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Abstract The possible role of the triangle mechanism in the
B− decay into D∗0π−π0η and D∗0π−π+π− is investigated.
In this process, the triangle singularity appears from the
decay of B− into D∗0K−K ∗0 followed by the decay of K ∗0

into π−K+ and the fusion of the K+K−, which forms the
a0(980) or f0(980), which finally decay into π0η or π+π−,
respectively. The triangle mechanism from the K̄ ∗K K̄ loop
generates a peak around 1420 MeV in the invariant mass
of π−a0 or π− f0, and it gives sizable branching fractions,
Br(B− → D∗0π−a0; a0 → π0η) = (1.66 ± 0.45) × 10−6

and Br(B− → D∗0π− f0; f0 → π+π−) = (2.82±0.75)×
10−6.

1 Introduction

Hadron spectroscopy is a way to investigate Quantum Chro-
modynamics (QCD), which is the basic theory of the strong
interaction. The success of the quark model in the low-lying
hadron spectrum gives us an interpretation of the baryons
as composed of three quarks, and the mesons as made from
quark and anti-quark [1,2]. Meanwhile, the possibility of
non-conventional hadrons called exotics, which are not pro-
hibited by QCD, have been intensively studied. One example
is the �(1405): the quark model predicts a mass at higher
energy than the observed peak, and a K̄ N (I = 0) molecular
state seems to give a better description as originally stud-
ied in Ref. [3] followed by many studies which are summa-
rized in Refs. [4,5]. The spectrum of the low-lying scalar
mesons, such as the f0(980) or a0(980) mesons, is also dis-
cussed in this picture [6–8], while the possible explanation as
tetraquark states is also discussed in Refs. [9,10]. These days,
in the heavy sector, the XY Z [11] and the Pc [12,13] were
discovered, which cannot be associated with the states pre-
dicted by the quark model. Another sort of non-conventional
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hadrons are the molecular states of other hadrons, which have
been often invoked to describe many existing states (see the
recent review in Ref. [14]). Besides ordinary hadrons, molec-
ular states or multiquark states, triangle singularities can gen-
erate peaks, but these peaks appear from a simple kinematical
effect. These singularities were pointed out by Landau [15],
and the Coleman–Norton theorem says that the singularity
appears when the process has a classical counterpart [16]: in
the decay process of a particle 1 into the particles 2 and 3, the
particle 1 decays first into particles A and B, followed by the
decay of A into the particles 2 and C , and finally the parti-
cles BC merge into the particle 3. The particles A, B, and C
are the intermediate particles, and the singularity appears if
the momenta of these intermediate particles can take on-shell
values. A novel way to understand this process is proposed
in Ref. [17].

For the decay of η(1405) into π0π0η via π0a0 and
π0π+π− via π0 f0, the triangle mechanism gives a good
explanation [18–20]. The K ∗ K̄ K loop generates the triangle
singularity in this process, and the anomalously large branch-
ing fraction of the isospin-violating π0 f0 channel reported
by BESIII [21] is well explained with the mechanism.

The peak associated with this singularity can be misiden-
tified with a resonance state. For example, the studies in
Refs. [22–24] suggest the possible explanation of Zc(3900)

with the triangle mechanism. Similarly, a peak seen in the
π f0(980) mass distribution, identified as the “a1(1420)”
meson by the COMPASS collaboration [25], is shown to
be a manifestation of the triangle mechanism as studied in
Refs. [22,26,27]. In particular, many XY Z states are dis-
covered as a peak of the invariant mass distribution in the
heavy hadron decay. Then the thorough study on the role of
the triangle singularities in the heavy hadron decay is impor-
tant to clarify the properties of the reported XY Z states. In
the B− → K−π−D+

s0(2317) (K−π−D+
s1(2460)) process,

a peak can be generated by the triangle mechanism around
2800 MeV (2950 MeV) in the π−D+

s0 (π−D+
s1) invariant
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Fig. 1 Diagram for the decay of B− into D∗0, π− and R, where R =
a0(980) or f0(980)

mass spectrum, which is driven by the K ∗DK (K ∗D∗K )

loop, and gives a sizable branching fraction into the chan-
nel [28]. The D+

s0 and D+
s1 in the final state are dynamically

generated by the DK and D∗K , and they have large coupling
with these states [29–31]. Because the process of the triangle
mechanism contains a fusion of two hadrons, the existence of
a hadronic molecular state plays an important role in having
a measurable strength. Then the study of the singularity is
also a useful tool to learn about the nature of the hadronic
molecular states. Regarding the Pc peak, discovered in the
J/ψp invariant mass distribution of the �b decay [12,13],
the possibility of the interpretation as a triangle singularity
was pointed out in Refs. [32,33]. However, in Ref. [17] it
was noted that if the Pc quantum numbers were 1

