian
and kinetic conventions, then briefly review the pQCD
approach. The technical formulas of the calculation and the
non-perturbative meson wave functions are summarised in
Appendices A and B, respectively. Section 3 devoted to a
numerical calculation and discussion. Our conclusions are
left for Sect. 4.

2 Analytic formulas and perturbative calculations

For non-leptonic charmonium B decays, both the tree opera-
tors and the penguin operators of the standard effective weak
Hamiltonian contribute, which is given by [53]

Heff = GF√
2

{
ξc[C1(μ)Oc

1(μ) + C2(μ)Oc
2(μ)]

−ξt

10∑
i=3

Ci (μ)Oi (μ)

}
, (1)

with the CKM matrix element ξc(t) = V ∗
c(t)bVc(t)q . Oi (μ) and

Ci (μ) are the effective four quark operators and their QCD
corrected Wilson coefficients at the renormalization scale μ,
respectively. Their explicit form can be found in Ref. [53].

At quark level, when the b̄ → q̄cc̄ decay occurs through
the four quark operators, a cc̄ state ψ(2S) is created while
the other light anti-quark q̄ is flying away. Since the heavy
b quark in B meson carry most of the energy of B meson,
the spectator quark of the B meson is soft. A hard gluon is
exchanged so that the spectator quark gets energy from the
four quark operator and then form a fast moving vector meson
with its partner anti-quark. This renders the perturbative cal-
culations in a six-quark interaction form, which involves the
four quark operator and the spectator quark connected by a
hard gluon. The relevant Feynman diagrams are shown in
Fig. 1.

In the pQCD approach, the decay amplitudes are expressed
as the convolution of the hard kernels H with the relevant
meson wave functions 
i

A(B → ψ(2S)V ) =
∫

d4k1d4k2d4k3Tr [C(t)
B(k1)

×
φ(2S)(k2)�V (k3)H(k1, k2, k3, t)],
(2)

where ki are the momentum of the quark in each meson,
and “Tr” denotes the trace over all Dirac structure and color
indices. C(t) is the short distance Wilson coefficients at the
hard scale t . The meson wave functions 
, including all
non-perturbative components in the kT factorization, can be
extracted from experimental data or other non-perturbative
methods. The hard kernel H(ki , t) describes the four quark
operator and the spectator quark connected by a hard gluon,
which can be perturbatively calculated including all pos-
sible Feynman diagrams without end-point singularity. In
the following, we start to compute the decay amplitudes of
B → ψ(2S)V decay.

We will work in the B meson rest frame and employ
the light-cone coordinates for momentum variables. The B
meson momentum P1, the ψ(2S) meson momentum P2, the
vector-meson momentum P3 and the quark momenta ki in
each meson are chosen as
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Fig. 1 The typical leading-order Feynman diagrams for the decay B → ψ(2S)V . a, b The factorizable diagrams, and c, d the non-factorizable
diagrams

P1 = M√
2
(1, 1, 0T), P2 = M√

2
(1 − r2

v , r2, 0T),

P3 = M√
2
(r2

v , 1 − r2, 0T),

k1 =
(

M√
2
x1, 0,k1T

)
,

k2 =
(

M√
2
x2(1 − r2

v ),
M√

2
x2r

2,k2T

)
,

k3 =
(

M√
2
x3r

2
v ,

M√
2
x3(1 − r2),k3T

)
, (3)

with the mass ratio r(v) = mψ(2S)(mV )/M and mψ(2S),mV ,

M are the masses of the charmonium, vector meson and
B meson, respectively. The kiT , xi represent the transverse
momentum and longitudinal momentum fraction of the quark
inside the meson. Since the final state consists of two spin-
1 particles, to extract the helicity amplitudes, the following
parametrizations for the longitudinal and transverse polar-
ization vectors are useful:

εL2 = 1√
2(1 − r2

v )r
(1 − r2

v ,−r2, 0T),

×εT2 = (0, 0, 1T),

εL3 = 1√
2(1 − r2)rv

(−r2
v , 1 − r2, 0T),

×εT3 = (0, 0, 1T); (4)

they satisfy the normalization (εL2,3)
2 = (εT2,3)

2 = −1 and

the orthogonality εL2 · P2 = εL3 · P3 = 0.
The decay amplitude can be decomposed into three parts

of the polarizations amplitudes as follows:

A(B → ψ(2S)V ) = AL + AN εT2 · εT3

+iAT εαβρσn
αvβε

Tρ
2 εTσ

3 , (5)

with the null vectors n = (1, 0, 0T) and v = (0, 1, 0T).
The subscript L , N , T correspond to the longitudinal, normal
and transverse polarization states, respectively. According to
Eq. (1), the three different polarization amplitudes have the
following expressions:

AL ,N ,T (B → ψ(2S)V )

= ξc

[
(C1 + 1

3
C2)F LL

L ,N ,T + C2MLL
L ,N ,T

]

−ξt

[
(C3 + 1

3
C4 + C9 + 1

3
C10)F LL

L ,N ,T

+(C5 + 1

3
C6 + C7 + 1

3
C8)F LR

L ,N ,T

+(C4 + C10)MLL
L ,N ,T + (C6 + C8)MSP

L ,N ,T

]
, (6)

where F(M) describes the contributions from the factoriz-
able (non-factorizable) diagrams. The superscripts LL , LR,
and SP refer to the contributions from (V − A) ⊗ (V − A),
(V − A)⊗(V + A) and (S− P)⊗(S+ P) operators, respec-
tively. These explicit factorization formulas are all listed in
Appendix A. In this work, we also consider the vertex correc-
tions to the factorizable amplitudes F at the current known
next-to-leading order (NLO) level. Their effects can be com-
bined in the Wilson coefficients as usual [54–56]. In the NDR
scheme, the vertex corrections are included by the modifica-
tions to the combinations ai 1 of the Wilson coefficients Ci

associated with the factorizable amplitudes in Eq. (6):

a2 → a2 + αs

9π
C2

[
−18 − 12ln(

μ

mb
) + f hI

]
,

a3 + a9 → a3 + a9 + αs

9π
(C4 + C10)

×
[
−18 − 12ln(

μ

mb
) + f hI

]
,

a5 + a7 → a5 + a7 + αs

9π
(C6 + C8)

×
[

6 + 12ln(
μ

mb
) − f hI

]
. (7)

The functions f hI arise from the vertex corrections, which
are given in Ref. [31].

