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Abstract The ratio of the shear viscosity to the entropy
density (η/s) is calculated for non-extremal black holes in
D dimensions with arbitrary forms of the matter Lagrangian
for which the space-time metric takes a particular form. The
result reduces to the standard expressions in 5 dimensions.
The η/s ratio is then computed for Gauss–Bonnet black holes
coupled to Born–Infeld electrodynamics in 5 dimensions. As
a result we found corrections as regards the BI parameter and
th result is analytically exact up to all orders in this parameter.
The computations are then extended to D dimensions.

1 Introduction

The investigation of the transport properties of strongly cou-
pled field theories using the tool of the gauge/gravity corre-
spondence [1] has been a prominent area of research in the-
oretical physics. One of the most interesting developments
in this field has been the finding of the universal value 1

4π

for the ratio of the shear viscosity to the entropy density.
The dual gravity descriptions in which the computation was
carried out have been a variety of theories described by Ein-
stein gravity [2–11], Gauss–Bonnet (GB) gravity [12–14],
GB gravity coupled to Maxwell electrodynamics [15] and
theories taking into account the presence of F4 corrections
[16]. The calculations were performed at a finite temperature
for which the singularity structures of the black holes are dif-
ferent from those at zero temperature. These black holes with
a non-zero Hawking temperature are known as non-extremal
black holes. The result for the desired ratio has been shown
to get both positive and negative corrections to the universal
value of 1

4π
for non-extremal black holes.
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In the case of extremal black holes for which the Hawking
temperature vanishes, the ratio of the shear viscosity to the
entropy density has been shown to be 1

4π
from investigations

carried out in the background of AdS RN black holes [17],
GB gravity with non-zero chemical potentials [18] and more
generally in [19].

In this paper, we first compute the ratio of the shear vis-
cosity to the entropy density (η/s) for non-extremal black
holes in D dimensions with arbitrary forms of the matter
Lagrangian for which the space-time metric takes a particu-
lar form. We then calculate this ratio for field theories in the
background of GB gravity coupled to BI electrodynamics at
non-zero temperature. The importance of looking at this the-
ory is that BI electrodynamics is the only non-linear theory of
electrodynamics invariant under electromagnetic duality. It
is also the most important non-linear electromagnetic theory
free of infinite self-energies of charged point particles that
arises in Maxwell theory [20]. The motivation for carrying
out this investigation is in looking for non-linear effects on
the value of this ratio.

This paper is organized as follows. In Sect. 2, we pro-
vide the general set up to study the shear viscosity for non-
extremal black hole which is coupled to Born–Infeld elec-
trodynamics. In Sect. 3, we compute the shear viscosity to
entropy ratio for non-extremal black holes in D dimensions.
In Sect. 4, we analytically calculate the shear viscosity to
entropy ratio for GB gravity coupled to BI electrodynamics.
We conclude finally in Sect. 5.

2 General set up

In this section, we present the basic set up which would be
needed to compute the shear viscosity in the background
of non-extremal Gauss–Bonnet black hole in D dimensions.
The action for Gauss–Bonnet gravity with a generic matter
Lagrangian density is given by
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S = 1

16πGD

∫
dDx

√−g ×
(
R − 2�

+ λl2

2
(Rμνρσ R

μνρσ − 4RμνR
μν + R2)

+16πGDLM

)
(1)

where λ is the dimensionless Gauss–Bonnet parameter, l is
the radius of curvature of AdS space,LM denotes the generic
matter Lagrangian density and � = − (D−1)(D−2)

2l2
is the cos-

mological constant. Throughout this work, we shall consider
the matter Lagrangian density LM to be electromagnetic in
nature, that is,

LM = L(F2) (2)

where F2 = gμρgνσ FμνFρσ and Fαβ = ∂αAβ − ∂β Aα .
The equations of motion following from the above action

admit solutions for the metric of the form

ds2 = −H(r)N 2dt2 + dr2

H(r)

+ r2

l2

(
dx2

1 + dx2
2 + · · · + dx2

D−2

)
. (3)

The constant N 2 in the metric gets fixed at the boundary
by the requirement that the geometry reduces to the flat
Minkowski metric conformally.

