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Abstract We present analytical formulas for the Sommer-
feld corrections to the annihilation of massive colored par-
ticles into quarks and gluons through the strong interaction.
These corrections are essential to accurately compute the
dark matter relic density for coannihilation with colored part-
ners. Our formulas allow us to compute the Sommerfeld
effect, not only for the lowest term in the angular momentum
expansion of the amplitude, but for all orders in the partial
wave expansion. In particular, we carefully account for the
effects of the spin of the annihilating particle on the symme-
try of the two-particle wave function. This work focuses on
strongly interacting particles of arbitrary spin in the triplet,
sextet and octet color representations. For typical velocities
during freeze-out, we find that including Sommerfeld cor-
rections on the next-to-leading order partial wave leads to
modifications of up to 10 to 20 percent on the total annihi-
lation cross section. Complementary to QCD, we generalize
our results to particles charged under an arbitrary unbroken
SU (N ) gauge group, as encountered in dark glueball models.
In connection with this paper a Mathematica notebook is
provided to compute the Sommerfeld corrections for col-
ored particles up to arbitrary order in the angular momentum
expansion.
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1 Introduction

Sommerfeld corrections [1] through long-range interactions
play a critical role in a plethora of thermal dark matter sce-
narios. Affecting primarily particles with low velocity, they
have been shown, for instance, to tremendously enhance the
dark matter annihilation rate at the galactic center in various
models [2–4]. In particular, the predicted enhancement of the
annihilation rate in the galactic center for pure wino dark mat-
ter has allowed one to strongly restrict this supersymmetric
scenario [5–8]. For multi-TeV weakly interacting dark mat-
ter, Sommerfeld corrections also typically lead to order one
modifications of its relic density [9–12], often significantly
weakening the upper bound on the dark matter mass derived
from the Planck measurement [13].

Even in the sub-TeV regime, Sommerfeld corrections
become significant in models involving long-range interac-
tions with order one couplings. In particular, a wide range of
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dark matter models—such as supersymmetry or simplified
models of coannihilation [14,15]—involve strongly interact-
ing particles in the dark sector. Although the strong interac-
tion is short ranged at low energies, in the early universe
the non-relativistic QCD potential can be approximated by
a Coulomb potential at tree-level [16,17]. Strongly interact-
ing dark sector particles would therefore experience sizable
long-range interactions through gluon exchange. These inter-
actions would in turn significantly affect the annihilation rate
into quarks and gluons for masses as low as O(100 GeV).
Computing this rate accurately is crucial in various scenar-
ios, such as in models where colored particles can survive
until short before BBN, or models where dark matter coan-
nihilates with a colored partner. In the latter case, the dark
matter depletion will in fact be driven by the annihilation of
its coannihilation partner through strong interaction in most
of the parameter space.

Analytical and numerical computations of the Sommer-
feld modified annihilation rate for heavy colored particles
have been carried out in various studies [16–20]. Notably,
reference [17] introduces a general method to decompose
the QCD potential into a sum of Coulomb potentials for dif-
ferent possible SU (3) representations of the colored dark
sector particle. However, all the existing results only cor-
rectly describe corrections to the s-wave cross sections, while
higher-order effects are significant. For uncolored particles,
the Sommerfeld effect has been computed beyond the s-
wave in [21–23]. Yet, these results are consistent only when
the annihilation amplitude is dominated by a single angu-
lar momentum component—typically s-wave or p-wave. In
addition, extending the aforementioned results to colored
particles is non-trivial.

Aside from SU (3), Sommerfeld corrections for dark sec-
tor particles charged under a general SU (N ) gauge group
have not been considered in the literature. These non-
perturbative effects related to the dark gauge interaction can
significantly modify the annihilation cross sections of new
charged particles before their freeze-out or, in the case of
SU (N ) relics, impact the predicted indirect detection signal.
In the face of growing interest in the cosmological role of
new gauge groups [24–31], the Sommerfeld effect should be
derived and implemented also in the case of non-SM inter-
actions.

In this paper, we present a robust and general framework
to analytically compute the Sommerfeld corrections for the
annihilation of dark sector particles charged either under
QCD or SU (N ). Instead of considering only the leading
term in the angular momentum expansion of the amplitude,
our approach operates on its complete partial wave expan-
sion into initial states of definite orbital angular momentum
l and spin s. Our study focuses on extensions of the Stan-
dard Model with a SM singlet dark matter candidate and one
heavy new particle �, which can be either a scalar, a fermion

or a vector. We first consider scenarios where � is a triplet,
sextet or octet of SU (3) and annihilates into quark and gluon
pairs. We then generalize these results to the case where �

is charged under either the fundamental or the adjoint repre-
sentation of a dark SU (N ) gauge group. We discuss direct
applications of these new results in glueball dark matter sce-
narios. In a companion paper [32], we perform a general
study of the relic density and collider constraints on dark
matter models with a colored coannihilation partner. In these
scenarios, the annihilation of � through strong interactions
drives the dark matter depletion and the derived constraints
on the models do not depend on new physics couplings.

The work is organized as follows. In Sect. 2 we discuss
the analytic derivation of Sommerfeld corrections to anni-
hilation processes for arbitrary partial waves and with any
momentum dependence. In Sect. 3 we review Sommerfeld
corrections for QCD potentials in a manner that is applicable
to annihilation of particles with arbitrary color representa-
tion. The approaches in Sects. 2 and 3 are orthogonal and
can be combined into a general prescription for the anni-
hilation of colored particles. In Sect. 4 we show that these
Sommerfeld effects are significant for colored dark sectors.
In addition to QCD we discuss the Sommerfeld correction
for dark sectors charged under SU (N ) in Sect. 5. We con-
clude in Sect. 6 and discuss more exotic colored dark sectors
in Appendix B.

2 Sommerfeld corrections for partial waves

Accurately computing the Sommerfeld corrections for an
arbitrary process can prove a daunting task that often has to
be performed numerically. Annihilations in the dark sector,
however, involve heavy particles and can therefore be stud-
ied in the non-relativistic limit. In this limit, the tree-level
amplitude for a given process can be reliably approximated
by a partial wave expansion in the orbital angular momentum
l and the spin s in either the initial or final state. Notably, for
a 2 → 2 process with two scalar fields in the initial state, this
expansion would be of the form

M(p, θ, φ) =
∑

l,m

Flm(p)Ylm(θ, φ), (2.1)

where p is the magnitude of the initial-state momentum in
the center-of-mass frame, (θ, φ) are the scattering angles and
Ylm(θ, φ) are the spherical harmonics. Without loss of gen-
erality, the radial part of the amplitude can be expanded in
powers of p such that the lowest-order contribution for a
given l is pl

Flm(p) =
∑

n≥0

αlmn pl+2n . (2.2)
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For amplitudes that are dominated by a single partial wave
process, the Sommerfeld corrections can be expressed as an
overall multiplicative factor to the tree-level cross section,

σSommerfeld = Sσperturbative. (2.3)

The rescaling factor S encodes the modification of the tran-
sition amplitude by a distorting potential V (modeling the
long-range interactions in the non-relativistic limit) acting
on the initial particle wave functions. For a Coulomb poten-
tial V = −A/r in particular, this factor has a simple analytic
form in the s-wave [1]

S(x) = πx

1 − e−πx
, x = A

β
. (2.4)

where β is the velocity of the incoming particles in the center-
of-mass frame. Positive A corresponds to an attractive poten-
tial which leads to an enhancement of the perturbative result,
while negative A results in a depletion of the cross section
due to the repulsive interaction. Analytical formulas for the
Sommerfeld-correction factors for higher waves have been
computed in [21,23] assuming the amplitude is proportional
to pl for the lth partial wave. This has been extended upon
slightly in [22] allowing for a single term with a momen-
tum dependence of pl+2n with n ≥ 0. Here, we extend these
results to a full expansion of the annihilation amplitude into
orbital angular momentum and spin states (l, s) up to an
arbitrary lmax. In particular, we allow the different terms of
the expansion to coexist and we take higher-order terms in
Eq. (2.2) into account. In the rest of this section we consider
a Coulomb potential and do not make assumptions as regards
the spin of the initial-state particles.

2.1 Partial wave expansion

For a given field �, the �� → SM SM amplitude can be
expanded into orbital angular momentum and spin states
(l, s). The reasons for doing this expansion are manifold.
First, as argued at the beginning of this section, this expansion
can be interpreted as a velocity expansion, which would pro-
vide an accurate approximation of the annihilation amplitude
for non-relativistic particles. Moreover, as we will explain in
Sect. 2.2, obtaining Sommerfeld corrections involves com-
puting the non-relativistic wave function for the two � scat-
tering states. In our case, this wave function is a solution of
the Schrödinger equation for a Coulomb potential. As shown
in [22], expanding both the scattering state wave function
and the annihilation amplitude considerably simplifies cal-
culations. This leads to a set of independent equations for
each partial wave and allows one to obtain analytical for-
mulas for the Sommerfeld-corrected matrix element M(S)

ls .
Note that, since the different (l, s) states are orthogonal to
each other, the final cross section will be of the form

σ (S) ∝
∑

l,s

∣∣∣M(S)
ls

∣∣∣
2
. (2.5)

Another notable advantage of using a (l, s) decomposition is
that for identical particles the overall form of a given (l, s)
state is strongly constrained by CP conservation. For parti-
cles carrying no other quantum numbers than the ones associ-
ated to the Lorentz group, a CP transformation multiplies the
initial- or final-state wave function by (−1)l+s . Only states
with even l + s would therefore have a non-zero amplitude.
For colored particles, on the other hand, the color factor in
the amplitude can be decomposed into two parts, respec-
tively symmetric and antisymmetric under particle exchange.
States with even l + s will be proportional to the symmetric
part while states with odd l + s will be proportional to the
antisymmetric part. For �� → ga gb in particular, since the
gluons are identical particles, the contributions from states
with even l + s will be proportional to

{
T a
R , T b

R

}
while the

ones for states with odd l+s will be proportional to
[
T a
R , T b

R

]

where T a
R is the generator for the representation R of �.

This color factor dependence will allow us to introduce a
generic procedure to decompose the amplitude into definite
color states as we will describe in Sect. 3. The same argu-
ments apply to the case of SU (N ), which will be discussed
in Sect. 5.

In what follows, we consider a 2 → 2 annihilation process
in the center-of-mass frame and in the spin basis. Without loss
of generality we choose the final-state particles to be along
the ẑ-axis and denote the scattering angles in the initial state
by (θ, φ). With {m1,m2} and {m3,m4} being the individual
spin projections on the ẑ-axis in the initial and final states,
respectively, the total annihilation amplitude is defined as an
element of the transition matrix T :

T f i (p, θ, φ) =〈p f ; 00;m3m4|T |p; θφ;m1m2〉. (2.6)

Here, p and p f being the magnitudes of the momenta in
the initial and final states, respectively. The information as
regards the total spins s1,2,3,4 in the initial and final state is
omitted here for compactness of notation. Further details as
regards the computation of the total amplitude—notably our
definitions for the momenta and the polarization vectors—
are provided in Appendix A.

