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Abstract The paper contains an extensive study of the
unified first law (UFL) in the Friedmann–Robertson–Walker
spacetime model. By projecting the UFL along the Kodama
vector the second Friedmann equation can be obtained. Also
studying the UFL on the event horizon it is found that the
Clausius relation cannot be obtained from the UFL by pro-
jecting it along the tangent to the event horizon as it can be
for the trapping horizon. However, it is shown in the present
work that Clausius relation can be obtained by projecting the
UFL along the Kodama vector on the horizon and the result
is found to be true for any horizon. Finally motivated by the
Unruh temperature for the Rindler observer, surface grav-
ity is redefined and a Clausius relation is obtained from the
UFL by projecting it along a vector analogous to the Kodama
vector.

1 Introduction

In the 1970s Hawking [1] showed that a black hole (BH) is
not totally black; rather it emits thermal radiation by a com-
bined application of quantum mechanics and general relativ-
ity at semi-classical level. Interestingly, the temperature of
the radiation (known as the Hawking temperature) and the
entropy of the horizon (known as the Bekenstein entropy)
have a certain universality in the sense that surface gravity
(proportional to the Hawking temperature) and the horizon
area (proportional to the Bekenstein entropy) [1,2] are purely
geometric entity characterized by the spacetime geometry.
Also this entropy and temperature are related to the BH mass
through the first law of BH thermodynamics: dM = T dS
[3]. Moreover, this fantastic discovery gave rise to (i) a spec-
ulation for a deep interrelationship between gravity theories
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and thermodynamics and (ii) a clue to the nature of quantum
gravity.

However, the first possibility came true in 1995 when
Jacobson [4] derived Einstein equations from the Clausius
relations: δQ = T dS for the whole local Rindler causal
horizon through a spacetime point (δQ → the energy flux,
T → Unruh temperature seen by the accelerated observer
just inside the horizon). Subsequently, Padmanabhan [5,6]
was able to show the first law of thermodynamics on the
horizon, starting from the Einstein equations, for a general
static spherically symmetric spacetime.

Assuming the universe to be a thermodynamical system,
this nice interrelation between Einstein equations and ther-
modynamic laws has been extended in the context of cosmol-
ogy. For a homogeneous and isotropic FRW model the Hawk-
ing temperature at the apparent horizon: TA = 1

2πRA
(RA =

geometric radius of the apparent horizon) was first derived
by Cai et al. [7], it was found [8–10] that the Friedmann
equations are equivalent to the first law of thermodynamics
on the apparent horizon having Hawking temperature TA and

Bekenstein entropy SA = πR2
A

G . Then in higher dimensional
spacetime, this equivalence was established for gravity with
the Gauss–Bonnet term [11,12] and for Lovelock gravity
[13,14].

On the contrary, the situation is totally different for a uni-
verse bounded by the event horizon (which exists only in
an accelerating phase of the expansion). Wang et al. [15]
showed that a universe bounded by an apparent horizon is
a perfect thermodynamical system as both first and second
law of thermodynamics hold for a perfect fluid with constant
equation of state and holographic dark energy models. How-
ever, according to them both thermodynamical laws failed
to be satisfied on the event horizon. Then assuming the first
law, Mazumdar and Chakraborty [16–18] were able to satisfy
the second law of thermodynamics on the event horizon with
some realistic restrictions. In analogy with the apparent hori-
zon, the entropy and temperature at the event horizon were
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chosen as SE = πR2
E

G and TE = 1
2πRE

. Later, it was found
[19,20] that the temperature taken on the event horizon (i.e.
TE = 1

2πRE
) is not correct and taking the corrected form (i.e.

T (m)
E = RE

2πR2
A

) the thermodynamics on the event horizon has

been studied. It has been shown [21] that for the two choices

(a)S(B)
E = πR2

E

G
, TE = T (g)

E = αT (m)
E = αRE

2πR2
A

,

α = ṘA/RA

ṘE/RE
,

(b) S(m)
E = βS(B)

E , TE = T (m)
E , β = 2

R2
E

∫
R2
E

dRA

RA
,

(1)

both thermodynamical laws are satisfied on the event horizon.
Also for infinitesimal thermal fluctuation, there is a logarith-
mic correction to the Bekenstein entropy in the second choice
[21]. However, there are no other motivations and proof for
the above two choices in Eq. (1).