2
+

or 3
2
+

the triangle mechanism could provide an interpretation of the
narrow experimental peak, but not if the quantum numbers
are 3

2
−

, 5
2
+

, as preferred by experiment.
In the present study, we investigate the B− → D∗0π−π0η

and B− → D∗0π−π+π− decays via a0 and f0 formation.
The process of B− → D∗0K−K ∗0 followed by the K ∗0

decay into π−K+ and the merging of the K+K− into a0 or
f0 (see Fig. 1) generate a singularity, which would appear
around 1418 MeV in the invariant mass of π−a0 or π− f0, as
calculated using Eq. (18) of Ref. [17]. In this study, these a0

and f0 states appear as the dynamically generated states of
ππ , K K̄ , ηη, and K K̄ , π0η in the I = 0 and I = 1 channels,
respectively, as studied in Refs. [33,34].

The mechanism proposed here, without the indication of
how the K ∗ K̄ could be formed, and without a quantitative
evaluation of the process, was suggested in Ref. [22]. We
provide here a realistic example of a physical process where
this can occur, which also allows us to perform a quantitative
calculation of the amplitudes involved.

Weak decays of heavy hadrons are turning into a good
laboratory to find many triangle singularities. Apart from
the work of Ref. [28], the Bc → Bsππ reaction has been

B−

D∗0

K∗0

K+K−

π−

a0(f0)
π0(π+)

η(π−)

Fig. 2 Diagram for the decay of B− → D∗0π−ηπ0(π+π−)

suggested, where B+
c → K̄ ∗0B+, K̄ ∗0 → π0 K̄ 0 and

K̄ 0B+ → πB0
s [35]. Yet, there are large uncertainties quan-

tizing the K̄ 0B+ → πB0
s amplitude and the B+

c → K̄ ∗0B+
weak decay.

In the present case we rely upon the well-known K K̄ →
ππ (K K̄ → πη) amplitudes, and the B− → D∗0 K̄ ∗0K−
vertex can be obtained from experiment. Hence, we are
able to quantize the decay rates of the mechanism proposed
and we find that the mass distribution of these decay pro-
cesses shows a peak associated with the triangle singular-
ity, and finally we find the branching fractions Br(B− →
D∗0π−a0; a0 → π0η) = (1.66 ± 0.45) × 10−6 and
Br(B− → D∗0π− f0; f0 → π+π−) = (2.82 ± 0.75) ×
10−6.

2 Formalism

We will analyze the effect of triangle singularities in
the following decays: B− → D∗0π−ηπ0 and B− →
D∗0π−π+π−. The complete Feynman diagram for these
decays, with the triangle mechanism through the a0 or f0
mesons, is shown in Fig. 2.

At first, we evaluate the B− → D∗πR (R = a0, f0). This
then produces the triangle diagram shown in Fig. 1. The T
matrix tB→D∗πR will have the following form:

−i tB→D∗πR = i
∑

pol. of K ∗

∫
d4q

(2π)4

i tB−→D∗0K ∗0K−

q2 − m2
K + iε

× i tK ∗K+π−

(P − q)2 − m2
K ∗ + iε

i tK+K−,R

(P − q − k)2 − m2
K + iε

.

(2.1)
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ū

ū
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Fig. 3 Diagram for the decay of B− into D∗0, K ∗0 and K− as seen
through the quark constituents of the hadrons

The amplitude in Eq. (2.1) is evaluated in the center-of-mass
(CM) frame of πR. Now we need to calculate the three ver-
tices, tB−→D∗0K ∗0K− , tK ∗K+π− and tK+K−,R , in Eq. (2.1).