Decomposing the initial state into states of definite orbital
angular momentum (l, lz), the amplitude can be rewritten as1

T f i (p, θ, φ)

=
∑

l,lz

〈p f ; 00;m3m4|T |p; llz;m1m2〉 Y lz
l (θ, φ). (2.7)

1 The spherical harmonics Ym
l (θ, φ) are normalized as

∫
Ym
l (θ, φ)Ym′

l ′ (θ, φ) d	 = δll ′δmm′ .
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A given |pi ; llz;m1m2〉 state can be decomposed into
|p; llz; ssz〉 states using Clebsch–Gordan coefficients,

|p; llz;m1m2〉 =
∑

s,sz

〈s1m1s2m2|ssz〉|p; llz; ssz〉, (2.8)

where s1, s2 are the total spins of the incoming particles. The
total amplitude can then be written as

T f i (p, θ, φ) =
∑

l,lz

∑

s,sz

Y lz
l (θ, φ)〈s1m1s2m2|ssz〉

×M(p; llz; ssz;m3m4). (2.9)

The matrix elementM(p; llz; ssz;m3m4) corresponds to the
contribution of a single initial state |pi ; llz; ssz〉 to the total
amplitude. Knowing T f i , this matrix element can be com-
puted using

M(p; llz; ssz;m3m4) ≡ 〈p f ; 00;m3m4|T |p; llz; sms〉
=
∑

m1,m2

〈s1m1s2m2|ssz〉

×
∫

d	 Y lz ∗
l (θ, φ)T f i (p, θ, φ) .

(2.10)

Since the (l, s) components of the amplitude are orthog-
onal the total cross section is of the form

σ = 1

64π2s

1√
1 − 4m2

�

s

1

d2
�d

2
R

×
∑

m3,m4

∑

l,lz

∑

s,sz

|M(p; llz; ssz;m3m4)|2 , (2.11)

where d� is the number of degrees of freedom of the field �

and dR is the dimensionality of the color representation of �.
Another factor 1

2 needs to be included for identical final-state
particles like two gluons.

As mentioned at the beginning of this section, the ampli-
tude for a given l can be expanded in powers of the magnitude

of the incoming particle momentum p =
√

s
4 − m2

�, with the

lowest-order contribution for a given l being O(pl). We can
therefore write

M(p; llz; ssz;m3m4) =
∑

n≥0

α
(m3,m4)
llz ssz ,n

pl+2n . (2.12)

Since the matrix element is now expanded in the momentum
and in l we can apply the Sommerfeld corrections to each of
the terms in Eq. (2.12). This will be derived in the next section
and the total Sommerfeld-corrected cross sections can then
be obtained by the use of Eq. (2.11).

2.2 Sommerfeld corrections

The Sommerfeld effect is a non-perturbative phenomenon
caused by the distortion of the scattering amplitude of two

Φ

g

Φ

SM

SM

Fig. 1 Sommerfeld ladder diagram for the annihilation of � into Stan-
dard Model particles

particles through long-range interactions. This distortion
occurs primarily at low velocities and therefore can particu-
larly affect non-relativistic particles such as the ones in the
dark sector.

Although non-perturbative, the Sommerfeld effect can be
approximately modeled by considering the limit of Feynman
diagrams with an infinite number of particle exchanges [22].
These diagrams should in general include all the possible
two-particle irreducible interactions, which would make the
computation of the final amplitude particularly cumbersome.
For non-relativistic particles, however, the final amplitude is
dominated by ladder diagrams with an infinite number of
one-particle exchange iterations such as the one shown in
Fig. 1. For a given 2 → n process with the Sommerfeld effect
occurring in the initial state, the amplitude then verifies the
following recursion relation [33]:

M(S)
βα = M0

βα +
∫

dγ
M(S)

βγ Vγα

Eα − Eγ + iε
, (2.13)

where α and β are the initial and final states respectively and
the integral over γ represents the sum over all possible inter-
mediate states. M0

βα is the perturbative scattering amplitude
corresponding to the exchange of one particle and Vγα is
the non-relativistic interaction potential distorting the initial
state α.

The interaction potential Vγα can be rewritten as

Vγα = 〈k; θkφk;m1m2|V̂ |p; θpφp;mamb〉, (2.14)

where {m1,m2} and {ma,mb} are the z-components of the
spins of the α and γ states respectively and p, k = |p|, |k|
are the magnitudes of the momenta p and k in these states.
In the rest of this work, we will focus on a spin-independent
spherically symmetric potential V (|p−k|). We can therefore
factor out the spin states, which gives

Vγα = 〈m1m2|mamb〉〈k; θkφk |V̂ |p; θpφp〉
= δm1ma δm2mbV (|p − k|). (2.15)

For initial- and final-state spins mi = {m1,m2} and
m f = {m3,m4}, the Sommerfeld-corrected amplitude can
be expressed as

123
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M(S)
m f mi

(p) = M0
m f mi

(p)

+
∫

d3k

(2π)3

M(S)
m f mi (k)V (|p − k|)
Eα − Eγ + iε

. (2.16)

In the non-relativistic limit, the denominator can be rewritten
as

(Eα − Eγ )−1 ≈ E − k2

2μ
, (2.17)

where E is the total energy of the system and μ is its reduced
mass. For two particles of identical mass m, μ = m

2 . If the

initial states are off-shell, that is, p̃2

2μ
�= E , we can define [23]

�m f mi (̃p) = M(S)
m f mi (̃p)

p̃2

2μ
− E

, (2.18)

which verifies
(
p̃2

2μ
− E

)
�m f mi (̃p)

= M0
m f mi

(̃p) −
∫

d3k

(2π)3 �m f mi (k)V (|̃p − k|). (2.19)

In position space (we go from p̃ to r) this becomes
(−∇2

2μ
+ V (r) − E

)
�̃m f mi (r) = U 0

m f mi
(r), (2.20)

where

U 0
m f mi

(r) =
∫

d3q

(2π)3 eir·qM0
m f mi

(q). (2.21)

The final amplitude can now be computed by putting the
initial states back on-shell,

M(S)
m f mi

(p) = lim
p̃→p

(
p̃2

2μ
− E

)
�m f mi (̃p)

with
p2

2μ
= E, (2.22)

which leads to [21,23]

M(S)
m f mi

(p) =
∫

d3q

(2π)3 M0
m f mi

(q) φp(q), (2.23)

where φp(q) obeys the traditional Schrödinger equation in
position space,
(−∇2

2μ
+ V (r) − p2

2μ

)
φ̃p(r) = 0 with

p2

2μ
≡ E . (2.24)

For a potential of the form V (|p− q|), the wave function
can be rewritten as

φp(q) = φ(p, q, p̂ · q̂), (2.25)

and can therefore be expanded in Legendre polynomials and
in spherical harmonics:

φp(q) =
∑

l

2l + 1

4π
Fl(p, q)Pl(p̂ · q̂)

=
∑

l,lz

Fl(p, q)Y lz ∗
l (θq , φq)Y

lz
l (θp, φp). (2.26)

As shown in Eq. (2.9), the perturbative amplitude can be
expanded in spherical harmonics as well

M0
mim f

(q) =
∑

l,lz

∑

s,sz

〈s1m1s2m2|ssz〉

×M(q; llz; ssz;m f ) Y
lz
l (θq , φq). (2.27)

Injecting Eqs. (2.26) and (2.27) into Eq. (2.23), the
Sommerfeld-corrected matrix element can then be decom-
posed as

M(S)
mim f

(p) =
∑

l,lz

∑

s,sz

∑

l ′,l ′z

∫
d3q

(2π)3 〈s1m1s2m2|ssz〉

×M(q; llz; ssz;m f ) Fl ′(p, q)

× Y lz
l (θq , φq)Y

l ′z
l ′ (θq , φq)Y

l ′z
l ′ (θp, φp)

=
∑

l,lz

∑

s,sz

〈s1m1s2m2|ssz〉
∫

q2dq

2π2

×M(q; llz; ssz;m f ) Fl(p, q) Y lz
l (θp, φp).

(2.28)

Here, in the last line we used the orthogonality relations for
the spherical harmonics. The Sommerfeld-corrected ampli-
tude for a given (l, lz, s, sz) state then takes the following
simple form:

M(S)
llz;ssz;m f

(p) =
∫

q2dq

2π2 M(q; llz; ssz;m f ) Fl(p, q).

(2.29)

Using Eq. (2.12), we can re-express this amplitude as

M(S)
llz;ssz;m f

(p) =
∑

n≥0

α
m f

llz;ssz;n
∫

dq

2π2 ql+2n+2 Fl(p, q).

(2.30)

As shown in [22], the integrals can be rewritten as functions of
the derivatives of the radial components of the wave function
Rpl(r),∫

dq

2π2 ql+2n+2 Fl(p, q)

= 2n n!(2l + 2n + 1)!!
(−1)n(−i)l(l + 2n)!

∂ l+2n Rpl(r)

∂rl+2n

∣∣∣∣∣
r=0

. (2.31)

For a Coulomb potential V = −A/r , the radial components
of the wave function can be computed analytically and are
equal to

Rpl(z; x) = e
πx
4 e

−i z
2 zl

∞∑

j=0

�
(
1 + i x

2 + l + j
)

(2l + 1 + j)!
(i z) j

j ! ,

(2.32)
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where z = 2rp, x = Am/p and with p andm the momentum
and mass of the incoming particles. In our study, since we
consider strong interactions, A will be proportional to the
QCD coupling αs or the SU (N ) coupling αN .

Using the expression given in Eq. (2.32), we can then write

M(S)
llz;ssz;m f

(p) =
∑

n≥0

α
m f

llz;ssz;n p
l+2nCl(x)Dln(x). (2.33)

The Sommerfeld factors Cl(x) and Dln(x) are given by

Cl(x) = 1

(−i)l
e

πx
4 �

(
1 + i x

2

) l∏

b=1

(
1 + i x

2b

)

Dln(x) = n!(2l + 2n + 1)!
(l + n)!

2n∑

j=0

(−2) j (l + j)!
j !(2n − j)!(2l + j + 1)!

×
⎡

⎣
l+ j∏

b=l+1

(
1 + i x

2b

)⎤

⎦ , (2.34)

where Cl(x) is the correction to the amplitude for a pertur-
bative matrix element of the form plY lz

l (θp, φp). Note here
that Dl0(x) = 1 by construction. The Sommerfeld-corrected
squared matrix element for an (l, lz, s, sz) initial state as given
in Eq. (2.11) can then be written as
∣∣∣M(S)

llz;ssz;m f
(p)
∣∣∣
2 = Sl(x)

∑

n,n′
α
m f

llz;ssz;n
(
α
m f

llz;ssz;n′
)∗

×Dln(x)D∗
ln′(x) p2(l+n+n′), (2.35)

where

Sl(x) = |Cl(x)|2 = πx

1 − e−πx

l∏

b=1

(
1 + x2

4b2

)
(2.36)

is the Sommerfeld correction for a Coulomb potential and for
a perturbative amplitude of the form plY lz

l (θp, φp) [21,23].
Here, we used |�(1 + ib)| = √

πb csch(πb). Note that, in
Eq. (2.35), since higher-order terms are taken into account in
the momentum expansion of the perturbative amplitude, the
Sommerfeld corrections can no longer be factored out. The
total Sommerfeld-corrected cross section is then obtained by
plugging Eq. (2.35) into Eq. (2.11).