On the other hand, in the context of a dynamical BH,
Hayward [22–25] introduced the notion of a trapping hori-
zon and proposed a method to deal with the thermodynam-
ics associated with a trapping horizon. According to him, for
spherically symmetric spacetimes, the Einstein equations can
be rewritten in a form termed the “unified first law”. Then
projecting this UFL along a trapping horizon, the first law of
thermodynamics was derived. Further, from the point of view
of universal thermodynamics we consider our universe as a
non-stationary gravitational system and the FRW model may
be considered as a dynamical spherically symmetric space-
time. Moreover, in the FRW model we have only an inner
trapping horizon, which coincides with the apparent horizon
[22–27] and the Friedmann equations are equivalent to the
UFL on the apparent horizon [26,28]. Also the projection of
the UFL along the tangent to the apparent horizon gives the
Clausius relation [26].

Further, there is no preferred time coordinate in an evolv-
ing time dependent spacetime as there is no longer any
(asymptotically timelike) Killing vector field. To resolve this
problem, Kodama [29] came forward with a geometrically
natural divergence-free vector field which exists in any time-
dependent spherically symmetric spacetime. This vector in
the literature is commonly known as the Kodama vector, and
it identifies a natural timelike direction outside a dynamic
BH. Also there is a conserved current associated with this
vector field [29,30].

We have organized this paper as follows. In Sect. 2 we
derive the Friedmann equations from the UFL projecting
along the Kodama vector. In Sect. 3 we obtain the Clau-
sius relation using the Kodama vector. Section 4 leads to
a redefinition of surface gravity. Section 5 is devoted to
conclusions.

2 Friedmann equations from the UFL

The line element for FRW spacetime can be written as [31]

ds2 = habdxadxb + R2d�2
2,

= −dt2 + a2

1 − kr2 dr2 + R2d�2
2, (2)

where R = ar is the area radius, hab = diag(−1, a2

1−kr2 )

is the metric on the two-space orthogonal to the spherical
symmetry. Using null coordinates (ξ+, ξ−) the above metric
can be written as

ds2 = −2 dξ+ dξ− + R2d�2
2, (3)

with

∂

∂ξ±
= −√

2

(
∂

∂t
∓

√
1 − kr2

a

∂

∂r

)
,

as future pointing null vectors.
Now according to Hayward [22–25], the trapping horizon

(RT ) is defined as (∂t R)R=RT = 0, i.e.

RT = 1√
H2 + k

a2

= RA, k = 0,±1 (4)

where RA is the geometric radius of the apparent horizon.
For the trapping horizon (i.e. the apparent horizon for FRW
model) the surface gravity is defined as [32]

κT = 1

2
√−h

∂a(
√−h hab∂bR)

∣∣∣
R=RT

. (5)

However, in the present work we are examining the equiv-
alence of the UFL and the Friedmann equations over any
horizon and, consequently, we are assuming the above defi-
nition of surface gravity (i.e. Eq. (5)) is true for any horizon,
i.e. for any horizon (having area radius R) the surface gravity
is defined as

κ = 1

2
√−h

∂a(
√−h hab∂bR),

or in explicit form

κ = −
(

R

RA

)2 (
1 − ṘA/2HRA

R

)
. (6)

Now the total energy inside the horizon is a purely geomet-
ric quantity, related to the structure of the spacetime and to
the Einstein equations [32]. According to Misner and Sharp
[22–27], the total energy is given by

E = R

2G
(1 − hab ∂a R ∂bR), (7)
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which on simplification gives

E = R3

2G

(
H2 + k

a2

)
= R3

2GR2
A

. (8)

According to Hayward [22–25], the UFL,

dE = Aψ + WdV, (9)

is nothing but a rearrangement of the Einstein equations. In
the above, A and V stand for the area and volume bounded
by the horizon, and the work density,

W = −1

2
T abhab, (10)

is regarded as the work done by a change of the horizon, and
the energy-supply term

�a = T b
a ∂bR + W∂a R, (11)

determines the total energy flow (i.e. δQ = Aψ) through the
horizon and ψ = �adxa .

We now introduce the Kodama vector for the present FRW
model. It is defined as [29,33]

Ka = εab∇bR, (12)

where εab is the usual Levi-Civita tensor in the 2D radial–
temporal plane (i.e. normal to the spherical symmetry). For
the present homogeneous and isotropic FRW model

εlm = a(t)(dt)l ∧ (dr)m, (13)

and

Kb =
[
−a

(
∂

∂t

)b

+ HR

(
∂

∂r

)b
]

. (14)

Note that the Kodama vector is very similar to the Killing vec-
tor

(
∂
∂t

)a
in the de Sitter space. Also Kodama vector takes the

role of the timelike Killing vector (in stationary BH space-
time) for dynamical BH and FRW spacetime. Further, it can
be used as a preferred time evolution vector field in spheri-
cally symmetric dynamical systems.