First, we discuss the B− → D∗0K−K ∗0 vertex. At the
quark level, the Cabibbo-allowed vertex is formed through
an internal emission of a W boson [36] (as can be seen in Fig.
3), producing a cū that forms the D∗0, with the remaining dū
quarks hadronizing and producing the K− and K ∗0 mesons
with the selection of the s̄s pair from a created vacuum ūu+
d̄d + s̄s state.1

Since both D∗0 and K ∗0 have J P = 1−, the interaction in
the B− → D∗0K−K ∗0 vertex can proceed via s-wave and
we take the amplitude of the form

tB−→D∗0K ∗0K− = C εμ(K ∗)εμ(D∗). (2.2)

Given that we know that the branching ratio of this decay is
Br(B− → D∗0K ∗0K−) = (1.5 ± 0.4) × 10−3 [11,37], we
can determine the constant C by calculating the width of this
decay,

d�B−→D∗0K ∗0K−
dMinv(K ∗D∗)

= 1

(2π)3

| �pK−|| �̃pK ∗ |
4M2

B

∑ ∑ ∣∣tB−→D∗0K ∗0K−
∣∣2

, (2.3)

where �pK− is the momentum of K− in the B− rest frame,
and �̃pK ∗ is the momentum of K ∗0 in the K ∗0D∗0 CM frame.
The absolute values of the two momenta are given by

| �pK−| = λ1/2(M2
B,m2

K− , M2
inv(K

∗D∗))
2MB

, (2.4a)

| �̃pK ∗ | = λ1/2(M2
inv(K

∗D∗),m2
K ∗ ,m2

D∗)

2Minv(K ∗D∗)
, (2.4b)

with λ(x, y, z) the ordinary Källen function.

1 In weak decays of B mesons, there is always a bc transition (could
be bu) which is Cabibbo suppressed. It is then customary to refer to
Cabibbo-allowed or -suppressed processes by looking at the second
weak vertex.

Now, if we square the T matrix in (2.2) and sum over the
polarizations, we get

∑ ∑∣∣tB−→D∗0K ∗0K−
∣∣2 (2.5)

=C2
∑

pol

εμ(K ∗)εν(K
∗)εμ(D∗)εν(D∗) (2.6)

=C2

(
2 + (pK ∗ · pD∗)2

m2
K ∗m2

D∗

)
(2.7)

=C2

(
2 +

(
M2

inv(K
∗D∗) − m2

K ∗ − m2
D∗

)2

4m2
K ∗m2

D∗

)
, (2.8)

where we used the fact that (pK ∗ + pD∗)2 = M2
inv(K

∗D∗),
i.e., pK ∗ · pD∗ = 1

2

(
M2

inv(K
∗D∗) − m2

K ∗ − m2
D∗

)
.

Then, using this last equation in Eq. (2.3), we get

C2

�B−
= Br(B− → D∗0K ∗0K−)

∫
dMinv(K ∗D∗) 1

(2π)3
| �pK− || �̃pK∗ |

4M2
B

(
2 +

(
M2

inv(K ∗D∗)−m2
K∗ −m2

D∗
)2

4m2
K∗m2

D∗

) ,

(2.9)

where the integral has the limits Minv(K ∗D∗)|min = mD∗ +
mK ∗ and Minv(K ∗D∗)|max = MB − mK .

Now we calculate the contribution of the vertex K ∗0 →
π−K+. For that we will use the chiral invariant lagrangian
with local hidden symmetry given in Refs. [38–41], which is

LV PP = −ig〈Vμ
[
P, ∂μP

]〉, (2.10)

where the V PP subscript refers to the fact that we have a
vertex with a vector and two pseudoscalar hadrons. The sym-
bol 〈...〉 stands for the trace over the SU (3) flavor matrices,
and g = mV /2 fπ is the coupling of the local hidden gauge,
with mV = 800 MeV and fπ = 93 MeV. The SU(3) matri-
ces for the pseudoscalar and vector octet mesons P and Vμ

are given by

Vμ =
⎛

⎜⎝

1√
2
ρ0

μ + 1√
2
ωμ ρ+

μ K ∗+
μ

ρ−
μ − 1√

2
ρ0

μ + 1√
2
ωμ K ∗0

μ

K ∗−
μ K̄ ∗0

μ φμ

⎞

⎟⎠ , (2.11)

P =

⎛

⎜⎜⎝

1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K 0

K− K̄ 0 −
√

2
3η

⎞

⎟⎟⎠ . (2.12)

Performing the matrix operations and the trace we get

LK ∗Kπ = −igK ∗0μ (
K−∂μπ+ − π+∂μK

−)
. (2.13)

So, for the t matrix we get
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−i tK ∗K+π− = − igεμ
K ∗(pK+ − pπ )μ (2.14)

� − ig�εK ∗ · ( �̃pπ − �̃pK+), (2.15)

with �̃pK+ and �̃pπ calculated in the CM frame of πR. At the
energy where the triangle singularity appears (Minv(πR) =
1418 MeV), the momentum of K ∗ is about 150 MeV/c,
which is small enough, compared with the mass of K ∗,
to omit the zeroth component of the polarization vector in
Eq. (2.14).