3 Numerical results

Meant to be used in our numerical calculations, parameters
such as the meson mass, the Wolfenstein parameters, the
decay constants, and the lifetime of B(s) mesons [57] are
given in Table 1, while the input wave functions and various
parameters of the light vectors are shown in Appendix B.

1 The definitions of a2, a3,5,7,9 are of the form a2 = C1 + C2/3, ai =
Ci + Ci+1/3 for i = (3, 5, 7, 9).
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Table 1 The decay constants of ψ(2S) meson is from [49], while the other parameters are adopted in PDG [57] in our numerical calculations

Mass (GeV) MW = 80.385 MB = 5.28 MBs = 5.37 mb = 4.66 mc = 1.275

mψ(2S) = 3.686 mρ = 0.775 mω = 0.783 mK ∗ = 0.892 mφ = 1.019

The Wolfenstein parameters λ = 0.22506 A = 0.811 ρ̄ = 0.124 η̄ = 0.356

Decay constants (MeV) fB = 190.9 ± 4.1 fBs = 227.2 ± 3.4 fψ(2S) = 296+3
−2

Lifetime (ps) τBs = 1.51 τB0 = 1.52 τB+ = 1.638

We now use the method previously illustrated to estimate
the physical observables (such as theCP averaged branching
ratios, direct and mixing CP violations, polarization frac-
tions, and relative phases) of the considered decays.

3.1 The CP averaged branching ratios

For B → ψ(2S)V decays, the branching ratios can be writ-
ten as

B(B → ψ(2S)V ) = G2
FτB

32πM
(1 − r2)

∑
i=0,‖,⊥

|Ai |2, (8)

where the terms A0,A‖,A⊥ denote the longitudinal, paral-
lel, and perpendicular polarization amplitude in the transver-
sity basis, respectively, which are related toAL ,N ,T of Eq. (6)
via

A0 = −AL , A‖ = √
2AN , A⊥ = √

2AT . (9)

Here A0 and A‖ are the CP even amplitudes whereas A⊥
corresponds to CP odd ones. Note that an additional minus
sign in A0 (see Ref. [58]) make our definitions of the rel-
ative phase between A‖(⊥) and A0 takes the value of π in
the heavy-quark limit. The CP averaged branching ratios
for the B → ψ(2S)V decays are shown in Table 2 together
with some of the experimental measurements. Some domi-
nant uncertainties are considered in our calculations. The first
error in these entries is caused by the hadronic parameters
in the B(s) meson wave function: (1) the shape parameters,
ωb = 0.40 ± 0.04 for the B meson, and ωb = 0.50 ± 0.05
for the Bs meson; (2) the decay constants, which are given in
Table 1. The second error is from the uncertainty of the heavy-
quark masses. In the evaluation, we vary the values of mc(b)

within a 10% range. The last one is caused by the variation
of the hard scale from 0.8t to 1.2t , which characterizes the
size of the NLO QCD contributions. It is found that the main
uncertainties in our approach come from the B meson wave
function, which can reach 20–30% in magnitude. The scale-
dependent uncertainty is less than 20% due to the inclusion
of the NLO vertex corrections. We have checked the sen-
sitivity of our results to the choice of the shape parameter
ωc (see Eq. (B7)) in the charmonia meson wave function.
The variation of ωc in the range 0.18 ∼ 0.22 will result in
a small change of the branching ratio, say less than 10%. In

addition, the uncertainties related to the light vector mesons,
such as the vector-meson decay constants and the Gegen-
bauer moments shown in Table 6, are only several percent.
Therefore they have been neglected in our calculations.

For the color-suppressed decays, it is expected that the
factorizable diagram contribution is suppressed due to the
cancellation of Wilson coefficients C1 + C2/3. After the
inclusion of the vertex corrections, the factorizable diagram
contributions become comparable with the non-factorizable
ones. Some important features of the numerical results col-
lected in Table 2 are of the following forms:

(I) The b → s transition processes B+(0) → ψ(2S)K ∗+(0)

and Bs → ψ(2S)φ have a comparatively large branch-
ing ratio 10−4; while the branching ratios of thoseb → d
channels B+(0) → ψ(2S)ρ+(0), B0 → ψ(2S)ω0 and
Bs → ψ(2S)K̄ ∗0 are relatively small (∼ 10−5) owing
to the CKM factor suppression: |V ∗

cbVcd | ∼ λ3.
(II) In the quark model, the difference between B0 →

ψ(2S)ω and B0 → ψ(2S)ρ0 decays comes from the
sign of dd̄ component, which only appears in pen-
guin operators, so their difference should be relatively
small. The branching ratio B(B0 → ψ(2S)ω) is indeed
slightly smaller than B(B0 → ψ(2S)ρ0). This is a con-
sequence of the fact that the ω vector and tensor decay
constants are smaller than those of the ρ0 according to
Table 6;

(III) The value of B(Bs → ψ(2S)K̄ ∗0) have a tendency to
be smaller than 2B(B0 → ψ(2S)ρ0). Although the K ∗
and Bs meson decay constants are larger than those of
the ρ0 and B0 meson, the SU(3) breaking effects in the
twist-2 distribution amplitudes, parametrized by the first
Gegenbauer moment a1K ∗ (see Eq. (B10)), gives a neg-
ative contribution to the Bs → ψ(2S)K̄ ∗0 decay, which
induces the smaller branching ratio.