From Eqs. (10) and (11) the explicit forms of the work
density and energy-supply one form for the present model
are

W = 1

2
(ρ − p), (15)

and

ψ =
(

ρ + p

2

)
{−HRdt + adr} . (16)

Hence we have

WdV = 2πR2(ρ − p) {HRdt + adr} , (17)

and

Aψ = 2πR2(ρ + p) {−HRdt + adr} . (18)

Also, from Eq. (8) we obtain

dE = 1

2GR3
A

[
R3 (

3HRA − 2ṘA
)

dt + 3R2RAa dr
]
.

(19)

We shall now show that by projecting the UFL along the
Kodama vector gives the second Friedmann equation, in gen-
eral.

For the above one forms using the scalar product with the
Kodama vector we have

〈
dE, Kb

〉
= −aR3H

G

(
Ḣ − k

a2

)
. (20)

Now
〈
Aψ, Kb

〉
= 4πR3Ha(ρ + p), (21)

and〈
WdV, Kb

〉
= 0.

Thus, projecting the UFL along the Kodama vector gives

Ḣ − k

a2 = −4πG(ρ + p), (22)

which is nothing but the second Friedmann equation on any
arbitrary horizon.

We shall now show that the first Friedmann equation can
also be obtained from the UFL by projecting it along a vector
orthogonal to the Kodama vector, namely

Uμ =
(

− 1

a2R
,

1

Ha3R2 , 0, 0

)
.

Clearly the vector Uμ lies on the radial–temporal plane and
it has the following properties:

(i) The vector may be spacelike, timelike or null depending
on R.

(ii) It is divergence-free in nature (i.e. ∇μUμ = 0) and there
is a current associated with the vector Uμ given by the
relation ξμ = GμνUν . So from the Bianchi identity (i.e.
∇μGμν = 0) the vector ξμ is conserved, i.e.

∇μξμ = 0.

123



604 Page 4 of 6 Eur. Phys. J. C (2017) 77 :604

The scalar product of the individual one-form terms on
both sides of the UFL with Uμ gives

〈
dE,Uμ

〉 = R2

2GR3
Aa

2

[
− (

3HRA − 2ṘA
) + 3RA

H R2

]
,

(23)

〈
Aψ,Uμ

〉 = 2πR2

a2 (ρ + p)

{
H + 1

HR2

}
, (24)

and

〈
WdV,Uμ

〉 = 2πR2

a2 (ρ − p)

{
−H + 1

HR2

}
. (25)

Hence projecting the UFL alongUμ and after some alge-
bra we obtain the first Friedmann equation, i.e.

H2 + k

a2 = 8πG

3
ρ. (26)

3 Clausius relation from the UFL

Further, it has been shown in the literature that the first law of
BH thermodynamics can be obtained by projecting the UFL
along the trapping horizon [22–26], i.e.

〈Aψ, z〉 = κ

8πG
〈dA, z〉 , (27)

where z is a vector tangential to the trapping horizon.
We shall now show that the situation is not so easy in the

case of an event horizon (EH). The area radius of the EH is
given by

RE = a
∫ ∞

t

dt

a
. (28)

(Note that the improper integral converges for an accelerating
phase of the universe.)

The normal vector to the null hypersurface R−a
∫ ∞
t

dt
a =

0 is given by na = (−1, a, 0, 0), a null vector.
From the property of the null vector, na is also tangential

to the (null) event horizon hypersurface. Then one can easily
see that the Clausius relation, i.e. Eq. (27) is not satisfied for
the event horizon. Thus the result [22–26] namely the first
law of thermodynamics on the trapping horizon, obtained by
projecting the UFL along the tangent to the trapping horizon,
can be generalized to any other horizon by projecting along
the Kodama vector.

Note that Eq. (21) gives the rate of energy across the hori-
zon. Thus the energy flux across the event horizon during
infinitesimal time dt is

dQ = 4πHR3
E (ρ + p)dt, (29)

or using the second Friedmann equation (Ḣ − k
a2 =

−4πG(ρ + p))

dQ = −HR3
E

G

(
Ḣ − k

a2

)
dt = R3

E

GR3
A

ṘAdt, (30)

where RA = 1√
H2+ k

a2

has been used in the last equality.