Finally we only need the R → K+K− coupling before
we can analyze the triangle diagram. The coupling of R with
π0η or π+π− proceeds in s-wave. Then the vertex is written
simply as a constant,

tK+K−,R = gK−K+,R . (2.16)

We shall use this coupling only formally, since its product
with the gR,π+π− (gR,π0η) coupling will be traded off in
favor of the K K̄ → π+π−(π0η) scattering amplitude. We
can now analyze the effect of the triangle singularity on the
B− → D∗πR decay.

Substituting Eqs. (2.2), (2.15) and (2.16) for Eq. (2.1), the
decay amplitude tB−→D∗0π−R is written as

tB−→D∗πR = −igK−K+,R gC
∑

pol. of K ∗

∫
d4q

(2π)4

× �εD∗ · �εK ∗

q2 − m2
K + iε

× �εK ∗ · ( �̃pπ − �̃pK+)

(P − q)2 − m2
K ∗ + iε

1

(P − q − k)2 − m2
K + iε

,

(2.17)

where for tB−→D∗0K ∗0K− we have also the spatial compo-
nents of the polarization vectors, and �̃pK+ , �̃pK+ are taken
in the CM frame of πR. As we have mentioned below
Eq. (2.15), the momentum of the K ∗0 around the triangle
peak is small compared with the mass, and we can omit the
zeroth component of the polarization vector of the K ∗0.

Now we only need to calculate the width � associated
with the diagram in Fig. 1. Right away we see that since

∑

pol. of K ∗
εiK ∗ε

j
K ∗ = δi j , (2.18)

Eq. (2.17) reduces to

tB−→D∗πR = gK−K+,R gCi
∫

d4q

(2π)4

�εD∗ · ( �̃pK+ − �̃pπ )

q2 − m2
K + iε

× 1

(P − q)2 − m2
K ∗ + iε

1

(P − q − k)2 − m2
K + iε

,

(2.19)

where �̃pK+ = �P − �q − �k = −(�q + �k) and �̃pπ = �k.
Defining f (�q, �k) as a product of the three propagators in
Eq. (2.19), we can use the formula
∫

d3qqi f (�q, �k) = ki

∫
d3q

�q · �k
|�k|2 f (�q, �k),

which follows from the fact that the �k is the only vector not
integrated in the integrand of Eq. (2.19). Then Eq. (2.19)
becomes

tB−→D∗πR = −�εD∗ · �k gK−K+,R gC tT , (2.20)

with

tT = i
∫

d4q

(2π)4

(
2 + �q · �k

|�k|2
)

× 1

q2 − m2
K + iε

1

(P − q)2 − m2
K ∗ + iε

1

(P − q − k)2−m2
K + iε

.

(2.21)

Squaring and summing over the polarizations of D∗, Eq.
(2.20) becomes

∑

pol

|tB−→D∗πR |2 = |�k|2 g2
K−K+,R g2C2|tT |2. (2.22)

As given in Ref. [17], the analytical integration of tT in
Eq. (2.21) over q0 leads to

tT =
∫

d3q

(2π)3

(
2 + �q · �k

|�k|2
)

1

8ω∗ωω′
1

k0 − ω′ − ω∗

1

P0 + ω + ω′ − k0

1

P0 − ω − ω′ − k0 + iε

× {2P0ω + 2k0ω′ − 2[ω + ω′][ω + ω′ + ω∗]}
P0 − ω∗ − ω + iε

,

(2.23)

with ω∗(�q) =
√
m2

K ∗0 + |�q|2, ω′(�q) =
√
m2

K + |�q + �k|2 and

ω(�q) =
√
m2

K + |�q|2. To regularize the integral in Eq. (2.23)
we use the same cutoff of the meson loop that will be used to
calculate tK+K−→π0η and tK+K−→π+π− Eq. (2.36), θ(qmax−
|q∗|), where �q ∗ is the K− momentum in the R rest frame
[17].