(IV) For the first four B(s) → ψ(2S)V decays as listed in
Table 2, one can see that the pQCD predictions for their
branching ratios agree well with the world averaged val-
ues given in HFAG 2016 and PDG 2016 [57,61] within
one standard deviation. For Bs → ψ(2S)K̄ ∗0 decay, the
central value of our theoretical prediction for its branch-
ing ratio is slightly smaller than that of the PDG number
[57]. But we know that the PDG result is obtained by
multiplying the best value B(B0 → ψ(2S)K ∗0) with
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Table 2 The pQCD predictions for the CP-averaged branching ratios for the B → ψ(2S)V decays (in units of 10−5). For comparison, experimental
results from BaBar [17], Belle [59,60], or the world average from HFAG 2016 [61] and PDG 2016 [57] are also listed

Modes This work BaBar [17] Belle [59] Belle [60] HFAG 2016 [61] PDG 2016 [57]

B0
s → ψ(2S)K̄ ∗0 2.2+0.6+0.2+0.3

−0.5−0.2−0.2 – – – – 3.3 ± 0.5

B0
s → ψ(2S)φ 47+15+7+8

−10−3−4 – – – – 54 ± 5

B+ → ψ(2S)K ∗+ 59+14+7+7
−12−7−5 59.2 ± 12.3 81.3 ± 11.8 – 70.7 ± 8.5 67 ± 1.4

B0 → ψ(2S)K ∗0 54+13+6+7
−11−6−5 64.9 ± 11.4 72 ± 7.8 55.5+4.7

−8.7 71.1 ± 6.2 59 ± 4

B+ → ψ(2S)ρ+ 2.7+0.6+0.3+0.3
−0.6−0.3−0.2 – – – – –

B0 → ψ(2S)ρ0 1.2+0.3+0.1+0.1
−0.3−0.1−0.1 – – – – –

B0 → ψ(2S)ω 1.0+0.2+0.1+0.1
−0.2−0.1−0.1 – – – – –

the measured ratio B(B̄0
s → ψ(2S)K ∗0)/B(B0 →

ψ(2S)K ∗0) from the LHCb [62]. We hope the future
experiment will provide a direct measurement to this
mode.

(V) As for the channels with ρ and ω as the final-state V
meson, they have not been measured yet. The pQCD
predictions for the decay rates of these three channels
are at the order of 10−5, measurable in the future LHCb
and Belle-II experiments.

For a more direct comparison with the available exper-
imental measurements of the relative rates of B(s) meson
decays into ψ(2S) and J/ψ mesons, we recalculated the
corresponding B(s) decays to J/ψV by using the same
input parameters as in this paper but with the replacement
ψ(2S) → J/ψ , and we found numerically that

B(Bs → J/ψ K̄ ∗0) = (4.2+1.2+0.6+0.6
−0.8−0.3−0.1) × 10−5,

B(Bs → J/ψφ) = (9.3+2.6+1.0+1.5
−1.9−0.7−0.8) × 10−4,

B(B+ → J/ψK ∗+) = (11.2+2.5+1.4+1.5
−2.2−1.2−0.9) × 10−4,

B(B0 → J/ψK ∗0) = (10.4+2.2+1.3+1.3
−2.0−1.1−0.8) × 10−4,

B(B+ → J/ψρ+) = (5.1+1.2+0.6+0.8
−1.0−0.5−0.3) × 10−5,

B(B0 → J/ψρ0) = (2.4+0.6+0.3+0.4
−0.5−0.3−0.2) × 10−5,

B(B0 → J/ψω) = (1.8+0.4+0.2+0.3
−0.4−0.1−0.1) × 10−5, (10)

where the errors have the same meaning as those for B(s) →
ψ(2S)V decays. The above results are well consistent with
the previous pQCD calculations [52] and also with the present
data [57].

Finally, as a cross-check, using the pQCD predictions as
given in Table 2 and Eq. (10) we can estimate the relative
ratios RV = B(B → ψ(2S)V )/B(B → J/ψV ) as below,

Rφ = 0.51+0.02
−0.01, RK ∗0(+) = 0.53+0.00

−0.02, Rρ0(+) = 0.53+0.00
−0.03,

Rω = 0.56+0.01
−0.04, RK̄ ∗0 = 0.52+0.01

−0.04, (11)

where all uncertainties are added in quadrature. Since the
parameter dependences of the pQCD predictions for the

branching ratios are largely canceled in their relative ratios,
the total theoretical error of RV are only a few percent, much
smaller than those for the branching ratios. Fortunately, two
of these five ratios have been measured by LHCb [24] D0
[25], and CDF [14,26] experiments:

Rφ =

⎧⎪⎨
⎪⎩

0.489 ± 0.026(stat) ± 0.021(syst) ± 0.012(Rψ) LHCb,

0.53 ± 0.10(stat) ± 0.07(syst) ± 0.06(Rψ) D0,

0.52 ± 0.13(stat) ± 0.04(syst) ± 0.06(Rψ) CDF,

RK ∗0 =
{

0.476 ± 0.014(stat) ± 0.010(syst) ± 0.012(Rψ) LHCb,

0.515 ± 0.113(stat) ± 0.052(syst) CDF,

(12)

where the third uncertainty is from the ratio of the ψ(2S)

and J/ψ branching fractions to μ+μ−. It is easy to see that
our pQCD predictions for both Rφ and RK ∗0 agree very well
with the measured values.