In this paper, we restrict our discussions to those particular
forms of LM for which H(r) can be written as

H(r) = r2

l2
G(r) (4)

where G(r) is regular at r = ∞. Note that theories like
matter-free Gauss–Bonnet gravity [13], Maxwell Gauss–
Bonnet gravity [15] and the case in which we are interested,
namely, Born–Infeld Gauss–Bonnet gravity [21] satisfies the
above condition. We now make a change of variable to sim-
plify the subsequent calculations. This reads

u = r2+/r2 (5)

where r+ denotes the radius of the outer horizon. The metric
in these new coordinates takes the form

ds2 = 1

l2a2u
(− f (u)N 2dt2 + d�x2) + l2

4u2 f (u)
du2 (6)

where d�x2 = (dx2
1 + dx2

2 + · · · + dx2
D−2), a = 1/r+ and

f (u) = G(r). Thermodynamic quantities in the new coordi-
nates are given by

T = − Nr+
2πl2

f ′(1) (7)

s = 1

4GD

(r+
l

)D−2
(8)

where ′ denotes the derivative with respect to u.

3 Shear viscosity to entropy ratio for non-extremal
black holes

Kubo’s formalism involving retarded Green’s functions give
a way to compute the shear viscosity of the conformal field
theory living on the boundary of the AdS black holes. The
shear viscosity is given by

η = lim
ω→0

− Im[GR
x1x2,x1x2

(ω, 0)]
ω

. (9)

The retarded Green’s function of the energy-momentum ten-
sor of the boundary field theory dual to the bulk theory is
calculated by making a small tensor perturbation of the back-
ground metric denoted by

φ(t, xD−2, u) = h x2
x1

(t, xD−2, u). (10)

The perturbed metric therefore takes the form

ds2 = 1

l2a2u
(− f (u)N 2dt2+d�x2+2φ(t, xD−2, u)dx1dx2)

+ l2

4u2 f (u)
du2. (11)

We now introduce the Fourier transform of φ(t, xD−2, u):

φ(t, xD−2, u) =
∫

dD−1k

(2π)D−1 e−iωt+ikD−2xD−2φ(k, u) (12)

where k = (ω, 0, 0, 0, . . . , kD−2) and φ(−k, u) = φ∗(k, u).
Plugging this form into the action (1) and using Eq. (11), we
compute the effective graviton action up to second order in
φ(k, u). This reads

Seff [φ(k, u)] = − r D−1+ N

16πGDlD

∫
dD−1k

(2π)D−1 du

×[v(u)φ′2(u) − v2(u)φ2(u)] (13)

up to terms involving total derivatives. The functions v(u)

and v2(u) read

v(u) = u− D−3
2 f (u)

[
1 − 2λ

D − 3

(
−2u2

[
f (u)

u

]′

+(D − 5) f (u)

)]
, (14)

v2(u) = v(u)
ω2

uN 2 f 2(u)
− k

2
D−2u

− D−1
2

×
[

1 − 2λ

(D − 3)(D − 4)
(2u2[2u(u−1 f (u))′′

+3(u−1 f (u))′] − (D − 5)[4u2(u−1 f (u))′

−(D − 6) f (u)])
]

, (15)

where ω = l2a
2 ω and kD−2 = l2a

2 kD−2.
Since the calculation of the shear viscosity involves taking

the zero momentum limit, we can set kD−2 = 0. The equation
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of motion for φ(u) in the zero momentum limit then reads

φ′′(u) + v′(u)

v(u)
φ′(u) + ω2

uN 2 f 2(u)
φ(u) = 0. (16)

We now proceed to solve this equation of motion for the case
of the non-extremal black hole, for which T �= 0, and hence
f ′(1) �= 0 by assuming the solution to be of the form [15]

φ(u) = (1 − u)νF(u) (17)

where F(u) is regular at u = 1. Putting this in Eq. (16)
and looking at the asymptotic behavior of this equation near
u = 1 yields the value of ν:

ν = ± iω

4πT
. (18)

Since we are interested in the incoming wave, we consider
only the negative root ν = − iω

4πT . Substituting Eq. (17) in
Eq. (16) and keeping terms up to linear order in ν, we get

[v(u)F ′(u)]′ − 2ν

1 − u
v(u)F ′(u) − ν

(
v(u)

1 − u

)′
F(u) = 0.