In Ref. [17] it was found that there is a singularity asso-
ciated with this type of loop functions when Eq. (18) of
Ref. [17] is satisfied. From that equation we can deter-
mine that the singularity will appear around Minv(πR) =
1418 MeV.

To be completely correct in our analysis we have to use the
width of K ∗0. We implement that replacing ω∗ → ω∗−i �K∗

2
in Eq. (2.23), which will reduce the singularity to a peak [17].
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For the three body decay of B− → D∗0π−R in Fig. 1,
the mass distribution is given by

d�

dMinv(πR)
= 1

(2π)3

| �pD∗ || �̃pπ |
4M2

B

∑

pol.

|tB−→D∗πR |2 , (2.24)

with

| �pD∗ | = λ1/2(M2
B,m2

D∗ , M2
inv(πR))

2MB
, (2.25a)

| �̃pπ | = |�k| = λ1/2(M2
inv(πR),m2

π , M2
R)

2Minv(πR)
. (2.25b)

With Eq. (2.20) and a factor 1/�B− , the mass distribution of
B− decaying into D∗πR is written as

1

�B−

d�

dMinv(πR)
= C2

�B−

g2

(2π)3

×| �pD∗ ||�k|
4M2

B

|�k|2 · ∣∣tT × gK−K+,R

∣∣2
, (2.26)

where C2

�B− is given in Eq. (2.9).
However, the problem here is that the a0 and f0 are not

stable particles, but resonances that have a width and decay
to π0η and π+π−, respectively. To solve this without having
to consider R a virtual particle and having a four body decay,
we can consider the resonance as a normal particle but we
add a mass distribution to the decay width in Eq. (2.24),

d�

dMinv(πR)
= 1

(2π)3

∫
dM2

inv(R)

(
− 1

π
ImD

)

×|gK−K+,R |2 | �pD∗ || �̃pπ |
4M2

B

∑ ∑ ∣∣t̃B−,D∗πR

∣∣2
, (2.27)

with

D = 1

M2
inv(R) − M2

R + iMR�R
, (2.28)

where Minv(R) stands for Minv(π
0η) and Minv(π

+π−)

for R = a0 and f0, respectively, and t̃B−,D∗πR =
tB−→D∗πR/gK−K+,R . What Eq. (2.27) is accomplishing is
a convolution of Eq. (2.24) with the mass distribution of
the R resonance given by its spectral function. Note that
the mass distributions of the f0(980), a0(980) states fol-
low a Flatté distribution rather than the Breit–Wigner case
of Eq. (2.28), but the use of Eq. (2.28) is only formal to
arrive at an expression that uses the scattering amplitudes
tK+K−,π+π−(π0η), which are calculated with the chiral uni-
tary approach and automatically incorporate the Flatté form
and the usual requirements of analyticity and unitarity.

Notice also that in the limit of �R → 0, iImD =
−iπδ(M2

inv(R) − M2
R) and we recover Eq. (2.24). Evalu-

ating explicitly the imaginary part of D, Eq. (2.27) becomes

d�

dMinv(πR)
= 1

(2π)3

∫
dM2

inv(R)
1

π
|gK−K+,R |2 | �pD∗ || �̃pπ |

4M2
B

×
∑ ∑∣∣t̃B−,D∗πR

∣∣2 MR�R

(M2
inv(R) − M2

R)2 + (MR�R)2
.

(2.29)

Now, for the case of a0(980), we only have the decay
a0 → π0η (we neglect the small K K̄ decay fraction), and
thus

�a0 = 1

8π

|ga0→π0η|2
M2

inv(π
0η)

|�̃qη|, (2.30)

with

|�̃qη| = λ1/2(M2
inv(π

0η),m2
π ,m2

η)

2Minv(π0η)
. (2.31)

Then Eq. (2.29) becomes

d�

dMinv(πa0)
= 1

(2π)3

∫
dM2

inv(π
0η)

×| �pD∗ || �̃pπ |
4M2

B

∑ ∑ ∣∣t̃B−,D∗πR

∣∣2

× Ma0 |ga0→π0η|2|gK−K+→a0 |2
(M2

inv(π
0η) − M2

a0
)2 + (Ma0�a0)

2

1

8π2

|�̃qη|
M2

inv(π
0η)

.