Recently, a notion of generalized Hawking temperature
[21] (see Eq. (1))

T (G)
E = α

RE

2πR2
A

, (31)

has been introduced on the event horizon for the validity of
the thermodynamical laws. So in the present context using
the first choice in Eq. (1) we have

T (G)
E dSE = R3

E

GR3
A

ṘAdt. (32)

Thus we obtain the Clausius relation δQ = T (G)
E dSE on

the event horizon, by projecting the UFL along the Kodama
vector on the horizon. It is interesting to note that the present
approach to obtain the Clausius relation (i.e. the first law of
thermodynamics) from the UFL is a general prescription and
it holds in any horizon even in the trapping horizon.

4 A redefinition of surface gravity

Finally, we redefine the surface gravity motivated by the con-
cept of a Rindler observer. We have seen that at the local
Rindler causal horizon, the Unruh temperature is the effec-
tive temperature experienced by a uniformly accelerating
detector in a vacuum field. This temperature (T = h̄ f

2πckB
)

is proportional to the local acceleration ( f ) and has the same
form as the Hawking temperature of a black hole [34]. So in
analogy with the Unruh temperature we assume that the tem-
perature TRH (the redefined Hawking temperature) should
be proportional to the acceleration of the model (in units
h̄ = 1 = c = kB), i.e.

TRH = A

2π
, (33)

where the acceleration (A) of the FRW model (equivalently,
it is the acceleration of a hypothetical observer moving with
the expansion of the universe) can be defined as

A = a0R
ä

a
= a0R

(
Ḣ + H2

)
. (34)
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Here, a0 is a dimensionless constant of proportionality (to be
determined from the present context) and R is introduced on
dimensional grounds. Then using the Einstein equations, the
redefined Hawking temperature becomes

TRH = −2a0RG

3
(ρ + 3p). (35)

By introducing the vector (ad hoc, in analogy with the
Kodama vector, having the properties given below)

V α =
(

− 3

R3 ,
H

aR2 , 0, 0

)
, (36)

we obtain
〈
dE, V α

〉 = 4πH(ρ + 3p),

and thus we have the Clausius relation
〈
dE, V α

〉 = 〈
TRHdS, V α

〉
,

i.e. δQ = TRHdS,

provided a0 = 3
2 and S is the usual Bekenstein entropy.

Therefore, we have the Clausius relation obeying the
temperature–acceleration relation due to Rindler.

It is worth mentioning that the vector V α (termed a mod-
ified Kodama vector) has properties similar to the Kodama
vector namely

(i) V α lies in the radial–temporal plane, neither parallel nor
orthogonal to the Kodama vector as well as to Uμ.

(ii) Depending on the choice of R, the vector may be space-
like, timelike or null in nature.

(iii) Due to the divergence-free nature of V α (i.e. ∇αV α =
0), there exists a conserved current Cα = GαβVβ asso-
ciated with it, i.e. ∇αCα = 0.

5 Conclusion

So we have the following conclusions from Sects. 2–4:

(a) Projecting the UFL along the Kodama vector, the second
Friedmann equation is always obtained.

(b) Projecting the UFL along a vector orthogonal to Kodama
vector (having other properties same as Kodama vector),
the first Friedmann equation can be obtained.

(c) Projecting the UFL along the tangent to the horizon to
obtain the first law of thermodynamics is valid only for
the trapping horizon.

(d) First law of thermodynamics on any horizon can be
obtained from the UFL by projecting it along the
Kodama vector on the horizon.

(e) Clausius relation has been obtained on any horizon con-
sidering Rindler’s temperature–acceleration relation.

Thus we have shown that the Hayward–Kodama definition
of surface gravity [defined in Eq. (5)] is valid for dynami-
cal models. However, projecting with the Kodama vector we
cannot only obtain both Friedmann equations from the UFL
but also are able to obtain the Clausius relation on the event
horizon (or any horizon) with temperature as generalized
Hawking temperature. Also the first Friedmann equation can
be obtained from the UFL by projecting along the orthogonal
direction of the Kodama vector. Finally, in analogy with the
Unruh temperature the surface gravity is redefined as pro-
portional to acceleration in FRW model and it is possible to
obtain the Clausius relation by projecting the UFL along V α

(i.e. the modified Kodama vector).
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