(19)

We now expand F(u) around ω = 0 since we require only
the low frequency behavior of the solution to calculate the
shear viscosity

F(u) = F (0)(u) + νF (1)(u) + · · · (20)

Equation (19) is solved recursively by substituting Eq. (20) in
Eq. (19) to find F (0)(u) and F (1)(u). The regularity condition
of F(u) [15] leads to

F (0)(u) = C = constant, (21)

F (1)′(u) = C

1 − u
+

C f ′(1)
[
1 + 4λ

D−3 f ′(1)
]

v(u)
, (22)

which can be integrated to yield

F (1)(u) = −C ln(1 − u) + C f ′(1)

[
1 + 4λ

D − 3
f ′(1)

]

×
∫

du

v(u)
+ D. (23)

The constant C can be determined in terms of the value of
the field φ(u) at the boundary u = 0,

lim
u→0

φ(u) = φ(0)(u). (24)

This implies

⇒ C = φ(0)(u)[1 + O(ν)]. (25)

The on-shell graviton action can now computed by using the
equation of motion (16) in the effective graviton action (13).

This yields

Son-shell[φ(k, u)] = − r D−1+ N

16πGDlD

×
∫

dD−1k

(2π)D−1 [v(u)φ(u)φ′(u)]
∣∣∣∣
u=0

. (26)

Substituting the expression for φ(u) from Eq. (17) in Eq. (26)
and using Eqs. (18), (21), and (22), the on-shell action (26)
takes the form

Son-shell =
∫

dD−1k

(2π)D−1 φ(0)(k)Gx1x2,x1x2(k, u)φ(0)(−k)

∣∣∣∣
u=0

(27)

where

Gx1x2,x1x2(k, u) = −iω

2

1

16πGD

(r+
l

)D−2

×
[

1 + 4λ

D − 3
f ′(1)

]
+ O(ω2). (28)

The retarded Green’s function can be calculated from this
on-shell action from the expression [22]

GR
x1x2,x1x2

= lim
u→0

2Gx1x2,x1x2(k, u). (29)

From this we obtain the expression for the retarded Green’s
function to be

GR
x1x2,x1x2

(ω, 0) = −iω
1

16πGD

(r+
l

)D−2

×
[

1 + 4λ

D − 3
f ′(1)

]
+ O(ω2). (30)

The shear viscosity can now be calculated using Eq. (9) and
it reads

η = 1

16πGD

(r+
l

)D−2
[

1 + 4λ

D − 3
f ′(1)

]
. (31)

Hence the ratio of the shear viscosity to entropy is given by

η

s
= 1

4π

[
1 + 4λ

D − 3
f ′(1)

]
. (32)

This is the most general form for the η/s ratio for non-
extremal black holes in D dimensions. The above expression
in D = 5 dimensions takes the form

η

s
= 1

4π

[
1 + 2λ f ′(1)

]
. (33)

It is reassuring that our analytical result for η/s matches with
specific cases for matter-free Gauss–Bonnet black hole [13]
and Gauss–Bonnet black hole with Maxwell electrodynamics
[15].

For the AdS-GB black hole in five dimensions

f (u) = 1

2λ

[
1 −

√
1 − 4λ(1 − u2)

]
, (34)
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which yields

f ′(1) = −2. (35)

Putting this value for f ′(1) in Eq. (33) gives [14]

η

s
= 1

4π
(1 − 4λ). (36)

For the AdS-GB black hole in Maxwell electrodynamics

f (u) = 1

2λ

[
1 −

√
1 − 4λ(1 − u)(1 + a − au2)

]
(37)

where a = q2l2

r6+
. This gives

f ′(1) = −(2 − a), (38)

which finally leads to [15]

η

s
= 1

4π

[
1 − 4λ

(
1 − a

2

)]
. (39)

4 Gauss–Bonnet black hole in Born–Infeld
electrodynamics

In this section, we calculate the η/s ratio for the non-extremal
Gauss–Bonnet black hole in the presence of Born–Infeld
electrodynamics. The Lagrangian density for Born–Infeld
electrodynamics reads