2.3 Convergence and strategy

The Sommerfeld corrections as given in Eq. (2.35) depend
on l, n and on inverse powers of the velocity through x . In the
perturbative regime, the angular momentum expansion and
velocity expansion of the cross section are closely related.
For a given angular momentum l, the lowest-order term of the
perturbative amplitude is at bestO(vl) or equivalentlyO(pl).
This relation is, however, lost when incorporating the Som-
merfeld corrections. As shown in Eq. (2.34), at low velocity,

the Sommerfeld factor for a given (l, n) isO(p−l−2n− 1
2 ). For

a momentum expansion of the perturbative amplitude of the
form

M0
llz;ssz;m f

(p) =
∑

n≥0

α
m f

llz;ssz;n p
l+2n, (2.37)

the convergence in the momentum is then jeopardized by the
Sommerfeld factor. The lowest-order term of the momentum
expansion of the Sommerfeld-corrected amplitude given in
Eq. (2.33) becomes

M(S)
llz;ssz;m f

(p) =
√

π Am

p

∑

n≥0

(−1)l+nα
m f

llz;ssz;nm
l+2n

× Al+2n

2l(l + n)!
n!

(2n)! + O(p
1
2 )

=
√

π Am

p

∑

n≥0

α̃
m f

llz;ssz;n

× Al+2n

2l(l + n)!
n!

(2n)! + O(p
1
2 ), (2.38)

where α̃
m f

llz;ssz;n ≡ (−1)l+nα
m f

llz;ssz;nm
l+2n is dimension-

less. For any value of the orbital angular momentum l, the
Sommerfeld-corrected amplitude can then contain terms of

order p− 1
2 . The convergence of the (l, n) expansion of the

cross section is now ensured by the factorial and 2l terms as
well as by the powers of A since A < 1. Hence, the con-
vergence is now in the orbital angular momentum l instead
of the velocity. Nonetheless, due to its factorial nature the
convergence of the corrected cross section is at least as fast
as the one of the perturbative cross section with l and n. In
fact, this non-trivial result ensures that the application of the
Sommerfeld effect is a self-consistent procedure.

Since the angular momentum and velocity expansions of
the Sommerfeld-corrected cross section are unrelated, we
adopt the following strategy when calculating Sommerfeld
corrections:

1. Choose a maximal value lmax for the angular momentum
expansion of both the perturbative and the Sommerfeld-
corrected cross sections. The choice for lmax determines
the degree of precision for both expansions according to
Eqs. (2.12) and (2.38).

2. For each value of l, include all expansion terms from
Eq. (2.35) with n, n′ satisfying n + n′ + l ≤ lmax. This
way, the highest-order terms in this expansion are always
O(p2lmax−1). This requirement ensures the consistency of
the expansion of the perturbative cross section in powers
of the incoming momentum.

3. Finally, the total Sommerfeld-corrected cross section is
obtained by injecting Eq. (2.35) into Eq. (2.11).
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In this procedure the perturbative amplitude is fully expanded
up to plmax and the perturbative cross section up to p2lmax−1.
Applying Sommerfeld corrections to this expansion gives an
angular momentum expansion of the final cross section up to
lmax. In Sects. 3 and 5 we describe how to embed non-Abelian
gauge theories into this formalism. The results of applying
this procedure to the annihilation of colored particles are
shown in Sect. 4.2.

3 Sommerfeld corrections for QCD

In the previous section we have computed analytic expres-
sions for the Sommerfeld corrections of processes with arbi-
trary partial waves and momentum dependence. This deriva-
tion is based on a Coulomb potential, while the interactions
between colored particles are governed by a QCD potential.
An analytic prescription to decompose the QCD potential as
a linear combination of Coulomb potentials has been first
described in [16,17] for s-wave processes. In this section we
extend this derivation to arbitrary partial waves and point
out the differences to the leading-order result. This exten-
sion allows for a treatment where higher-order partial waves,
arbitrary momentum dependence of the amplitude and QCD
effects can all be taken into account. This prescription allows
us to derive an analytic form for the Sommerfeld corrections
of the annihilation of colored states which we apply to the
colored dark sector in the next section.

3.1 Decomposing the QCD potential

In order to analytically evaluate the Sommerfeld corrections
through the exchange of soft gluons it is necessary to decom-
pose the QCD potential into a set of Coulomb-like potentials.
This is possible due to the fact the higher-order QCD poten-
tial takes the form [17,34,35]

VQCD = C
αs(μ̂)

r

[
1 + αs(μ̂)

4π

(
c1 + 2c2(γE + log μ̂r)

)]

≈ C
αs(μ̂ ≈ 1/r)

r
, (3.1)

where C is proportional to the quadratic Casimir. For exam-
ple for the quark–anti-quark potential C = 4

3 and the
one-loop coefficients are defined by c1 = 31

3 − 10
9 n f and

c2 = 11 − 2
3n f , where n f is the number of active quark

flavors at the scale μ̂. it shows that the QCD potential at
higher orders can be approximated as a simple Coulomb-
like form indicated on the right-hand side of Eq. (3.1). Now,
as shown in [16,17], the QCD potential between two parti-
cles of SU (3) representations R and R′ can be rewritten as a
sum of Coulomb potentials of the form

VR⊗R′ = αs(μ̂)

r

∑

a

T a
R ⊗ T a

R′

= αs(μ̂)

2r

∑

Q

[
C2(Q)1Q − C2(R)1 − C2(R′)1

]
,

(3.2)

where R⊗R′ =⊕Q Q and C2(R), C2(R′) are the quadratic
Casimir indices for R and R′, respectively. Each irreducible
Q component of the initial-state wave function will then
evolve independently in its respective potential. It is impor-
tant to note here that αs(μ̂) must be evaluated at a much lower
scale than the hard scale of the annihilation process, namely
at scales similar to the momenta of the incoming particles.
For clarity reasons we omit the scale dependence of αs in the
rest of this section.

In what follows, we will consider particle–antiparticle
annihilation with R = 3, 6, 8 and R′ = R. The correspond-
ing color decompositions are

3 ⊗ 3 = 1 ⊕ 8
6 ⊗ 6 = 1 ⊕ 8 ⊕ 27
8 ⊗ 8 = 1S ⊕ 8A ⊕ 8S ⊕ 10A ⊕ 10A ⊕ 27S.

(3.3)

The subscripts S and A indicate whether the representa-
tion is symmetric or antisymmetric, respectively, under the
interchange of the two equal representations R and R′. The
quadratic Casimir indices (C2) of these representations are
given in Eq. (3.4) along with the Dynkin indices, defined as
C(R)δab = tr

(
T a
RT

b
R

)
.

R 1 3 6 8 10 15 27 64

C(R) 0 1
2

5
2 3 15

2 10 27 120

C2(R) 0 4
3

10
3 3 6 16

3 8 15

(3.4)

Injecting Eqs. (3.3) and (3.4) into Eq. (3.2), we find

V3⊗3 = αs

r

{− 4
3 (1)

+ 1
6 (8),

V6⊗6 = αs

r

⎧
⎪⎨

⎪⎩

− 10
3 (1)

− 11
6 (8)

+ 2
3 (27),

V8⊗8 = αs

r

⎧
⎪⎪⎨

⎪⎪⎩

−3 (1S)
− 3

2 (8A, 8S)
0 (10A, 10A)

+1 (27S).

(3.5)

For a particle in a color representation R = 3, 6, 8, the
particle–antiparticle QCD potential at tree-level can be
decomposed into Coulomb potentials with coupling strengths
set by Eq. (3.5). The Coulomb interaction associated to a
given irreducible representationQwill affect the perturbative
annihilation process for which the initial state is in the same
color representation. Computing the Sommerfeld effect for
a given annihilation process therefore requires decomposing
the perturbative cross section according to the color repre-
sentation of the particle–antiparticle initial state. Each color
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Φ

Φ

q

q̄

Φ

Φ

g

g

Φ

Φ

g

g

Φ

Φ

g

g

Φ

Φ

g

g

Fig. 2 Feynman diagrams for the annihilation of � into either a quark–anti-quark pair or a pair of gluons. The annihilating field � may be scalar,
fermion or vector, however, in the case of the fermion the four-point interaction is absent

channel of the cross section will then be corrected indepen-
dently by its own Coulomb potential order by order in the
(l, s) expansion. To obtain the full Sommerfeld-corrected
amplitude one has to find the irreducible representations Q
contributing at each partial wave order and the weight of their
relative contribution to the process.

3.2 Decomposing perturbative cross sections

In this section, we consider tree-level annihilation of a parti-
cle � into quarks and gluons through the strong interaction

�� → qi q̄ j and �� → ga gb. (3.6)

Since no new physics couplings are involved, the nature of
the diagrams contributing to the annihilation process only
depends on the spin of �. Here, we take � to be either a
scalar, a fermion or a vector. The Feynman diagrams for the
different annihilation processes are shown in Fig. 2. Note
that the prescription in this section and the previous section
for decomposing the QCD potential and cross section is also
applicable to other processes. A few more exotic examples
are discussed in Appendices B.2 and B.3.

First we discuss the color structure of the amplitude for
the annihilation into a quark–anti-quark pair. As shown in
Fig. 2, this process occurs through a single s-channel gluon
exchange diagram. The corresponding amplitude is therefore
proportional to the generator for the SU (3) representation R
of �:

Aa
∣∣i
j ∝ (T a

R)ij , (3.7)

where a is the index of the s-channel gluon and the indices
i and j run from 1 to the dimensionality of the R represen-
tation, dR. Only the color-octet configuration of the initial
state, matching the representation of the exchanged gluon,
will therefore contribute to the �� → qi q̄ j cross section,
∑

color

∣∣AR⊗R

∣∣2 =
∑

color

∣∣[8]∣∣2, (3.8)

where
∑

color runs over all the color indices of the external
particles in the amplitude.2 The octet representation [8] is

2 Note that this result only holds when annihilation occurs through an
s-channel gluon. In some non-minimal models, � can also annihilate
into a quark–anti-quark pair through the t-channel exchange of a new
particle. We discuss this scenario in more detail in Appendix B.4.

antisymmetric for the decomposition of self-conjugate rep-
resentations, like the 8 ⊗ 8, because of the CP nature of the
exchanged gluon [36].

Annihilation processes into gluons have a more complex
color structure. As can be seen in Fig. 2, four different pro-
cesses now contribute to the annihilation cross section, each
with a different kinematics. The amplitudes for all of these
processes, however, will be proportional to a linear combi-
nation of T a

R T b
R and T b

R T a
R where a, b are the color indices

of the final-state gluons. In full generality, the amplitude can
then be written as

Aab
∣∣i
j = α

{
T a
R , T b

R

}i
j
+ β

[
T a
R , T b

R

]i
j
, (3.9)

where α, β are factors that contain the kinematic dependence.
As underlined in Sect. 2.1, this expression drastically sim-
plifies when the amplitude is expanded into (l, s) states. For
a given (l, s) initial state, CP conservation enforces

Aab
∣∣i
j = (−1)l+sAba

∣∣i
j . (3.10)

The annihilation amplitude will therefore be proportional to
the anticommutator of the T a

R for even l+s and to the commu-
tator for odd l + s.3 This simplification allows us to decom-
pose amplitudes and therefore cross sections into states of
definite color independently of the kinematics of the process.