3.2 CP Asymmetries

Studying CP asymmetries is an important task in B physics.
For the charged B decays, the CP asymmetries arise from
the interference between the penguin diagrams and tree dia-
grams. The direct CP violation asymmetry including three
polarization are defined by

Adir
0,‖,⊥ = |Ā0,‖,⊥|2 − |A0,‖,⊥|2

|Ā0,‖,⊥|2 + |A0,‖,⊥|2 , (13)

where Ā0,‖,⊥ is the CP-conjugate amplitude of A0,‖,⊥.
For the neutral B0

(s) decays, because of the B0
(s)–B̄

0
(s) mix-

ing, it is required to include time-dependent measurements in
CP violation asymmetries. If the final states are CP eigen-
states, the time-dependent CP asymmetry is defined as

A0,‖,⊥
f (t) = −C0,‖,⊥

f cos(�mt) + S0,‖,⊥
f sin(�mt), (14)

where �m is the mass difference of the two mass eigen-
states of the neutral B meson and f is a two-body final state.
The direct CP asymmetry C0,‖,⊥

f and mixing-induced CP

asymmetry S0,‖,⊥
f are referred to as
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C0,‖,⊥
f = 1 − |λ0,‖,⊥

f |2
1 + |λ0,‖,⊥

f |2
, S f = 2Im(λ

0,‖,⊥
f )

1 + |λ0,‖,⊥
f |2

. (15)

The parameter λ
0,‖,⊥
f = η f e−2iβ(s) Ā0,‖,⊥

A0,‖,⊥ describes CP vio-
lation in the interference between mixing and decay. η f is
the CP eigenvalue (±1) of the polarization state. β(s) is the
CKM angle defined as usual [57]. Note that the final states
of ψ(2S)K ∗0 and its CP conjugate are flavor-specific, for
example, the kaon and pion charges of K ∗0 → K+π− and
K̄ ∗0 → K−π+ depend on whether we had a B and B̄ meson
in the initial state, and the time-dependent angular distribu-
tions do not show CP violation due to interference between
mixing and decay. Therefore, we only calculate the direct
CP asymmetry for B0

s → ψ(2S)K̄ ∗0 and B0 → ψ(2S)K ∗0

decays.
The pQCD predictions for the CP asymmetry parame-

ters Adir
0,‖,⊥ are listed in Table 3 and 4. Unlike the branching

ratios, the direct CP asymmetry is not sensitive to the wave
function parameters and heavy-quark masses, but suffer from
large uncertainties due to the hard scale t . In order to reduce
the large scale dependence effectively, one has to know the
complete NLO corrections, which are in fact not yet available
now, thus beyond the scope of this paper.

Since the directCP asymmetry is proportional to the inter-
ference between the tree and penguin contributions, while
the Wilson coefficients of the penguin diagram are loop sup-
pressed when compared with those tree contributions. There-
fore, the directCP asymmetry parameters of these processes
are rather small (only 10−3 ∼ 10−4), and the mixing-induced
CP asymmetry for neutral B decays is almost proportional to
the sin 2β(s) from Eq. (15). The mixing-induced CP asym-
metry parameters Sψ(2S)ρ0(ω) and Sψ(2S)φ in Table 4 are
very close to the current world average values − sin 2β =
−0.691 ± 0.017 and −2βs = −0.0376+0.0008

−0.0007 [61], respec-
tively. That is to say, these modes can serve as an alternative
places to extract CKM angle β(s). Furthermore, the large
mixing-induced CP asymmetry S f for b → d transition can
confront with future experimental results. It can also be seen
that the CP asymmetry parameters for three polarization
states are slightly different because the strong phases coming
from the non-factorizable diagrams and vertex corrections
are polarization-dependent [31]. On the experimental side,
so far only the charge asymmetries of B+ → ψ(2S)K ∗+
process was measured by the BaBar Collaboration [57]:

Adir
CP (B+ → ψ(2S)K ∗+) = 0.08 ± 0.21. (16)

Of course, the statistical uncertainty is too large to make
any statement. Any observation of large direct CP asym-
metry for the considered decays B(s) → ψ(2S)V decays
will be a signal for new physics. Besides, the precise mea-
surements of these mixing-induced CP asymmetries serve

to determine theCP phases related to the B0–B̄0 and B0
s –B̄0

s
mixing amplitudes.

3.3 Polarization fractions and relative phases

In experimental analyses, we usually define five observables
corresponding to three polarization fractions f0, f‖, f⊥, and
two relative phases φ‖, φ⊥, where

f0,‖,⊥ = |A0,‖,⊥|2
|A0|2 + |A‖|2 + |A⊥|2 , φ‖,⊥ = arg

A‖,⊥
A0

,

(17)

with normalization such that f0+ f‖+ f⊥ = 1. The polariza-
tion fractions as well as the relative phases are shown in Table
5, where the sources of the errors in the numerical estimates
have the same origin as in the discussion of the branching
ratios in Table 2. It is easy to see that the most important the-
oretical uncertainties are caused by the heavy-quark masses.
From Eqs. (7) and (A10), we can see the mass terms mb and
mc associated vertex corrections and non-factorizable ampli-
tudes, respectively. It can numerically change the real and
imaginary parts of these contributions and have a significant
effect on the polarization fractions, especially for the relative
phases. The uncertainties from the wave function parameters
are very small because they mainly give an overall change
of all polarization amplitudes and the parameter dependence
can be canceled out in Eq. (17).