LM = LBI (F
2) = 4b2

⎛
⎝1 −

√
1 + F2

2b2

⎞
⎠ (40)

where b is the Born–Infeld parameter. In the limit b → ∞
one recovers Maxwell electrodynamics. Here we shall first
present the analysis in 5 dimensions and then generalize to
D dimensions. In 5 dimensions, H(r) is given by [15]

H(r) = r2

2λl2
×
⎡
⎢⎣1 −

√√√√√1 − 4λ

⎧⎨
⎩1 − μl2

r4 + 16

3
πGb2l2

⎛
⎝1 −

√
1 + q2

b2r6

⎞
⎠+ 8πGl2

q2

r6 2F1

[
1

3
,

1

2
,

4

3
,− q2

b2r6

]⎫⎬
⎭

⎤
⎥⎦ (41)

where F1[., ., ., .] denotes the Gauss hypergeometric func-
tion, μ is an integration constant and q is another integration
constant related to the charge. Defining the new parameters

a1 = μl2

r4+
, a2 = 16πGl2q2

3r6+
, c1 = 16

3
πGl2, (42)

the function f (u) takes the form

f (u) = 1

2λ

⎡
⎢⎣1 −

√√√√√1 − 4λ

⎛
⎝1 − a1u2 + c1b2

⎛
⎝1 −

√
1 + a2u3

c1b2

⎞
⎠+ 3

2
a2u3

2F1

[
1

3
,

1

2
,

4

3
,−a2u3

c1b2

]⎞
⎠
⎤
⎥⎦ . (43)

Since f (1) = 0, the parameters a1 and a2 are related by

a1 − c1b
2 + c1b

2
√

1 + a2

c1b2

−3a2

2
2F1

[
1

3
,

1

2
,

4

3
,− a2

c1b2

]
= 1. (44)

Using this relation in Eq. (43), we obtain

f ′(1) = −
⎡
⎣2a1 + 3a2

2
√

1 + a2
c1b2

−9a2

2
2F1

[
1

3
,

1

2
,

4

3
,− a2

c1b2

]

+ 9a2
2

36c1b2 2F1

[
4

3
,

3

2
,

7

3
,− a2

c1b2

]⎤
⎦ . (45)

The ratioη/s is now fully determined from Eqs. (33) and (45).
The above equation indicates that the viscosity to entropy
density ratio of a 5-dimensional AdS-GB black hole in BI
electrodynamics is always less than 1

4π
. The ratio approaches

the standard Maxwell GB value [15] in the b → ∞ limit.
This is evident from Figs. 3 and 4). Figure 2 shows that
it approaches the free GB value [13] in the b → 0 limit.
Figure 1 shows that the viscosity to entropy density ratio for
AdS-GB black hole coupled to BI electrodynamics is smaller
than that for an AdS-GB black hole coupled to Maxwell
electrodynamics for a small value of the BI parameter; then
there is a switch over and finally, for high values of the BI
parameter, the ratios become identical.

We now simplify our results by looking at the leading order
contribution of the Born–Infeld parameter b in the metric
H(r). For this purpose we expand H(r) and take only the
leading order term in 1/b. This yields

H(r) = r2

2λl2

⎛
⎝1 −

√
1 − 4λ − 64πGl2λq2

3r6 + 4μl2λ

r4

⎞
⎠

− Gπq4(
3r10

√
1 − 4λ − 64πGl2λq2

3r6 + 4μl2λ
r4

)
b2

. (46)
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Fig. 1 Viscosity to entropy ratio for small value of BI parameter

Fig. 2 Viscosity to entropy ratio in the limit of zero charge

Fig. 3 Viscosity to entropy ratio for small charge regime

Defining a new parameter

c2 = 3

128πGl2
, (47)

Fig. 4 Viscosity to entropy ratio in large charge regime

the functional form of f (u) up to order 1/b2 takes the form

f (u) = 1

2λ

⎡
⎣1 −

√
1 − 4λ

(
1 − a1u2 + a2u3

)

− c2λa2
2u

6

b2
√

1 − 4λ
(
1 − a1u2 + a2u3

)
⎤
⎦ . (48)

As f (1) = 0, the constants a1 and a2 are related by

√
1 − 4λ (1 − a1 + a2) + a2

2c2

b2
√

1 − 4λ (1 − a1 + a2)
= 1.