We now decompose the �� → ga gb amplitude into
contributions from initial-state configurations with a definite
color. As in Sect. 3.1, we consider particle–antiparticle anni-
hilation with R = 3, 6, 8. For amplitudes proportional to
[T a

R , T b
R], we can write

Aab
∣∣i
j ∝ [T a

R , T b
R]ij = i f abc(T c

R)ij . (3.11)

As for annihilation into q q̄ , the amplitudes here are propor-
tional to linear combinations of the generators of theR repre-
sentation and therefore receive contributions from color-octet
configurations only
∑

color

∣∣AR⊗R

∣∣2 =
∑

color

∣∣[8]∣∣2. (3.12)

3 Note that this result differs from the one in Appendix A of [17] and
from [19,37] which assume proportionality of the amplitude to the anti-
commutator for all values of the angular momentum.
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Here the [8] is in the antisymmetric representation for the
decomposition of self-conjugate representations because of
the CP-odd nature of the amplitude as described in Eq. (3.10).

For terms proportional to
{
T a
R , T b

R

}
, the amplitude decom-

position depends on R. We derive the coefficients associated
to the different color representations of the initial state by
decomposing the amplitude into irreducible tensors as out-
lined in [38]. The details of the decomposition of a given
tensor for the processes and representations we are consider-
ing are presented in Appendix B.1. Applying the correspond-

ing results to the
{
T a
R , T b

R

}i
j tensor allows one to express the

amplitude as

Aab
∣∣i
j =

∑

Q

[Q]ab∣∣ij , (3.13)

forR⊗R =⊕Q Q and where [Q]ab represents the amplitude
associated to an initial state in the color representation Q.
Since the contributions from the different Q initial states are
orthogonal, the squared amplitude will be of the form

∑

color

∣∣AR⊗R

∣∣2 =
∑

Q

[
∑

color

∣∣[Q]∣∣2
]

. (3.14)

For the �� → ga gb process that we consider here, using

Eqs. (B.1)–(B.3) for terms proportional to
{
T a
R , T b

R

}i
j , we

obtain the magnitude of the contributions from the different
color states to the total amplitude. For R = 3, 6, 8, we have

∑

color

∣∣A3⊗3̄

∣∣2 = 7

2

∑

color

∣∣[1]∣∣2 = 7

5

∑

color

∣∣[8]∣∣2

∑

color

∣∣A6⊗6̄

∣∣2 = 31

5

∑

color

∣∣[1]∣∣2

= 155

49

∑

color

∣∣[8]∣∣2 = 155

81

∑

color

∣∣[27]∣∣2

∑

color

∣∣A8⊗8
∣∣2 = 6

∑

color

∣∣[1S]
∣∣2 = 3

∑

color

∣∣[8S]
∣∣2

= 2
∑

color

∣∣[27S]
∣∣2. (3.15)

These results for the triplet and the octet agree with the ones
obtained for the s-wave in [17,39]. The results for the sextet
and the more exotic decompositions discussed in Appen-
dices B.2 and B.3 are novel and can also be used to extend
the scope of the bound state calculations of [39] as described
in [32].

3.3 Sommerfeld corrections

Combining the results from Sects. 3.1 and 3.2, the
Sommerfeld-corrected cross sections for the annihilation of
two colored states in the representations R and R can be

decomposed as

σ (S) =
∑

Q

κQ σ
(S)
C

[
αQ
]
, (3.16)

where R ⊗ R = ⊕
Q Q. σ

(S)
C

[
αQ
]

is the Sommerfeld-
corrected cross section for a Coulomb potential with cou-
pling strength A = αQ, which can be computed by com-
bining Eqs. (2.11) and (2.35). κQ is the relative magnitude
of the contribution of the Q initial state to the annihilation
amplitude, defined as
∑

color

∣∣[Q]∣∣2 = κQ
∑

color

∣∣AR⊗R

∣∣2. (3.17)

As described in Sect. 3.2, the κQ weights depend not only on
the color representation of the initial state, but also on its (l, s)
quantum numbers and on the process considered. Notably, for
�� → ga gb, states with even and odd l+s are, respectively,
proportional to the anticommutator and the commutator of
the color generators and therefore have different κQ factors.
In what follows, we will therefore consider cross sections
associated to an individual (l, s) particle–antiparticle initial
state in the R ⊗ R representation.

Reading off αQ from Eq. (3.5) and κQ from Eqs. (3.8),
(3.12) and (3.15), for R = 3, 6, 8, the Sommerfeld-corrected
cross sections are

σ
(S)

3⊗3→q q
= σ

(S)
C

[
−αs

6

]
,

σ
(S)

3⊗3→g g
=
⎧
⎨

⎩

2
7σ

(S)
C

[
4αs
3

]
+ 5

7σ
(S)
C

[−αs
6

]
even l + s,

σ
(S)
C

[−αs
6

]
odd l + s,

σ
(S)

6⊗6→q q
= σ

(S)
C

[
11αs

6

]
,

σ
(S)

6⊗6→g g
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

5
31σ

(S)
C

[
10αs

3

]
+ 49

155σ
(S)
C

[
11αs

6

]

+ 81
155σ

(S)
C

[
− 2αs

3

]
even l + s,

σ
(S)
C

[
11αs

6

]
odd l + s,

σ
(S)
8⊗8→q q = σ

(S)
C

[
3αs

2

]
,

σ
(S)
8⊗8→g g =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
6σ

(S)
C [3αs] + 1

3σ
(S)
C

[
3αs
2

]

+ 1
2σ

(S)
C [−αs] even l + s

σ
(S)
C

[
3αs
2

]
odd l + s.

.

(3.18)

The Coulomb cross sections σ
(S)
C [α] can be readily obtained

by plugging the right value for α into the analytic expres-
sions in Sect. 2. The final analytic expressions for the
Sommerfeld-corrected cross sections can be found by com-
bining Eqs. (2.11) and (2.35).
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The results in this section have been based on the assump-
tion that annihilation always involves initial states of definite
color. However, as argued in [40,41], rapid interactions of the
annihilating particles with the gluons in the thermal bath may
prevent the initial state to be in a definite color channel. The
importance of this effect is unclear since the time scale may
be of the same order as the Sommerfeld effect. Its impact on
the cross section can be bounded by considering an extreme
scenario where annihilation always involves color-averaged
initial states. As mentioned in Sect. 3.2, for annihilation pro-
cesses into two quarks or into two gluons with odd l + s, the
initial state has to always be a color octet. These processes are
therefore not modified by color-averaging. For annihilation
into gluon pairs with even l + s on the other hand, one has to
use the averaged equivalent of Eq. (3.5) for the QCD poten-
tial. This new potential can be straightforwardly obtained
from Eq. (3.18) by averaging over the different channels. We
then obtain

V avg
3⊗3→g g

= −11

42

αs

r
, V avg

6⊗6→g g
= −143

186

αs

r
,

V avg
8⊗8→g g = −1

2

αs

r
. (3.19)

This leads to modified Sommerfeld-correction factors for the
annihilation into two gluons with even l + s as

σ
(S), avg
3⊗3→g g

= σ
(S)
C

[
11αs

42

]

σ
(S), avg
6⊗6→g g

= σ
(S)
C

[
143αs

186

]
(3.20)

σ
(S), avg
8⊗8→g g = σ

(S)
C

[αs

2

]
.

In the following section, we assume that the annihilation pro-
cesses occur through definite color channels. We emphasize,
however, that the Sommerfeld-corrected cross sections in the
color-averaged scenario can also be readily calculated using
our formalism.

4 Annihilation in the colored dark sector

In the previous two sections we described how to analyti-
cally calculate Sommerfeld corrections for the annihilation
of colored particles including higher-order partial waves. We
are now ready to apply these prescriptions to actual colored
dark sectors. We imagine that the dark sector consists of a
single dark matter particle which is a singlet under the Stan-
dard Model gauge groups. Furthermore the dark sector has
a colored particle � with arbitrary spin—scalar, fermion or
vector—and with an arbitrary representation under SU (3).
We then introduce a small coupling between DM and �

ensuring chemical and thermal equilibrium between both par-
ticles. The details and phenomenology of this construction

are described in an upcoming accompanying paper [32], here
we only focus on the annihilation of the colored particle �.
We note that in these types of constructions the relic abun-
dance is completely determined by the annihilation rate of
the colored particle.

These simple models have been introduced for illustrative
purposes. We emphasize, however, that the methods detailed
in this paper are applicable to the annihilation of colored
particles in any kind of dark sector. In the rest of this section,
we introduce a set of simplified models for � and compute
the associated Sommerfeld corrections.

4.1 Simplified models

We consider scenarios where � is either a real or complex
scalar, Dirac or Majorana fermion or a real or complex vector
boson. The kinetic and mass terms for � = {S, ψ, V } in the
complex scalar, Dirac fermion and complex vector models
are then

LS =
[
Dμ,i j S j

]† [
Dμ
i j S j

]
− m2

S S
†
i Si

Lψ = ψ̄i /Di jψ j − mψψ̄iψi (4.1)

LV = −1

2
Vμν,i

†Vμν
i −igsV

μ
i

†
(T a

R)i j V
ν
j G

a
μν + m2

V V
†
μV

μ,

where i, j are color indices and the T a
R matrices are the gen-

erators for the color representation R of �. To obtain the
Lagrangians for real scalars, Majorana fermions and real vec-
tors each of the individual terms need to be multiplied by a
factor one half. The covariant derivatives and field strength
are given by

Vμν
i = Dμ

i j V
ν
j − Dν

i j V
μ
j ,

Dμ,i j = ∂μδi j − igsG
a
μ(T a

R)i j .
(4.2)

Note that the Lagrangian for vectors can also include anoma-
lous terms [42,43] that we chose not to include in this study.
The implications of using a Stückelberg mass term for vector
�, especially on perturbative unitarity, are discussed in our
companion paper [32].