From Table 5, both the B+ → ψ(2S)(K ∗+, ρ+) and
B0 → ψ(2S)(K ∗0, ρ0) modes have the same polarization
fractions and relative phases, since they differ only in the
lifetimes or isospin factor in our formalism. Comparing the
three polarization fractions, the perpendicular polarization
fractions f⊥ are less than 25% shows that the CP even com-
ponent dominates in these decays. According to the power
counting rules in the factorization assumption, the longitudi-
nal polarization dominates the decay ratios and the transverse
polarizations are suppressed [63,64] due to the helicity flips
of the quark in the final-state hadrons. However, the situa-
tion is very different for the color-suppressed decays, where
the contributions from the non-factorizable tree diagrams in
Fig. 1c, d are comparable with those of the color-suppressed
tree diagrams although the latter are enhanced by the involv-
ing vertex corrections. With an additional gluon, the trans-
verse polarization in the non-factorizable diagrams does not
encounter helicity flip suppression, therefore numerically we
get a longitudinal polarization fraction ( f0) smaller than 50%,
which are compatible with those currently available data.
The fact that the non-factorizable diagrams can give a large
transverse polarization contribution is also observed in the
Bc → J/ψD∗+

(s) decays [65]. There are another equivalent
set of helicity amplitudes (A0,A+,A−), which are related
to the spin amplitudes (A0,A‖,A⊥) introduced in Eq. (9) by
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Table 3 The pQCD predictions for Adir
0,‖,⊥(10−3) in the B → ψ(2S)(ρ+, K ∗, K̄ ∗) decays. The error arises from the hard scale t

Modes Adir
0 Adir‖ Adir⊥ Adir

B+ → ψ(2S)ρ+ −5.9+6.6
−11.9 −8.3+6.9

−7.0 −9.2+5.7
−11.3 −7.2+6.6

−10.5

B+ → ψ(2S)K ∗+ 0.4+0.6
−0.4 0.4+1.3

−0.4 0.5+0.3
−0.3 0.4+0.8

−0.4

B0
s → ψ(2S)K̄ ∗0 −5.2+7.2

−9.2 −5.7+6.7
−7.0 −7.1+5.7

−9.4 −5.7+5.8
−8.7

B0 → ψ(2S)K ∗0 0.4+0.6
−0.4 0.4+1.3

−0.4 0.5+0.3
−0.3 0.4+0.8

−0.4

Table 4 The pQCD predictions for the CP asymmetry parameters C0,‖,⊥
f and S0,‖,⊥

f in the B0 → ψ(2S)(ρ0, ω, φ) decays. The error arises from
the hard scale t

Modes C0
f (10−3) S0

f C‖
f (10−3) S‖

f C⊥
f (10−3) S⊥

f

B0 → ψ(2S)ρ0 5.9+11.2
−6.7 −0.68+0.00

−0.01 8.3+6.6
−5.9 −0.69+0.00

−0.00 9.2+11.8
−6.1 0.69+0.01

−0.00

B0 → ψ(2S)ω 6.4+7.7
−6.0 −0.68+0.00

−0.01 7.9+8.9
−6.7 −0.69+0.00

−0.01 8.9+10.2
−5.7 0.69+0.01

−0.00

B0
s → ψ(2S)φ −0.4+0.3

−0.4 −0.038+0.001
−0.000 −0.3+0.2

−0.5 −0.038+0.001
−0.000 −0.4+0.3

−0.3 0.037+0.000
−0.001

Table 5 The pQCD predictions for the CP-averaged polarization fractions, relative phases in the B → ψ(2S)V decays. The errors correspond to
the combined uncertainty in the hadronic parameters, heavy-quark masses and the hard scale t

Modes f0 f‖ f⊥ φ‖(rad) φ⊥(rad)

B+ → ψ(2S)K ∗+ 0.48+0.01+0.07+0.01
−0.02−0.08−0.01 0.28+0.01+0.03+0.00

−0.00−0.03−0.00 0.24+0.01+0.05+0.00
−0.00−0.05−0.00 2.43+0.01+0.09+0.03

−0.02−0.09−0.04 2.15+0.02+0.16+0.01
−0.03−0.16−0.05

CLEO [15] 0.51 ± 0.16 ± 0.05 – – – –

B0 → ψ(2S)K ∗0 0.48+0.01+0.07+0.01
−0.02−0.08−0.01 0.28+0.01+0.03+0.00

−0.00−0.03−0.00 0.24+0.01+0.05+0.00
−0.00−0.05−0.00 2.43+0.01+0.09+0.03

−0.02−0.09−0.04 2.15+0.02+0.16+0.01
−0.03−0.16−0.05

BaBar [18] 0.48 ± 0.05 ± 0.02 0.22 ± 0.06 ± 0.02 0.30 ± 0.06 ± 0.02 3.5 ± 0.4 ± 0.1a 2.8 ± 0.3 ± 0.1

CLEO [15] 0.40 ± 0.14 ± 0.07 – – – –

Belle [60] 0.455+0.031+0.014
−0.029−0.049 – – – –

B0
s → ψ(2S)K̄ ∗0 0.50+0.01+0.06+0.01

−0.02−0.07−0.01 0.28+0.00+0.02+0.00
−0.00−0.04−0.01 0.23+0.01+0.04+0.00

−0.01−0.04−0.01 2.48+0.01+0.08+0.02
−0.02−0.08−0.04 2.20+0.03+0.16+0.05

−0.02−0.13−0.05

LHCb [62] 0.524 ± 0.056 ± 0.029 – – – –

B0
s → ψ(2S)φ 0.48+0.01+0.05+0.00

−0.02−0.06−0.01 0.29+0.00+0.02+0.00
−0.01−0.03−0.01 0.24+0.00+0.04+0.00

−0.01−0.04−0.01 2.59+0.01+0.08+0.02
−0.01−0.05−0.03 2.31+0.02+0.14+0.03

−0.02−0.11−0.04

LHCb [13] 0.422 ± 0.014 ± 0.003 – 0.264+0.024
−0.023 ± 0.002 3.67+0.13

−0.18 ± 0.03 3.29+0.43
−0.39 ± 0.04

B+ → ψ(2S)ρ+ 0.54+0.01+0.06+0.01
−0.02−0.08−0.00 0.25+0.01+0.03+0.01

−0.01−0.03−0.01 0.21+0.01+0.05+0.00
−0.01−0.04−0.00 2.32+0.02+0.12+0.03

−0.02−0.12−0.03 2.05+0.02+0.17+0.04
−0.04−0.20−0.06

B0 → ψ(2S)ρ0 0.54+0.01+0.06+0.01
−0.02−0.08−0.00 0.25+0.01+0.03+0.01

−0.01−0.03−0.01 0.21+0.01+0.05+0.00
−0.01−0.04−0.00 2.32+0.02+0.12+0.03

−0.02−0.12−0.03 2.05+0.02+0.17+0.04
−0.04−0.20−0.06

B0 → ψ(2S)ω0 0.52+0.02+0.08+0.01
−0.01−0.07−0.00 0.25+0.01+0.03+0.01

−0.00−0.02−0.00 0.22+0.01+0.05+0.00
−0.01−0.04−0.01 2.34+0.02+0.11+0.05

−0.02−0.12−0.03 2.07+0.02+0.17+0.04
−0.03−0.19−0.06

aWe choose the equivalent solution in (0, 2π)