(2.32)

But since for the resonance we have formally

|ga0→π0η|2|gK−K+→a0 |2
(M2

inv(π
0η) − M2

a0
)2 + (Ma0�a0)

2
= ∣∣tK+K−→π0η

∣∣2
,

(2.33)

Equation (2.32) reduces to

d2�

dMinv(πa0)dMinv(π0η)
= 1

(2π)5

| �pD∗ ||�k||�̃qη|
4M2

B

×
∑∑ ∣∣t̃B−,D∗πR × tK+K−→π0η

∣∣2
, (2.34)

where we approximated Minv(π
0η) as MR . For the case

of f0(980), f0 → π+π− is not the only possible decay
and as such � f0→π+π− will not be the same as �R in Eq.
(2.27). However, when we put |tK+K−→π+π−|2 in the end,
we already select the ππ part of the f0 decay. Thus, for
the case of f0 we just need to substitute, in Eq. (2.34),
tK+K−→π0η → tK+K−→π+π− , Minv(πa0) → Minv(π f0),

123
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Fig. 4 Triangle amplitude tT for the decay B− → D∗0πR. We take
Minv(R) = 980 MeV

Minv(π
0η) → Minv(π

+π−), and |�̃qη| → |�̃qπ |, with

|�̃qπ | = λ1/2(M2
inv(π

+π−),m2
π+ ,m2

π−)

2Minv(π+π−)
. (2.35)

The amplitudes tK+K−→π0η and tK+K−→π+π− themselves
are calculated based on the chiral unitary approach, where
the a0 and f0 appear as dynamically generated states [33,34].
The cutoff parameter qmax, which appears for the regulariza-
tion of the meson loop function in the Bethe–Salpeter equa-
tion,

t = [1 − VG]−1V, (2.36)

is determined as qmax = 600 MeV for the reproduction of
the a0 and f0 peaks (around 980 MeV in the invariant mass
of π0η or π+π−) [42,43]. In Eq. (2.36), t , V , and G are the
meson amplitude, interaction kernel, and meson loop func-
tion, respectively.

Finally, we can substitute everything we have calculated
into Eq. (2.34) and obtain

1

�B−

d2�

dMinv(πR)dMinv(R)
= g2

(2π)5

| �pD∗ ||�̃qη||�k|3
4M2

B

× ∣∣tT × tK+K−→π0η(π+π−)

∣∣2 C2

�B−
. (2.37)

3 Results

Let us begin by showing in Fig. 4 the contribution of the
triangle loop (defined in Eq. (2.23)) to the total amplitude.
We plot the real and imaginary parts of tT , as well as the
absolute value with Minv(R) fixed at 980 MeV. As can be
observed, there is a peak around 1420 MeV, as predicted by
Eq. (18) of Ref. [17].
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Fig. 5 The derivative of the mass distribution of B− → D∗0π−π0η

with regards to Minv(a0)
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Fig. 6 The derivative of the mass distribution of B− → D∗0π−π+π−
with regards to Minv( f0)

In Figs. 5 and 6 we plot Eq. (2.37) for both B− →
D∗0π−ηπ0 and B− → D∗0π−π+π−, respectively, by
fixing Minv(πR) = 1418 MeV, which is the position of
the triangle singularity, and varying Minv(R). We can see
a strong peak around 980 MeV and consequently we see
that most of the contribution to our width � will come
from Minv(R) = MR . For Fig. 5 the dispersion is bigger,
we have strong contributions for Minv(π

0η) ∈ [880, 1080].
However, for Fig. 6 most of the contribution comes from
Minv(π

+π−) ∈ [940, 1020]. The conclusion is that when
we calculate the mass distribution d�

dMinv(πa0)
, we can restrict

the integral in Minv(R) to the limits already mentioned.
When we integrate over Minv(R) we obtain d�

dMinv(πR)

which we show in Fig. 7. We see a clear peak of the distribu-
tion around 1420 MeV, for f0 and a0 production. However,
we also see that the distribution stretches up to large values
of Minv(πR) where the phase space of the reaction finishes.
This is due to the |�k|3 factor in Eq. (2.37) that contains a |�k|
factor from phase space and a |�k|2 factor from the dynamics
of the process, as we can see in Eq. (2.22). Yet, a clear peak
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Fig. 7 The mass distribution of B− → D∗0π−π0η (full line) and
B− → D∗0π−π+π− (dashed line)

in Minv(π
−R) can be seen for both the B− → D∗0π− f0

and the B− → D∗0π−a0 reactions.
Integrating now d�

dMinv(πa0)
and d�

dMinv(π f0)
over the Minv

(πa0) (Minv(π f0)) masses in Fig. 7, we obtain the branching
fractions

Br(B− → D∗0π−a0; a0 → π0η) = (1.66 ± 0.45) × 10−6,

(3.1a)

Br(B− → D∗0π− f0; f0 → π+π−) = (2.82 ± 0.75) × 10−6.