We list here the analytic cross sections for the pair annihi-
lation � to q q̄ and g g. The total annihilation cross sections
for � = S, ψ, V are

σ(S S→q q̄) = 2πα2
s

3s

C2(R)

dR
βS,

σ(S S→g g) = 2πα2
s

3s3

C2(R)

dRβ2
S

×
[
C2(G)

(
sβS(10m2

S − s) − 24m4
S log

1 + βS

1 − βS

)

+ 6C2(R)

(
sβS(s+4m2

S)+m2
S(8m

2
S − 4s) log

1+βS

1−βS

)]
,
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σ(ψ ψ̄ →q q̄) = 2πα2
s

3s

C2(R)

dR

1

βψ

(
1 + 2m2

ψ

s

)
,

σ (ψ ψ̄ →g g) = −2πα2
s

3s3

C2(R)

dRβ2
ψ

×
[
C2(G)

(
sβψ(s + 5m2

ψ) − 12m4
ψ log

1+βψ

1−βψ

)

+ 3C2(R)

(
sβψ(s + 4m2

ψ)

+ (8m4
ψ − 4m2

ψ s − s2) log
1+βψ

1−βψ

)]
,

σ (V V →q q̄) = πα2
s

54s

C2(R)

dR
βV

12m4
V + 20m2

V s + s2

m4
V

σ(V V →g g) = 2πα2
s

9m2
V s

3

C2(R)

dRβ2
V

×
[
C2(G)m2

V

(
sβV(10m2

V +7s)−8(3m4
V +s2) log

1+βV

1−βV

)

+ 2C2(R)
(
sβV(12m4

V +3m2
V s+4s2)

+ 12(2m6
V −m4

V s) log
1+βV

1−βV

)]
. (4.3)

In these expressions, the phase space factor is defined by

β� =
√

1 − 4m2
�

s and C2(G) = N is the quadratic Casimir
of SU (N ). The annihilation cross sections are the same for
real scalars, Majorana fermions and real vectors. Note that,
since we directly introduced a squared mass term for � in
the Lagrangian, the V V → q q̄ cross section grows as O(s)
at large center-of-mass energies. This non-physical behavior
can be corrected by introducing a Higgs-type particle. We
discuss the associated effects on the phenomenology in our
companion paper [32].

4.2 Sommerfeld-corrected annihilation

This section shows the Sommerfeld corrections to the anni-
hilation of colored particles for the non-relativistic velocities
typical to most thermal dark matter models. Before freeze-
out, dark matter and the particles it is in thermal equilibrium
with are forming a thermal bath of relatively low tempera-
tures compared to their masses. Around freeze-out, when the
rate of the annihilation processes determines the dark matter
relic density, the fraction x = m/T is usually around 25. This
leads to typical velocities around 0.2 using the Maxwell–
Boltzmann distribution. Since the contributions from larger
velocities are exponentially suppressed, we study the effects
of the Sommerfeld corrections in the thermally relevant range
0 < v < 0.5.

We have implemented the procedure detailed in Sects. 2
and 3 as well as the perturbative amplitudes for the models
described in Sect. 4 in a Mathematica notebook that is

attached to this paper [44]. This notebook also provides an
interface to micrOMEGAs [45,46] for the calculation of the
Sommerfeld-corrected relic abundance in these models. Fur-
thermore, note that this notebook can also be readily used to
compute the Sommerfeld effect on amplitudes that are not
studied here. The conventions and definitions used to com-
pute the perturbative amplitudes are detailed in Appendix A.

In what follows, we consider the ratios of the partial wave
expansions of the perturbative and Sommerfeld-corrected
cross sections up to the d-wave over the exact value of the
perturbative cross section. For the perturbative cross sections,
we evaluate the strong coupling αs(μ) at the scale set by the
mass of the annihilating particles. However, when taking the
ratio of the cross sections this mass dependence factors out.
When computing the Sommerfeld corrections the coupling
αSommerfeld
s (μ̂) must be evaluated at a much lower scale. This

is in accordance with the scale of the soft gluons that are
being exchanged. The scale is of the order of the momenta of
the incoming particles that are annihilating and thus depends
on the mass of the annihilating particles and their velocities.
Since the scale dependence of αs is significant for our range
of velocities we use the precise results for the running of the
strong coupling obtained in [47,48].

The results for different annihilation processes are shown
in Fig. 3. To outline the mass dependence of the Sommerfeld-
corrected ratios discussed before, we plot these ratios as a
band for 500 GeV ≤ m� ≤ 2500 GeV. We first notice that,
as mentioned in Sect. 2, in spite of the O(v−1) terms present
at large l due to Sommerfeld corrections both the perturba-
tive and the Sommerfeld-corrected cross sections converge
at similar speeds with l. In particular, for all processes, the d-
wave perturbative cross section is indistinguishable from the
exact value up to v ∼ 0.5. Although for colored vectors l > 0
contributions to the cross sections are negligible, for col-
ored fermions and scalars, including higher-order contribu-
tions leads to sizable modifications of the total cross section
for both the perturbative and the Sommerfeld-corrected case.
Notably, for velocities around 0.2, which is typical for many
thermal dark matter models, adding the p-wave contribution
can lead to modifications of O(10%) of the Sommerfeld-
corrected cross section. Although in several models these
effects can be mitigated by a cancellation between the q q̄
and g g contributions, our results highlight the importance of
a rigorous computation of Sommerfeld corrections for more
than one-partial wave at a time.

As shown in Fig. 3, the Sommerfeld corrections can
enhance the annihilation cross section of colored particles
by up to a factor of two for typical dark matter velocities.
This enhancement plays a crucial role in the phenomenol-
ogy of models with a colored dark sector. In an accompany-
ing paper [32], we show how relic density and collider con-
straints allow to derive model-independent bounds for sce-
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Fig. 3 Ratios of the perturbative (solid lines) and Sommerfeld-
corrected cross sections (dashed lines) expanded up to the s-wave (blue),
p-wave (orange) and d-wave (green) over the exact value of the per-
turbative cross section. Due to the mass dependence of αSommerfeld

s (μ̂),

the Sommerfeld-corrected ratios are shown as a band corresponding
to 500 GeV ≤ m� ≤ 2500 GeV. For each of the processes we show
the results for a specific color representation, which is denoted by the
subscript on the � fields

narios where dark matter coannihilates with a colored dark
partner.

5 SU(N) dark sectors

Beyond the minimal models of dark matter explored in
Sect. 4, extensions of the Standard Model involving exotic

non-Abelian gauge groups have been strongly motivated in
many BSM theories. In particular, wide classes of models
such as neutral naturalness [24], hidden valleys [49,50], dark
radiation [25,26] and glueball dark matter [27–31] often
involve dark sector particles charged under a new SU (N )

gauge group. When this SU (N ) group is unbroken, dark
gluon exchange between the dark sector particles leads to
a long-range interaction through the same mechanism as the
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one described in Sects. 2 and 3 for colored particles. For siz-
able values of the dark αN gauge coupling, this long-range
interaction leads to significant Sommerfeld corrections that
can be analytically approximated as in the QCD scenario.
Computing the Sommerfeld effect is especially crucial when
considering classes of models where SU (N ) is confining in
the present universe [27–31]. Since in these models parti-
cles charged under SU (N ) are responsible for dark matter
depletion, the Sommerfeld corrections are expected to sig-
nificantly change the dark matter relic abundance.

In this section, we extend the methodology outlined in
Sects. 2 and 3 for QCD to general SU (N ) dark sectors. We

put special emphasis on the annihilation of messenger par-
ticles charged under both the SM and a dark gauge group,
encountered in large categories of models. We discuss how to
combine the Sommerfeld corrections from both potentials in
these scenarios. To illustrate the relevance of our approach,
we compute the Sommerfeld corrections for the model stud-
ied in [31] that involves dark fermions charged under both
SU (3) and SU (N ).

5.1 Color decomposition

In this section, we generalize the results derived in Sect. 3
to particles charged under a new dark gauge group SU (N ),
either in the fundamental F or in the adjoint A representa-
tion. As before, we consider the self-annihilation of a parti-
cle � into two fermions in the fundamental representation of
SU (N ) or into two dark gauge bosons in the adjoint repre-
sentation of SU (N )

� � → Qi Q̄ j and �� → Ga Gb. (5.1)

Here, we consider both Q and G to be massless. The proce-
dure for computing the Sommerfeld corrections for this anni-
hilation process is the same as the one described for SU (3)

in Sect. 3. In particular, the leading-order term of the SU (N )

potential can be described by a Coulomb potential obeying

Eq. (3.2) and the symmetry constraints on the different par-
tial waves arising from CP conservation are independent on
N .

A generalized version of Eq. (3.3) can be derived by
decomposing the F⊗F and the A⊗A products to obtain the
following possible representations for the �� initial state:

F ⊗ F = 1 ⊕ A
A ⊗ A = 1S ⊕ AA ⊕ AS ⊕ BS ⊕ CA ⊕ CA ⊕ DS .

(5.2)

A notable difference from the SU (3) case here is the appear-
ance of the BS representation for N ≥ 4. The representations
in Eq. (5.2) are associated with the following Young tableaux:

F = A =
...

B = ...
C = ...

D =
...
...

,
(5.3)

where A and D have N − 1 vertical boxes and B and C have
one box less. These Young tableaux highlight the symmetry
properties of the tensors belonging to the different representa-
tions and can therefore be used as guiding tools to decompose
a given amplitude into contributions from different SU (N )

initial states. The dimensionality of all the representations as
well as the quadratic Casimir and Dynkin indices [51,52] are
summarized:

R 1 F A B C D

dim(R) 1 N N 2−1 1
4 (N 4−2N 3−3N 2) 1

4 (N 4−5N 2+4) 1
4 (N 4+2N 3−3N 2)

C(R) 0 1
2 N 1

2 N
2(N−3) 1

2 N (N 2−4) 1
2 N

2(N+3)

C2(R) 0 N2−1
2N N 2(N−1) 2N 2(N+1)

(5.4)

Calling the new gauge coupling αN , we can now use
Eqs. (3.2) and (5.2) as well as the table in Eq. (5.4) to derive
the SU (N ) Coulomb potential associated with the different
�� representations:

VF⊗F = αN

r

{
− N2−1

2N (1)
1

2N (A)
,

VA⊗A = αN

r

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−N (1S)

− N
2 (AA,AS)

−1 (BS)

0 (CA,CA)

1 (DS).

(5.5)

For the case of N = 3, this potential reduces to Eq. (3.5). For
large N the attractive terms increase, whereas the repulsive
ones decrease or remain constant.
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The Clebsch–Gordan coefficients for the decomposition
of the annihilation cross sections can now be computed by
following exactly the same steps as in Sect. 3.2. The details
of this calculation for the different annihilation processes as
well as for even and odd l + s are given in Appendix B.1. As
in the SU (3) case, since the �� → Qi Q̄ j annihilation is
mediated by an s-channel adjoint gauge boson, only initial
states in the adjoint representation contribute to the total cross
section. For the �� → Ga Gb annihilation process, the CP
conservation arguments described in Sect. 3.2 still apply and,
as in Eq. (3.12), the squared amplitude for odd l + s can be
written as
∑

color

∣∣AR⊗R

∣∣2 =
∑

color

∣∣[A]∣∣2, (5.6)

for all R. Similarly, for even l + s, the decompositions given
in Eq. (3.15) for the products of two fundamentals and two
adjoints can be generalized to

∑

color

∣∣AF⊗F

∣∣2 = N 2 − 2

2

∑

color

∣∣[1]∣∣2 = N 2 − 2

N 2 − 4

∑

color

∣∣[A]∣∣2

(5.7)

and

∑

color

∣∣AA⊗A
∣∣2 = 3

4
(N 2 − 1)

∑

color

∣∣[1S]
∣∣2

∑

color

∣∣AA⊗A
∣∣2 = 3

∑

color

∣∣[AS]
∣∣2

∑

color

∣∣AA⊗A
∣∣2 = 3(N − 1)

N − 3

∑

color

∣∣[BS]
∣∣2

∑

color

∣∣AA⊗A
∣∣2 = 3(N + 1)

N + 3

∑

color

∣∣[DS]
∣∣2.