A± = A‖ ± A⊥√
2

, (18)

while A0 is common to both bases.
It is expected that |A0|2 > |A+|2 > |A−|2 if the two

final states are both light vector mesons. The larger the mass
of the vector-meson daughters, the weaker the inequality. In
B → ψ(2S)V decays with light V being a recoiled meson
and heavy ψ(2S) an ejected one. The positive-helicity ampli-
tude is suppressed by mψ(2S)/M (almost of order unity) due
to one of the quark helicities in ψ(2S) has to be flipped, while
the negative-helicity one is subject to a further chirality sup-

pression of ordermV /M [63,64]. Therefore,A+ andA0 may
be comparable and larger than A−. Using values of Table 5
and Eq. (18), the pQCD predictions do favor the hierarchy
pattern |A0|2 ∼ |A+|2 > |A−|2.

The angular analysis of B0 → ψ(2S)K ∗0 and B0
s →

ψ(2S)φ has been carried out by BaBar [18] and LHCb [13],
respectively. The obtained polarization observables are also
summarized in Table 5. As expected under SU (3)-flavor
symmetry, both decay modes have similar magnitudes and
phases of the amplitudes. Our results of polarization frac-
tions can accommodate the data well within uncertainties,

123



610 Page 8 of 11 Eur. Phys. J. C (2017) 77 :610

while the predicted relative phases are a bit smaller than the
data. One can find a shift from π at the 6–7σ level in φ‖
and φ⊥ shows the existence of final-state interaction. How-
ever, the f‖ − f⊥ is about 5% and the difference between φ‖
and φ⊥ does not exceed 0.3 radians, which suggests that our
solutions are consistent with approximate s-quark helicity
conservation despite substantial strong phases.

For the B0
s → ψ(2S)K̄ ∗0 channel, the LHCb Collabora-

tion [62] has reported the longitudinal polarization fraction
f0 as 0.524±0.056±0.029, but a thorough angular analysis
is still missing. As for other modes, we obtain reasonably
accurate results, which could be tested by future experimen-
tal measurements.

4 Conclusion

In this paper we have investigated the seven B → ψ(2S)V
decay modes carefully by employing the pQCD factoriza-
tion approach. Besides the color-suppressed factorizable dia-
grams, the non-factorizable diagrams and the vertex correc-
tion diagrams can also be evaluated in this approach.

The predicted branching ratios and the relative rates of B
meson decays into ψ(2S) and J/ψ mesons are compared
with experiments wherever available. Our results indicate
that the direct CP asymmetries in these channels are very
small due to the suppressed penguin contributions as we men-
tioned above. The mixing-induced CP asymmetries are not
far away from sin 2β(s), these channels can therefore play an
important role in the extraction of the CKM angle β(s).

Finally, we made a comprehensive polarization analysis
of the considered decays. The predicted polarization frac-
tions and relative phases of B0 → ψ(2S)K ∗0 and B0

s →
ψ(2S)φ decays are consistent with data. Due to the large
mass of ψ(2S) and the dominant contributions from the non-
factorizable diagrams, we obtain an equal amount of trans-
verse and longitudinal polarization. The pattern of f‖ ≈ f⊥,
φ‖ ≈ φ⊥ favor the conservation of light-quark helicity. The
deviations from π at several standard deviations in φ‖ and φ⊥
indicate the existence of the still unknown final-state inter-
action.

We also discussed theoretical uncertainties arising from
the hadronic parameters in B meson wave function, heavy-
quark masses and hard scale t . The total uncertainties are
acceptable, around 30% in magnitude. The uncertainties
from the hadronic parameters can give sizable effects on the
pQCD predictions for branching ratios, while the CP asym-
metries suffer a large error from the hard scale t . Further
studies at the completely NLO level are certainly required to
improve the accuracy of the theoretical predictions. Further-
more, the polarization observables f0,‖,⊥ and φ‖,⊥ are more
sensitive to the heavy-quark masses, which suggest that the
color-suppressed type decays may be more sensitive to the
vertex corrections and non-factorizable contributions. Our

results and findings will be further tested by the LHCb and
Belle-II experiments in the near future.
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A The decay amplitudes

Following the derivation of the factorization formula of Eq.
(2), we get the analytic formulas of the (non)factorizable
amplitude for each helicity state listed:

F LL
L = −8πC f fψM4

∫ 1

0
dx1dx3

×
∫ ∞

0
b1b3db1db3φB(x1, b1)

×{
√

1 − r2[φV (x3)((r
2 − 1)x3 − 1)

+φs
V (x3)

√
1 − r2rv(2x3 − 1)

+φt
V (x3)rv(2x3 − 1 − r2(1 + 2x3))]

×αs(ta)Sab(ta)h(αe, βa, b1, b3)St (x1)

−2rv(1 − r2)φs
V (x3)αs(tb)Sab

×(tb)h(αe, βb, b1, b3)St (x3)}, (A1)

F LL
N = 8πC f fψM4r

∫ 1

0
dx1dx3

×
∫ ∞

0
b1b3db1db3φB(x1, b1)