(49)

Equations (48) and (49) yield

f ′(1) = 3a2 − 2a1√
1 − 4λ (1 − a1 + a2)

+ a2
2c2

b2

(
12λ(1−a1+a2)−[3+λ(3a2−2a1)]

(1 − 4λ (1 − a1 + a2))
3

)
.

(50)

It is reassuring to note that the exact result (45) when
expanded up to leading order in 1

b yields Eq. (50).
We now move on to calculate the ratio η/s for the D-

dimensional AdS-GB black hole coupled to BI electrody-
namics.
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The black hole metric in D dimensions reads

H(r) = r2

2λl2

⎛
⎝1−

[
1−4λ

(
1 − μl2

r D−1 + 64πGl2b2

(D − 1)(D−2)

×
⎛
⎝1 −

√
1 + q2

b2r2D−4

⎞
⎠

+ 64πGl2q2

(D − 1)(D − 3)r2D−4 2F1

×
[

1

2
,
D−3

2D−4
,

3D−7

2D−4
,− q2

b2r2D−4

])] 1
2

⎞
⎠ .

(51)

Defining

a1D = μl2

r D−1+
, a2D = 16πGl2q2

3r2D−4+
, c1 = 16

3
πGl2, (52)

we have

f (u) = 1

2λ
×
⎛
⎝1 −

⎡
⎣1 − 4λ

⎛
⎝1 − a1Du

D−1
2

+ 12c1b2

(D − 1)(D − 2)

⎛
⎝1 −

√
1 + a2DuD−2

c1b2

⎞
⎠

+ 12a2DuD−2

(D − 1)(D − 3)
2F1

×
[

1

2
,
D − 3

2D − 4
,

3D − 7

2D − 4
,−a2DuD−2

c1b2

]⎞
⎠
⎤
⎦

1
2
⎞
⎟⎠ .

(53)

Since f (1) = 0, the constants a1D and a2D are not indepen-
dent and they are related by

a1D = 1 + 12c1b2

(D − 1)(D − 2)

(
1 −

√
1 + a2D

c1b2

)

+ 12a2D

(D − 1)(D − 3)
2F1

×
[

1

2
,
D − 3

2D − 4
,

3D − 7

2D − 4
,− a2D

c1b2

]
. (54)

Equations (53) and (54) finally give

f ′(1) = − (D − 1)a1D

2
− 6a2D

(D − 1)
2F1

×
[

1

2
,
D − 3

2D − 4
,

3D − 7

2D − 4
,− a2D

c1b2

]

Fig. 5 Figure representing viscosity to entropy density ratio for differ-
ent dimensions

+ 12a2D(D − 2)

(D − 3)(D − 1)
2F1

×
[

1

2
,
D − 3

2D − 4
,

3D − 7

2D − 4
,− a2D

c1b2

]
. (55)

The viscosity to entropy density ratio for an AdS-GB black
hole coupled to D-dimensional space-time is completely
specified by Eqs. (32) and (55).

Figure 5 shows that the viscosity to entropy density ratio

for a fixed value of the extremality parameter (that is, q2

r2D−4+
)

increases with the dimension of the space-time, but it always
stays below the extremal limit of 1/(4π).

5 Conclusions

In this paper, the ratio of the shear viscosity to the entropy
density (η/s) is evaluated for non-extremal black holes in
D dimensions with arbitrary forms of the matter Lagrangian
for which the space-time metric takes a particular form. The
computation of this ratio is then carried out for field theories
in the background of GB black holes (at non-zero tempera-
ture) coupled to BI electrodynamics. We find that the ratio
gets corrections due to the BI coupling parameter.

We observe that the η/s ratio is always less than 1/(4π).
The result reduces to the standard Maxwell GB value in
the b → ∞ limit and to the GB value in the b → 0
limit. We then extend our computations to the case of the
D-dimensional AdS-GB black hole coupled to BI electrody-
namics. We also find that the η/s ratio gets corrected due
to the BI parameter and also depends upon the dimension
D of the black hole space-time. In particular we observe
that the ratio η/s for a fixed value of the extremality param-
eter increases with increase in the dimension of the black
hole space-time, but it always remains lower than the value
1/(4π).
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