(5.8)

Note that these results only apply for N ≥ 4. For N = 3
the contribution from the BS representation goes to zero. In
the case of N = 2, if � is in the fundamental representa-
tion the �� → Ga Gb process occurs only when �� is an
SU (2) singlet. When � is in the adjoint representation, only
the �� states in the 1S and the DS = 5S representation will
contribute to the �� → Ga Gb annihilation cross section.
In the large-N limit, on the other hand, we observe that anni-
hilation to dark gauge bosons occurs dominantly through the
adjoint channel for the annihilation of two fundamentals and
splits evenly into the AS, BS and DS channels for initial-state
particles in the adjoint representation.

5.2 Sommerfeld corrections

We now use the results from Sect. 5.1 as well as the method-
ology described in Sect. 3.3 to derive the Sommerfeld correc-
tion factors for the �� → Qi Q̄ j and the �� → Ga Gb

annihilation processes. For general N , these factors now read

σ
(S)

F⊗F→Q Q
= σ

(S)
C

[
−αN

2N

]

σ
(S)

F⊗F→G G
=

⎧
⎪⎪⎨

⎪⎪⎩

2
N2−2

σ
(S)
C

[
(N2−1)αN

2N

]

+ N2−4
N2−2

σ
(S)
C

[− αN
2N

]
even l + s,

σ
(S)
C

[− αN
2N

]
odd l + s,

σ
(S)

A⊗A→Q Q
= σ

(S)
C

[
NαN

2

]
,

σ
(S)
A⊗A→G G =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

4
3(N2−1)

σ
(S)
C [NαN ]

+ 1
3σ

(S)
C

[
NαN

2

]

+ N−3
3(N−1)

σ
(S)
C [αN ]

+ N+3
3(N+1)

σ
(S)
C [−αN ] even l + s

σ
(S)
C

[
NαN

2

]
odd l + s.

(5.9)

The ratios of the s, p and d-wave annihilation cross sec-
tions are shown in Fig. 4 for the �� → Qi Q̄ j and
�� → Ga Gb processes with � being either a scalar or a
fermion, in either the fundamental or the adjoint representa-
tion of SU (N ). As in Fig. 3, we consider velocity expansions
of the cross section up to the s-wave, the p-wave and the d-
wave but this time, we show the values of these different cross
sections for 4 ≤ N ≤ 10. Contrary to the SU (3) case, we do
not evaluate αN at the scale of the momenta of the incom-
ing particles and instead set the coupling entering into the
Sommerfeld corrections to be αSommerfeld

N (μ̂) = 0.1. For the
typical momenta considered here, this value is lower than
the ones encountered in the QCD case, thereby leading to
conservative estimates of the Sommerfeld effect in strongly
coupled theories.

For fundamental particles in the initial state, the Sommer-
feld corrections become negligible in the large N limit. This
result can be understood by noting that, in Eq. (5.9), either the
effective couplings for the Coulomb potentials or the coeffi-
cients of the σC cross sections are inversely proportional to
powers of N . For initial-state particles in the adjoint repre-
sentation, however, the dominant contributions in the large

N limit arise from terms of the form σC

[
NαN

2

]
. In this case,

the Sommerfeld enhancement will therefore grow with N for
each partial wave contribution, as can be observed in Fig. 4.
Note that in this scenario, the Sommerfeld enhancement is
extremely relevant at typical freeze-out velocities and taking
it into account is essential for relic abundance computations.

5.3 Messenger particles

One particular scenario often encountered in the literature is
the existence of new particles that are charged both under
QCD and under a new SU (N ) gauge group. These parti-
cles notably play the roles of messengers between the Stan-
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Fig. 4 Ratios of the perturbative (solid lines) and Sommerfeld-
corrected cross sections (dashed lines) expanded up to the s-wave (blue),
p-wave (orange) and d-wave (green) over the total perturbative cross

section. We show the ratios as a band corresponding to 4 ≤ N ≤ 10 for
a specific process and representation (either F or A), which is denoted
by the subscript on the � fields
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dard Model and the dark sector in hidden valley models
[31,49,50]. In this case the non-relativistic potential for the
Sommerfeld effect is the sum of the SU (3) and the SU (N )

potential and Sommerfeld-correction factors are modified
accordingly [53]. The total potential is given as

V = αs(μ̂)

r

∑

a

T a
R ⊗ T a

R′ + αN (μ̂)

r

∑

a

T a
P ⊗ T a

P′ , (5.10)

where R is a representation of SU (3) and P is a represen-
tation of SU (N ). Computing this potential for initial states
in different SU (3) × SU (N ) representations can be done
by applying Eq. (3.2) to each of the terms on the right-hand
side of Eq. (5.10) separately. For a given annihilation pro-
cess, the Clebsch–Gordan coefficient for an initial state with
given SU (3) × SU (N ) quantum numbers is the product of
the coefficients corresponding to the SU (3) and the SU (N )

representations. These coefficients can be readily computed
using Eqs. (5.6)–(5.8). In what follows, we will apply this
procedure to the particular case of particles charged under
the fundamental representations of both SU (3) and SU (N ).

5.4 Application: bifundamental messengers

In models where the gauge bosons of the dark SU (N )

either are dark radiation or form dark glueballs a connec-
tion between the dark sector and the Standard Model needs
to exist to ensure thermal equilibrium. This connection can
be established by introducing messenger particles charged
both under QCD and under the dark SU (N ) gauge group.
These particles are initially in thermal equilibrium with the
SM and therefore annihilate to SM particles until they freeze
out. When the temperature of the universe drops below the
confining scale of the theory at later times, these messen-
gers form bound states that decay to dark gauge bosons that
ultimately form stable glueball dark matter candidates. The
strength of the messenger annihilation channels to the visi-
ble and dark sectors will therefore set the dark matter relic
abundance.

In what follows, we consider a fermionic messenger par-
ticle ψ charged as a triplet under QCD and as a fundamental
under SU (N ). In this scenario, ψ can annihilate either to
g g, q q̄, G G or g G, where G is the massless dark gauge
boson for the SU (N ) gauge group. The first two processes
occur through the QCD interaction and, since the final states
are SU (N ) singlets, the initial ψ ψ̄ state must also be an
SU (N ) singlet. The different QCD representations for ψ ψ̄

as well as their corresponding Clebsch–Gordan coefficients
are therefore the ones derived in Sect. 3.3. As outlined in
Sect. 5.3, however, the non-relativistic potential between the
two initial-state particles will now have an additional term
corresponding to the exchange of dark gluons. Since ψ ψ̄ has
to be an SU (N ) singlet, the new potential will be of the form

Fig. 5 Sommerfeld-correction factors for the s-wave annihilation
cross sections of fermionic messengers in the fundamental represen-
tation of both QCD and SU (N ). The different colors show the relevant
annihilation processes and the different lines represent N = 3 (solid),
N = 5 (dotted) and N = 10 (dashed)

V = VSU (3) − N 2 − 1

2N

αN

r
, (5.11)

where VSU (3) is given in Eq. (3.5). The ψ ψ̄ → G G process
occurs through SU (N ) interactions and has been studied in
Sect. 5.2. The results from this section can be directly applied
to this scenario with the potential being modified as

V = −4

3

αs

r
+ VSU (N ), (5.12)

where VSU (N ) is given in Eq. (5.2). Note here that ψ ψ̄ now
is an SU (3) singlet.

Finally, the ψ ψ̄ → g G process has not been studied
before and has been not been taken into account in [31]. For
this annihilation channel, gauge conservation constrains the
ψ ψ̄ initial state to be in the adjoint representation of both
SU (3) and SU (N ). Hence, there is no need to compute any
Clebsch–Gordan coefficient and the potential will now read

V = 1

6

αs

r
+ 1

2N

αN

r
. (5.13)

The Sommerfeld-corrected annihilation cross sections for all
these processes in the s-wave can then be expressed as

(σv)ψ ψ̄→q q̄ = 6 × πα2
s

9Nm2
Q

× S

(
− αs

6β
+ N 2−1

2N

αN

β

)
,

(σv)ψ ψ̄→g g = 7πα2
s

54Nm2
Q

×
[

2

7
S

(
4αs

3β
+ N 2−1

2N

αN

β

)

+ 5

7
S

(
− αs

6β
+ N 2−1

2N

αN

β

)]
,

(σv)ψ ψ̄→G G = (N 2−1)(N 2−2)πα2
N

48N 3m2
Q

×
[

2

N 2−2
S

(
4αs

3β
+ N 2−1

2N

αN

β

)
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+ N 2−4

N 2−2
S

(
4αs

3β
− 1

2N

αN

β

)]
,

(σv)ψ ψ̄→g G = 2(N 2−1)παsαN

9N 2m2
Q

× S

(
− αs

6β
− 1

2N

αN

β

)
,

(5.14)

where the Sommerfeld factor S(x) is given in Eq. (2.4).
The ratios of these cross sections over the s-wave pertur-
bative cross sections for each process are shown in Fig. 5
for N = 3, 5, 10 and with αs(μ̂) = αN (μ̂) = 0.1. For typ-
ical freeze-out velocities v ∼ 0.2, the Sommerfeld effect
can lead to a factor of 2 to 8 enhancement of the annihilation
cross section for most processes. Although this enhancement
could be slightly mitigated by the reduction of the cross sec-
tion for ψ ψ̄ → g G, this reduction is in general much less
pronounced than the enhancement observed for the other pro-
cesses, especially as N increases. Taking the Sommerfeld
corrections into account for the annihilation of messenger
particles is therefore essential to derive robust cosmological
bounds for the hidden sector models of dark matter discussed
in [27–31].

6 Conclusions

In this work we have derived analytical expressions for the
Sommerfeld corrections of the annihilation of colored parti-
cles. These expressions result from combining two orthogo-
nal procedures: deriving Sommerfeld corrections for partial
waves beyond the leading order and decomposing the QCD
potential into Coulomb potentials. Our results significantly
improve on existing literature and allow to combine higher-
order velocity corrections with the QCD nature of these anni-
hilation processes. These analytical expressions can readily
be applied to any type of annihilation of colored particles in
dark sector. The only necessary step is to expand the anni-
hilation cross sections into states of definite orbital angular
momentum and spin (l, s) and then apply the correction fac-
tors as presented in our work.

For consistently applying Sommerfeld-correction factors
for higher partial waves we showed it is necessary to expand
the annihilation amplitudes in (l, s) states. Then one can fur-
ther expand these states in powers of the momentum and
solve the non-relativistic Schrödinger equation for each of
the states separately. From these solutions one obtains the
analytic Sommerfeld-correction factors for all orders in the
partial wave expansion and all powers of the momentum.
We express these results conveniently as the Sommerfeld-
correction factor for the s-wave times an analytic distortion
factor specific to each term in the partial wave expansion.