×{[(r2 − 1)(φa
V (x3)rvx3 − φT

V (x3))

+rvφ
v
V (2 + (1 − r2)x3)]

×αs(ta)Sab(ta)h(αe, βa, b1, b3)St (x1)

+rv(1 − r2)(φa
V (x3) + φv

V (x3))αs(tb)Sab

×(tb)h(αe, βb, b1, b3)St (x3)}, (A2)

F LL
T = F LL

N |φa
V ↔φv

V
, (A3)

F LR
L ,N ,T = F LL

L ,N ,T , (A4)

MLL
L = −16

√
2

3
πC f M

4
∫ 1

0
dx1dx2dx3

×
∫ ∞

0
b1b2db1db2φB(x1, b1)
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×{
√

1 − r2[ψ L(x2, b2)rv(φ
s
V (x3)

√
1 − r2

+φt
V (x3)(r

2(2x2 + x3 − 2) − x3))

−φV (x3)(ψ
L(x2, b2)(r

2 − 1)(x2 − 1)

+ψ t (x2, b2)rcr ]
×αs(tc)Scd(tc)h(αe, βc, b1, b2)

+[ψ L(x2, b2)(x2(φV (x3)(r
2 + 1)

−2r2rvφ
t
V (x3))

−(r2 − 1)x3(φV (x3) − rvφ
t
V (x3))

−φs
V (x3)

√
1 − r2rvx3) − ψ t (x2, b2)rcr(φV (x3)

−4rvφ
t
V (x3))]αs(td)Scd(td)h(αe, βd , b1, b2)},

(A5)

MLL
N = 16

√
2

3
πC f M

4
∫ 1

0
dx1dx2dx3

×
∫ ∞

0
b1b2db1db2φB(x1, b1)

×{[(r2 − 1)(rcrvψ
T (x2, b2)φ

a
V (x3)

+r(x2 − 1)ψV (x2, b2)φ
T
V (x3))

+ψT (x2, b2)φ
v
V (x3)rcrv(1 + r2)]

×αs(tc)Scd(tc)h(αe, βc, b1, b2)

+[φv
V (x3)rv(ψ

T (x2, b2)rc(1 + r2)

−2ψV (x2, b2)r(x2(1 + r2) + x3(1 − r2)))

−(r2 − 1)(φT
V (x3)(ψ

V (x2, b2)r x2

−2ψT (x2, b2)rc) + rcrvφ
a
V (x3)ψ

T (x2, b2)]
×αs(td)Scd(td)h(αe, βd , b1, b2)}, (A6)

MLL
T = MLL

N |φa
V ↔φv

V
, (A7)

MSP
L ,N ,T = −MLL

L ,N ,T , (A8)

with rc = mc/M andmc is the charm quark mass;C f = 4/3
is a color factor; fψ is the decay constant of the ψ(2S) meson.
The coefficient (−) 1√

2
appears for B → ψ(2S)(ρ0)ω decay,

because only the d quark component of the (ρ0)ω meson is
involved. We neglect terms higher than r2

v orders, since the
vector light cone wave functions derived from sum rules are
expanded to this order [66–68]. The functions h come from
the Fourier transform of virtual quark and gluon propagators.
They are defined by

h(α, β, b1, b2) = h1(α, b1) × h2(β, b1, b2),

h1(α, b1) =
{
K0(

√
αb1), α > 0,

K0(i
√−αb1), α < 0,

h2(β, b1, b2)

=
{

θ(b1 − b2)I0(
√

βb2)K0(
√

βb1) + (b1 ↔ b2), β > 0,

θ(b1 − b2)J0(
√−βb2)K0(i

√−βb1) + (b1 ↔ b2), β < 0,

(A9)

where J0 is the Bessel function and K0, I0 are modified
Bessel function with K0(i x) = π

2 (−N0(x) + i J0(x)). αe

and βa,b,c,d are the virtuality of the internal gluon and quark,
respectively. Their expressions are

αe = x1x3(1 − r2)M2, βa = x3(1 − r2)M2,

βb = x1(1 − r2)M2,

βc = [(x1 + x2 − 1)(x3 + r2(1 − x2 − x3)) + r2
c ]M2,

βd = [(x1 − x2)(x3 + r2(x2 − x3)) + r2
c ]M2. (A10)

The hard scale t is chosen as the maximum of the virtuality
of the internal momentum transition in the hard amplitudes,
including 1/bi (i = 1, 2, 3):

ta,b = max(
√

βa,b, 1/b1, 1/b3),

tc,d = max(
√

αe,
√

βc,d , 1/b1, 1/b2). (A11)

The Sudakov factors can be written as

Sab(t) = s

(
MB√

2
x1, b1

)
+ s

(
MB√

2
x3(1 − r2), b3

)

+s

(
MB√

2
(1 − x3)(1 − r2), b3

)

+5

3

∫ t

1/b1

dμ

μ
γq(μ) + 2

∫ t

1/b3

dμ

μ
γq(μ),

Scd(t) = s

(
MB√

2
x1, b1

)

+s

(
MB√

2
x2, b2

)
+ s

(
MB√

2
(1 − x2), b2

)

+s

(
MB√

2
x3(1 − r2), b1

)

+s

(
MB√

2
(1 − x3)(1 − r2), b1

)

+11

3

∫ t

1/b1

dμ

μ
γq(μ) + 2

∫ t

1/b2

dμ

μ
γq(μ), (A12)

where the function s(Q, b) is given in [69]. γq = −αs/π is
the anomalous dimension of the quark. The threshold resum-
mation factor St (x) is adopted from [70],

St (x) = 21+2c�(3/2 + c)√
π�(1 + c)

[x(1 − x)]c, (A13)

with a running parameter c(Q2) = 0.04Q2 − 0.51Q + 1.87
[71] and Q2 = M2(1 − r2) [72].