(3.1b)

These numbers are within measurable range. The errors
come from the experimental errors in the branching ratio
of B− → D∗0K ∗0K−. Another source of uncertainty would
come from the tK+K−,π+π−(π0η) matrices, but the errors in
|tK+K−,π+π−(π0η)|2 are smaller than 10% from the study of
many reactions, which summed in quadrature to those of the
experimental branching ratio, are essentially negligible.

Note that we have assumed all the strength of π0η from
880 MeV to 1080 MeV to be part of the a0 production, but
in an experimental analysis one might associate part of this
strength to a background. We note this in order to make proper
comparison with these results when the experiment is per-
formed.

The shape of tT in Fig. 4 requires some extra comment.
We see that Im(tT ) peaks around 1420 MeV, where the tri-
angle singularity is expected. However, Re(tT ) also has a
peak around 1390 MeV. This picture is not standard. Indeed,
in Ref. [44], where a triangle singularity is disclosed for
the process N (1835) → πN (1535), tT has the real part
peaking at the place of the triangle singularity and Im(tT )

has no peak. In Ref. [45], a triangle singularity develops in
the γ p → pπ0η → π0N (1535) process and there Im(tT )

has a peak at the expected energy of the triangle singular-
ity while the Re(tT ) has no peak. Similarly, in the study of
N (1700) → π� in Ref. [46] a triangle singularity develops
and here Im(tT ) has a peak but Re(tT ) has not. However, the

two peaks in the real and imaginary parts of tT are also present
in the study of the B− → K−πD+

s0 reaction in Ref. [28].
The latter work has a loop with D0K ∗0K+, and by taking
�K ∗ → 0, ε → 0 the peak of Im(tT ) was identified with the
triangle singularity while the peak in the Re(tT ) was shown
to come from the threshold of D0K ∗0. In the present case
the situation is similar: The peak of Im(tT ) at about 1420
MeV comes from the triangle singularity while the one just
below 1400 MeV comes from the threshold of K ∗0K− in
the diagram of Fig. 1, which appears at 1386 MeV. Yet, by
looking at |tT | in Fig. 4 and the region of the peak of d�

dMinv
in Fig. 7, we can see that this latter peak comes mostly from
the triangle singularity.

4 Summary

We have performed the calculations for the reactions B− →
D∗0π−a0(980); a0 → π0η and B− → D∗0π− f0(980);
f0 → π+π−. The starting point is the reaction B− →
D∗0K ∗0K−, which is a Cabibbo-favored process and for
which the rates are tabulated in the PDG [11] and are rel-
atively large. Then we allow the K ∗0 to decay into π−K+
and the K+K− fuse to give the f0(980) or the a0(980).
Both of them are allowed, since the K ∗0K− state does not
have a particular isospin. The triangle diagram correspond-
ing to this mechanism develops a triangle singularity at about
1420 MeV in the invariant masses of π− f0 or π−a0, and
it makes the strength of the process studied relatively large,
having a prominent peak in those invariant mass distributions
around 1420 MeV.

We evaluate d2�
dMinv(π−a0)dMinv(π0η)

, and
d2�

dMinv(π− f0)dMinv(π+π−)
and see clear peaks in the Minv(π

0η),

Minv(π
+π−) distributions, showing clearly the a0(980) and

f0(980) shapes. Integrating over Minv(π
0η) and Minv(π

+π−)

we obtain d�
dMinv(πa0)

and d�
dMinv(π f0)

, respectively, and these
distributions show a clear peak for Minv(πa0), Minv(π f0)
around 1420 MeV. This peak is a consequence of the trian-
gle singularity, and in this sense the work done here should
be a warning not to claim a new resonance when this peak
is seen in a future experiment. On the other hand, the results
make predictions for an interesting effect of a triangle singu-
larity in an experiment that is feasible in present experimen-
tal facilities. The rates obtained are also within measurable
range. Finding new cases of triangle singularities is of impor-
tance also, because their study will give incentives to update
present analysis tools to take into account such possibility
when peaks are observed experimentally, avoiding the natu-
ral tendency to associate those peaks to resonances.
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