The QCD nature of the process poses a challenge for the
analytic calculation of the Sommerfeld corrections which can
be overcome by decomposing the potential into a linear com-

bination of Coulomb potentials. This procedure, however,
depends crucially on the symmetry properties of the ampli-
tude. With an expansion of the amplitude in (l, s) states these
properties become apparent. The color structure then sim-
plifies and becomes independent of the kinematics of the
process. Then the color-dependent part of the annihilation
amplitude can be treated separately and later combined with
the Sommerfeld corrections for the partial wave components.

Finally, we apply these results to several colored dark sec-
tors with a singlet dark matter candidate, where the annihi-
lation of the colored states is solely responsible for setting
the relic abundance. We show that for particles of any spin—
scalar, fermion, vector—and in the triplet, sextet or octet rep-
resentation of QCD Sommerfeld corrections are sizable. A
consistent and precise inclusion of these effects is therefore
essential in understanding the specific details of a possible
colored dark sector. In an accompanying paper we present the
full study of several types of colored dark sectors where we
include precise determination of the relic density and discuss
the full phenomenology of these models.

We also present the first calculation of the Sommerfeld
corrections for dark sectors charged under general SU (N )

gauge groups. These corrections are especially relevant in
scenarios where confinement occurs after freeze-out, since
the new gauge group remains unbroken and the gauge cou-
pling is sizable. Although non-perturbative effects for these
models have been previously overlooked in the literature, we
showed that the Sommerfeld corrections can drastically mod-
ify the annihilation cross section of dark sector particles, and
therefore the dark matter relic density. We advocate for tak-
ing these corrections into account in future in-depth studies
of these models.

We conclude by emphasizing that the procedure described
in this work is not restricted to the annihilation of identical
particles. Notably, our method also applies to processes like
the annihilation of a triplet and an octet of QCD—for example
squark–gluino annihilation in supersymmetry. Henceforth,
Sommerfeld corrections for models with extended dark sec-
tors and multiple gauge groups can easily be included using
the presented formalism.
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A Partial wave cross sections

This appendix details the conventions used to compute the
annihilation cross sections in the Mathematica notebook
attached to this paper [44]. In order for the amplitudes to
be of the form of Eq. (2.6), we work in the so-called final
frame where the momenta of the final state are along the z-
axis and the momenta of the initial states are characterized
by the angles θ and φ. In order for the polarization vectors
of the gluons and of the vector � to be well-defined, we
compute the amplitudes in the helicity basis based on [54].
In this basis, for the annihilation processes we consider in the
main body of the paper the φ dependence of the amplitude
is well-known

Aλ1,λ2,λ3,λ4(p, θ, φ)

≡ Aλ1,λ2,λ3,λ4(p, θ, φ = 0)ei(λi−λ f )φ, (A.1)

with λi = λ1 − λ2 and λ f = λ3 − λ4.4 For these processes,
we therefore compute the amplitudes for φ = 0 and inject
the azimuthal phase factor into the final expression.

Assuming the quarks to be massless, the momenta for the
annihilation of a pair of �’s into quark and gluon pairs are

p1 = (E, p sin θ cos φ, p sin θ sin φ, p cos θ)

p2 = (E,−p sin θ cos φ,−p sin θ sin φ,−p cos θ)

p3 = (E, 0, 0, E)

p4 = (E, 0, 0,−E),

(A.2)

with E = √
p2 + m2. The spinors for a particle of helicity

± 1
2 and mass m moving in the direction (θ, φ) are

u+(p,m, θ, φ) = R(θ, φ) ·

⎛

⎜⎜⎝

√
E − p

0√
E + p

0

⎞

⎟⎟⎠

u−(p,m, θ, φ) = R(θ, φ) ·

⎛

⎜⎜⎝

0√
E + p

0√
E − p

⎞

⎟⎟⎠

v+(p,m, θ, φ) = R(θ, φ) ·

⎛

⎜⎜⎝

0
−√

E + p
0√

E − p

⎞

⎟⎟⎠

v−(p,m, θ, φ) = R(θ, φ) ·

⎛

⎜⎜⎝

√
E − p

0
−√

E + p
0

⎞

⎟⎟⎠ ,

(A.3)

4 For other processes like the ones discussed in Appendices B.3 and B.4
one needs to take into account the full φ-dependence of the amplitude.

with

R(θ, φ)=

⎛

⎜⎜⎜⎜⎜⎝

cos θ
2 − sin θ

2 e−iφ 0 0

sin θ
2 eiφ cos θ

2 0 0

0 0 cos θ
2 − sin θ

2 e−iφ

0 0 sin θ
2 eiφ cos θ

2

⎞

⎟⎟⎟⎟⎟⎠
.

(A.4)

The spinors for a particle moving in the opposite direc-
tion are obtained in [54] as well. They are very similar to
the expressions in Eq. (A.3) and are given in the attached
Mathematica notebook [44]. When computing ampli-
tudes involving fermion currents, we define the gamma matri-
ces in the Weyl basis.

The transverse polarization vectors corresponding to a
final state gluon of momentum p3 or to a vector � of momen-
tum p1 are

ε
(1)
± (θ) = 1√

2
(0,∓ cos θ,−i,± sin θ) , (A.5)

while the longitudinal polarization vector corresponding to
a vector � of momentum p1 is

ε
(1)
0 (p,m, θ) =

(
p

m
,
E

m
sin θ, 0,

E

m
cos θ

)
. (A.6)

Similarly, the transverse polarization vectors corresponding
to a final-state gluon of momentum p4 or to a vector � of
momentum p2 are

ε
(2)
± (θ) = 1√

2
(0,± cos θ,−i,∓ sin θ) , (A.7)

while the longitudinal polarization vector corresponding to
a vector � of momentum p2 is

ε
(2)
0 (p,m, θ) =

(
− p

m
,
E

m
sin θ, 0,

E

m
cos θ

)
. (A.8)

The full φ-dependence for polarization vectors can be found
in the attached Mathematica notebook [44]. We use [55]
to convert the helicity amplitudes into amplitudes for definite
spin states m1,m2,m3,m4 (with mi being the z-component
of the spin of particle i) using

Am1,m2,m3,m4(p, θ, φ)=
∑

λ1,λ2

Ds1 ∗
m1,λ1

(φ, θ,−φ)

× Ds2 ∗
m2,−λ2

(φ, θ,−φ)Aλ1,λ2,m3,−m4(p, θ, φ) (A.9)

where the Ds
m,λ are the Wigner D-functions. In this formula,

we used λ3 = m3 and λ4 = −m4 for final states, whose
momenta are along the z-axis.
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B Color decomposition

In this appendix we describe the decomposition of the group
structure of the amplitudes discussed in Sect. 3.2 for QCD
and in Sect. 5.1 for SU (N ). Moreover, later in this appendix
we discuss the decomposition and Sommerfeld corrections
for more exotic particles present in colored dark sectors.

B.1 Amplitude tensor decomposition

In this section we describe how to decompose a colored
amplitude into several channels of definite color. Then using
these expressions and using a specific form for the color
part of the amplitude as obtained in Sect. 3.2 we square
the amplitude and find the decomposition of the total cross
section. In principle one can decompose amplitudes which
may be any product of representations of SU (N ), however,
here we restrict ourselves to R ⊗ R with R = F (funda-
mental),S ( N (N+1)

2 -dimensional symmetric) andA (adjoint).
The decomposition for these channels is given in Eq. (3.3)
for QCD and in Eq. (5.2) for SU (N ). More exotic combi-
nations are discussed for QCD in the next two sections of
this appendix. To decompose the amplitudes we base our-
self on the method of tensor decomposition as described in
[38] and use fundamental indices for all representations. To
switch between (T a

R)ij where i, j run from 1 to dR and the
fundamental indices one can use the Clebsch–Gordan coef-
ficients of the representation with respect to fundamentals of
SU (N ). We focus purely on the color of � in A and drop the
color dependence of the remaining part in the amplitudes.
This method has been put forward already in [17] for the
triplet and the octet in QCD and we extend these results to
arbitrary N . Parts of these calculation have been done using
LieArt [56] and ColorMath [57]. For the product of two
fundamentals we can write the tensor product as Ak

i = viw j ,
which contains the full color dependence of the total ampli-
tude. We split up this part of the amplitude as

Ai
j = [1]ij + [A]ij

[1]ij = 1

N
δij A

m
m (B.1)

[A]ij = Ai
j − 1

N
δij A

m
m .

Here the indices i, j = 1, . . . , N represent the color of the
�i, j . For the product of two symmetric representations S
the situation is slightly more complicated as one needs to
represent each �u where u = 1, . . . , 1

2 N (N + 1) with two
fundamental indices i, j = 1, . . . , N . We can now write
Ai j
kl = vi jwkl , which now has to be symmetric under the

transformations i ↔ j , k ↔ l. Transforming between both
representations can be done using the respective Clebsch–
Gordan coefficients [58]. The symmetricity representation

decomposes as

Ai j
kl = [1]i jkl + [A]i jkl + [D]i jkl

[1]i jkl = 1

N (N+1)
Amn
mn

(
δikδ

j
l +δil δ

j
k

)

[A]i jkl = 1

N+2

[
δik A

mj
ml +δ

j
k A

mi
ml +δ

j
l A

mi
mk+δil A

mj
mk

]

− 2

N (N+2)
Amn
mn

(
δikδ

j
l +δil δ

j
k

)

[D]i jkl = Ai j
kl−

1

N+2

[
δik A

mj
ml +δ

j
k A

mi
ml +δ

j
l A

mi
mk+δil A

mj
mk

]

+ 1

(N+1)(N+2)
Amn
mn

(
δikδ

j
l +δil δ

j
k

)
. (B.2)

For the adjoint we can write Ai j
kl = vikw

j
l with Amj

ml =
Aim
km = 0. Again we can transform to adjoint indices a =

1, . . . , N 2 −1 by using the respective Clebsch–Gordan coef-
ficients which are obtained directly from the generators of
SU (N ). The adjoint decomposes as

Ai j
kl = [1S]i jkl + [AA]i jkl + [AS]i jkl

+[BS]i jkl + [CA]i jkl + [CA]i jkl + [DS]i jkl ,
[1S]i jkl = 1

N−N 3 A
mn
nm

(
δikδ

j
l − Nδil δ

j
k

)

[AA]i jkl = 1

2N

[
− δil (A

jm
mk − Amj

km) + δ
j
k (A

im
ml − Ami

lm )

]
,

[AS]i jkl = 4

N (N 2−4)
Amn
nm

(
δikδ

j
l − N

2
δil δ

j
k

)

+ 1

4−N 2

[
δik(A

jm
ml +Amj

lm )− N

2
δil (A

jm
mk +Amj

km)

− N

2
δ
j
k (A

im
ml +Ami

lm )+δ
j
l (Aim

mk+Ami
km)

]
,

[BS]i jkl = 1

4
(Ai j

kl − A ji
kl − Ai j

lk + A ji
lk )

− 1

2(N 2−3N+2)
Amn
nm

(
δikδ

j
l − δil δ

j
k

)

+ 1

4(N−2)