B The wave functions

In the pQCD approach, the necessary inputs contain the
light-cone distribution amplitudes (LCDAs), which are con-
structed by the nonlocal matrix elements. The Bu,d,s meson
light-cone matrix element are decomposed into the following
two Lorentz structures [54–56]:
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∫
d4zeik1·z〈0|qα(z)b̄(0)β |Bq(P1)〉

= i√
2Nc

{
(/P1+M)γ5

[

Bq (k1)− /n − /v√

2

̄Bq (k1)

]}
αβ

,

(B1)

with the color factor Nc. As usual the former Lorentz struc-
ture in above equation is the dominant contribution in the
numerical calculations, while the latter Lorentz structure is
negligible [73]. In impact coordinate space the B meson wave
function can be expressed by [70,74]


B(x, b) = i√
2Nc

(/P1 + M)γ5φB(x, b), (B2)

whereb is the conjugate variable of the transverse momentum
of the valence quark of the meson. The distribution amplitude
φB(x, b) as being used in Refs. [58,70] is adopted here,

φB(x, b) = Nx2(1 − x)2 exp

[
− x2M2

2ω2
b

− ω2
bb

2

2

]
, (B3)

with the shape parameter ωb and the normalization constant
N being related to the decay constant fB by the normalization
∫ 1

0
φB(x, b = 0)dx = fB

2
√

2Nc
. (B4)

The shape parameter ωb = 0.40 ± 0.04 GeV for the Bu,d

mesons and ωb = 0.50 ± 0.05 GeV for the Bs meson.
For the ψ(2S) meson, the longitudinally and transversely

polarized LCDAs up to twist-3 are defined by [49,50]

〈ψ(2S)(P2, ε
L
2 )|c̄(z)αc(0)β |0〉

= 1√
2Nc

∫ 1

0
dxeix P2·z[mψ(2S)/ε

L
2 αβψ L(x, b)

+(/εL2 /P2)αβψ t (x, b)],
〈ψ(2S)(P2, ε

T
2 )|c̄(z)αc(0)β |0〉

= 1√
2Nc

∫ 1

0
dxeix P2·z[mψ(2S)/ε

T
2 αβψV (x, b)

+(/εT2 /P2)αβψT (x, b)]. (B5)

The asymptotic models for the twist-2 distribution ampli-
tudes ψ L ,T and the twist-3 distribution amplitudes ψV,t are
extracted from the correspond Schrödinger states for the

harmonic-oscillator potential. Their expressions have been
derived [49]:

ψ L ,T (x, b) = fψ
2
√

2Nc
N L ,T x x̄T (x)e−x x̄ mc

ωc
[ω2

c b
2+( x−x̄

2x x̄ )2]
,

ψ t (x, b) = fψ
2
√

2Nc
Nt (x − x̄)2T (x)e−x x̄ mc

ωc
[ω2

c b
2+( x−x̄

2x x̄ )2]
,

ψV (x, b) = fψ
2
√

2Nc
NV [1

+(x − x̄)2]T (x)e−x x̄ mc
ωc

[ω2
c b

2+( x−x̄
2x x̄ )2]

, (B6)

with

T (x) = 1 − 4b2mcωcx x̄ + mc(x − x̄)2

ωcx x̄
, (B7)

where the parameter ωc = 0.20 ± 0.02 GeV. Ni (i =
L , T, t, V ) are the normalization constants and we have the
normalization conditions
∫ 1

0
ψ i (x, 0)dx = fψ

2
√

2Nc
. (B8)

For a light vector meson, the light-cone wave function for
longitudinal (L) and transverse (T) polarization are written
as [66–68]


L
V (x3) = 1√

2Nc

[
mV /εL3 φV (x3)

+/εL3 /P3φ
t
V (x3) + mVφs

V (x3)
]
,


T
V (x3) = 1√

2Nc

[
mV /εT3 φv

V (x3) + /εT3 /P3φ
T
V (x3)

+imV εμνρσ γ5γ
μεT ν

3 vρnσ φa
V (x3)

]
, (B9)

respectively, where ε0123 = 1 in our convention. Note that
v is the moving direction of the vector particle. The twist-2
distribution amplitudes are given by

φV (x) = fV√
2Nc

3x(1 − x)[1 + a‖
1V 3t + a‖

2V 3(5t2 − 1)/2],

φT
V (x) = f TV√

2Nc
3x(1 − x)[1 + a⊥

1V 3t + a⊥
2V 3(5t2 − 1)/2],

(B10)

Table 6 Input values of the decay constants and the Gegenbauer moments [75] of the light vector mesons

Vector fV (MeV) f TV (MeV ) a‖
1V a‖

2V a⊥
1V a⊥

2V

ρ 216 ± 3 165 ± 9 – 0.15 ± 0.07 – 0.14 ± 0.06

ω 187 ± 5 151 ± 9 – 0.15 ± 0.07 – 0.14 ± 0.06

K ∗ 220 ± 5 185 ± 10 0.03 ± 0.02 0.11 ± 0.09 0.04 ± 0.03 0.10 ± 0.08

φ 215 ± 5 186 ± 9 – 0.18 ± 0.08 – 0.14 ± 0.07
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and those of twist-3 are

φt
V (x) = 3 f TV

2
√

2Nc
t2, φs

V (x) = − 3 f TV
2
√

2Nc
t,

φv
V (x) = 3 fV

8
√

2Nc
(1 + t2), φa

V (x) = − 3 fV
4
√

2Nc
t, (B11)

with t = 2x − 1. The vector (tensor) decay constants
fV ( f TV ) together with the Gegenbauer moments [75] are

shown numerically in Table 6. Note that positive a‖,⊥
1 refer

to a K̄ ∗0 containing an s quark, while, for a K ∗+(K ∗0) with
an s̄ quark, a‖,⊥

1 changes sign [76].
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