[
δik(A

jm
ml +Amj

lm )−δil (A
jm
mk +Amj

km)

− δ
j
k (A

im
ml +Ami

lm ) + δ
j
l (Aim

mk+Ami
km)

]
,

[CA]i jkl = 1

4
(Ai j

kl + A ji
kl − Ai j

lk − A ji
lk )

− 1

4N

[
δik(A

jm
ml −Amj

lm )−δil (A
jm
mk −Amj

km)

+ δ
j
k (A

im
ml −Ami

lm )−δ
j
l (Aim

mk−Ami
km)

]
,

[CA]i jkl = 1

4
(Ai j

kl − A ji
kl + Ai j

lk − A ji
lk )

+ 1

4N

[
δik(A

jm
ml −Amj

lm )+δil (A
jm
mk −Amj

km)
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− δ
j
k (A

im
ml −Ami

lm )−δ
j
l (Aim

mk−Ami
km)

]
,

[DS]i jkl = 1

4
(Ai j

kl + A ji
kl + Ai j

lk + A ji
lk )

+ 1

2(N 2+3N+2)
Amn
nm

(
δikδ

j
l + δil δ

j
k

)

− 1

4(N+2)

[
δik(A

jm
ml +Amj

lm )+δil (A
jm
mk +Amj

km)

+ δ
j
k (A

im
ml +Ami

lm )+δ
j
l (Aim

mk+Ami
km)

]
. (B.3)

The above decomposition applies for N ≥ 4, however, in
the case of QCD with N = 3 the representation BS does not
appear and the symmetric adjoint representation for SU (3)

is given by [8S]i jkl = [AS]i jkl + [BS]i jkl . This concludes the
decomposition of the amplitudes considered in Sects. 3.2
and 5.1.

B.2 Decuplet annihilation

it is possible to imagine dark sectors with exotic and large
representations of SU (3). Out of these representations the10,
15 and 27 will have annihilations directly into two Standard
Model particles, either to two gluons or a quark–gluon pair.
Although building these models is challenging, large color
representations are associated to higher annihilation cross
sections compared to the models we study—see Eq. (4.3).
The large annihilation rate leads to an enhanced depletion
of the dark matter relic abundance or equivalently allows
for larger mass splittings between the dark matter and its
coannihilation partner. As an example we consider the 10 for
which we have the following color decomposition:

10 ⊗ 10 = 1 ⊕ 8 ⊕ 27 ⊕ 64. (B.4)

By virtue of Eq. (3.2) while inserting the quadratic Casimir
invariants from Eq. (3.4) we decompose the QCD potential
as

V10⊗10 = αs

r

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−6 (1)

− 9
2 (8)

−2 (27)

+ 3
2 (64)

. (B.5)

To decompose the total cross section we write the color
part of the amplitude in tensor notation as Ai jk

lmn = vi jkwlmn

with full symmetricity in the upper and lower components
separately. After doing the calculation we find

[1]i jklmn = 1

60
Di jk
lmn,

[8]i jklmn = 1

30
Ci jk
lmn − 1

30
Di jk
lmn,

[27]i jklmn = 1

7
Bi jk
lmn − 2

35
Ci jk
lmn + 3

140
Di jk
lmn,

[64]i jklmn = Ai jk
lmn − 1

7
Bi jk
lmn + 1

42
Ci jk
lmn − 1

210
Di jk
lmn .

(B.6)

In these equations we used

Bi jk
lmn = δil A

pjk
pmn + · · · ,

Ci jk
lmn = δil δ

j
m Apqk

pqn + · · · , (B.7)

Di jk
lmn = δil δ

j
mδkn A

pqr
pqr + · · · ,

where the dots represent all symmetric combinations in the
upper and lower indices. Bi jk

lmn has nine terms, Ci jk
lmn has 18

terms and Di jk
lmn has six terms. By inserting Eq. (3.9) into

Eq. (B.6), we then obtain the following decomposition for
the 10 ⊗ 10 → ga gb process:

∑

color

∣∣A10⊗10

∣∣2 = 7
∑

color

∣∣[1]∣∣2 + 35

9

∑

color

∣∣[8]∣∣2

+5

3

∑

color

∣∣[27]∣∣2 even l + s, (B.8)

∑

color

∣∣A10⊗10

∣∣2 =
∑

color

∣∣[8]∣∣2 odd l + s.

As expected the amplitudes for odd l + s only involve the
color-octet channel. Moreover, for even l + s we observe
no decomposition into the 64 as this representation does not
appear in the color product of two gluons. From this result
and Eq. (B.5) the Sommerfeld corrections are obtained equiv-
alently to Eq. (3.18) as

σ
(S)

10⊗10→g g
=

⎧
⎪⎪⎨

⎪⎪⎩

1
7σ

(S)
C [6αs] + 9

35σ
(S)
C

[
9αs
2

]

+ 3
5σ

(S)
C [2αs] even l + s,

σ
(S)
C

[
9αs
2

]
odd l + s.

.

(B.9)

We observe here that in contrast to the correction factors for
the triplet, sextet and octet in Eq. (3.18), the decuplet has
positive coupling strengths for all of the Coulomb potentials.
This implies an even larger enhancement of the annihilation
cross sections and strengthens the effect of the larger Casimir
values.

B.3 Triplet–octet annihilation

An interesting possible scenario is a dark sector with two
colored particles close in mass to the dark matter particle.
For example, one could consider a model with a triplet and
an octet of SU (3). In addition to the self-annihilation of each
of these particles through the strong interaction, the 3 and the
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8 could coannihilate to a quark and a gluon. The color of the
initial state can be decomposed as

3 ⊗ 8 = 3 ⊕ 6 ⊕ 15. (B.10)

We then use Eqs. (3.2) and (3.4) to decompose the QCD
potential which gives

V3⊗8 = αs

r

⎧
⎪⎪⎨

⎪⎪⎩

− 3
2 (3),

− 1
2 (6),

+ 1
2 (15).

(B.11)

To decompose the total cross section we write the color
part of the amplitude in tensor notation as Ai j

k = viw
j
k with

the condition Aim
m = 0. We then find

[3]i jk = 3

8
δik A

mj
m − 1

8
δ
j
k A

mi
m

[6]i jk = 1

2
(Ai j

k − A ji
k ) + 1

4
(δ

j
k A

mi
m − δik A

mj
m ) (B.12)

[15]i jk = 1

2
(Ai j

k + A ji
k ) − 1

8
(δ

j
k A

mi
m + δik A

mj
m ).

In this model we assume a coupling between new particles
that transform under the 3 and the 8 and a Standard Model
quark—such as the squark–gluino coupling in supersym-
metry. The 3 ⊗ 8 → q g coannihilation process can then
occur through either an s-channel quark, a t-channel 3 or a
t-channel 8. These diagrams have different color structures
and their relative strength determines the decomposition over
the three different color channels. In contrast to the processes
considered in the main part an l+ s symmetry is not applica-
ble to this process since neither the initial nor the final state
involve pairs of identical particles. Therefore a decomposi-
tion like

∑

color

∣∣A3⊗8
∣∣2=α

∑

color

∣∣[3]∣∣2=β
∑

color

∣∣[6]∣∣2=γ
∑

color

∣∣[15]∣∣2

(B.13)

will have momentum-dependent factors α, β and γ , render-
ing the calculation of Sommerfeld corrections to be more
cumbersome.

A possible approach is based on the fact that each of the
three diagrams contributing to the amplitude has a fixed color
structure. When squaring the amplitude, the squares of the
contributions of each diagram as well the interference terms
will also have a well-defined color structure when consid-
ered separately. Applying the recipe described in Sect. 3.3 to
each of these terms will give the total analytic Sommerfeld-
corrected cross section at a given order in the partial wave
expansion. For convenience we present here the color decom-

positions of each combination of channels:

α = 1, β = 0, γ = 0 s-channel squared,

α = 64, β = 32

9
, γ = 64

45
t3-channel squared,

α = 16

9
, β = 8, γ = 16

5
t8-channel squared,

α = 1, β = 0, γ = 0 s-channel interference,

α = 8, β = 4, γ = 8

5
t3/8-channel interference.

(B.14)

B.4 Triplet–triplet annihilation

Here, we consider a model involving a scalar dark matter
particle that couples to a Standard Model quark and a new
vector-like quark (ψ) which is a triplet under color [37]. In
this case, the annihilation of ψ into quark pairs can occur
through two independent processes, namely ψ ψ̄ → q q̄ and
ψ ψ → q q plus its conjugate. Annihilation into a quark–
anti-quark pair can occur through either an s-channel gluon
or a t-channel scalar (the dark matter). ψ annihilation to
identical quarks occurs either in the t and u-channel through
dark matter exchange.

First we discuss the effect of the t-channel dark matter
exchange to ψ ψ̄ → q q̄ . The corresponding potential has
been derived in (3.5) and the resulting Sommerfeld correc-
tion for the s-channel gluon exchange has been derived in
Sect. 3.2 and presented in Eq. (3.18). Including the new t-
channel diagrams leads to a more complex color structure.
As for the triplet-octet model, since neither the initial state
nor the final state involve identical particles, the (l, s) com-
ponents of the amplitude cannot be constrained by symmetry
arguments. We have to adopt the same strategy as in Sect. B.3
and observe that the t-channel amplitude decomposes as

∑

color

∣∣At-channel
3⊗3̄

∣∣2 = 9
∑

color

∣∣[1]∣∣2 = 9

8

∑

color

∣∣[8]∣∣2, (B.15)

whereas interference between the s- and t-channel only
occurs when the initial state is in the octet representation.

The situation changes for the second process ψ ψ → q q.
Since the quarks in the final state are identical, contributions
from each (l, s) state are constrained by symmetry. The color
part of this amplitude can be decomposed as

3 ⊗ 3 = 3 ⊕ 6. (B.16)

We then use Eqs. (3.2) and (3.4) to decompose the QCD
potential which gives

V3⊗3 = αs

r

{− 2
3 (3),

+ 1
3 (6).

(B.17)
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To decompose the total cross section we write the color part
of the initial states in tensor notation as Ai j = viw j and find

[3]i j = 1

2
(Ai j − A ji ),

[6]i j = 1

2
(Ai j + A ji ). (B.18)

The total color structure for this process can be written as the
sum of the t-channel and u-channel contributions, namely
Ai j
kl = αδikδ

j
l + βδ

j
k δ

i
l . The CP symmetry condition akin

to that of Eq. (3.10) imposes that α = β for l + s even
and α = −β for l + s odd. Inserting this information into
Eq. (B.18) gives the following color decomposition:
∑

color

∣∣A3⊗3
∣∣2 =

∑

color

∣∣[6]∣∣2 even l + s,

∑

color

∣∣A3⊗3
∣∣2 =

∑

color

∣∣[3]∣∣2 odd l + s,
(B.19)

which, using Eq. (B.17), leads to

σ
(S)
3⊗3→q q =

⎧
⎨

⎩

σ
(S)
C

[−αs
3

]
even l + s,

σ
(S)
C

[
2αs
3

]
odd l + s,

(B.20)

which, beyond the s-wave, contrasts with the result derived
in [37] for a similar simplified model.
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