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Abstract We investigate the light-quarkonium spectrum
using a covariant Dyson–Schwinger–Bethe–Salpeter-equat-
ion approach to QCD. We discuss splittings among as well
as orbital angular momentum properties of various states in
detail and analyze common features of mass splittings with
regard to properties of the effective interaction. In particu-
lar, we predict the mass of s̄s exotic 1−+ states, and identify
orbital angular momentum content in the excitations of the ρ

meson. Comparing our covariant model results, the ρ and its
second excitation being predominantly S-wave, the first exci-
tation being predominantly D-wave, to corresponding con-
flicting lattice-QCD studies, we investigate the pion-mass
dependence of the orbital-angular-momentum assignment
and find a crossing at a scale ofmπ ∼ 1.4 GeV. If this crossing
turns out to be a feature of the spectrum generated by lattice-
QCD studies as well, it may reconcile the different results,
since they have been obtained at different values of mπ .

1 Introduction

Over recent years the covariant Dyson–Schwinger–Bethe–
Salpeter-equation (DSBSE) approach to QCD [1–4] has
matured via numerous individual studies of meson and
baryon states and related phenomena. To trace and sketch
the relevant literature, one may consult work on pseudoscalar,
vector [5–17], and other mesons [18–25], baryon masses [26–
31] leptonic, electromagnetic, and hadronic interactions of
both mesons [32–51] and baryons [52–64], as well as further
states [65–68].
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Many technical and numerical refinements and develop-
ments [69–82] have made it possible and desirable to attempt
an as-comprehensive-as-possible application of these tech-
niques to hadron phenomenology. For the sake of feasibility,
first steps were taken in a rainbow-ladder (RL) truncated
setup of the DSBSE framework using a suitable effective
interaction model.

Anchoring for an effective RL investigation needs to be
provided in the heavy-quark domain, first approached in this
context in [83] for bottomonium ground states and extended
in our recent studies of heavy quarkonia [84,85], and exotic
J PC = 1−+ states [86]. At the same time, additional model-
independent anchoring happens in and towards the chiral
limit via the satisfaction of the axial-vector Ward–Takahashi
identity [87–91]. For the case of dynamical chiral symme-
try breaking, this guarantees a massless pion ground state
and vanishing leptonic decay constants for all radial pion
excitations in the chiral limit as well as the validity of a
generalized Gell-Mann–Oakes–Renner relation for any pseu-
doscalar meson and quark mass [5–7].

Satisfaction of the axial-vector and other Ward–Takahashi
identities is one of the strengths of the RL-truncated setup in
the DSBSE approach. On the other hand, these identities can
be used to find appropriate constructions of the quark–gluon
vertex (QGV) and corresponding truncations of the DSBSE
system. In any truncation, the use of an effective quark–gluon
interaction remains, but this interaction will necessarily be
different at different levels of truncation.

Note that setting a particular dressing function to a con-
stant or zero, i. e., the corresponding n-point function is
at least partly approximated or neglected, constitutes an
effective model. The actual dressing function that would be
obtained by a more complete solution of the set of DSEs may
in fact be negligible but, strictly speaking, non-zero. In addi-
tion, the use of Ansätze may be several steps away from the
QGV and its dressing functions in a more complicated trunca-
tion and thus the effective nature of the resulting quark–gluon
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interaction somewhat hidden, e. g., [92]. In such a case, the
effects of the truncation are expected to be smaller regarding
the effective interaction as compared to the one which would
be found in an untruncated study.

The QGV [93] can easily be made more complicated in
simple interaction models [94–102]. Also, beyond-RL calcu-
lations with more sophisticated kinds of an effective interac-
tion are available [103–106], albeit in their current implemen-
tation too tedious for large-scale computations. In addition,
one needs to gain understanding in more basic truncations
first before advancing to more complicated ones; e.g., tech-
nical details and problems are much more easily worked out
this way.

Furthermore still, the importance of resonant corrections
cannot be stressed enough. We remark at this point that our
calculations provide bound-state solutions from the BSE;
hadronic (and other) decay widths can be obtained via con-
sistent constructions corresponding to the decay mechanism
involving bound-state amplitudes of the participating states
[39,57].

For the present purpose of a comprehensive investiga-
tion, we continue along the lines of our fitting strategy first
described in [84], where we employed it to find an optimal
RL-based description of heavy quarkonia. In the applica-
tion to light mesons it turned out that an overall satisfactory
description of light isovector-meson spectra seems not pos-
sible with our particular model setup and parametrization of
our effective one-dressed-gluon interaction.

In turn, for the study of exotic mesons in [86] we inves-
tigated several sets of splittings among light-meson masses
and were able to find some with a reasonable correlation to
exotic spectra in order to warrant using them to obtain pre-
dictions for exotic heavy quarkonia. Among others and as
a complement of our previous work, we revisit this prob-
lem here in Appendix B. We sketch the essentials of the
setup and strategy in Sects. 2 and 3. We have also system-
atically investigated pion-related, radial, orbital, and other
meson-mass splittings, whose detailed results are collected
in Appendix C–Appendix F. A combined fit is presented in
Sect. 3.5, followed by a discussion of orbital angular momen-
tum of various mesons in Sect. 4. Conclusions and an outlook
are presented in Sect. 5.

Our calculations are performed in Euclidean-space Landau-
gauge QCD. For the interested reader we refer to anal-
ogous calculations in Coulomb-gauge QCD [107–110] or
Minkowski space [111–119].

2 Setup and model

We use the homogeneous qq̄ BSE in RL truncation which
reads

Γ (p; P) = −4

3

∫ Λ

q
G ((p − q)2) Df

μν(p − q) γμ χ(q; P) γν

χ(q; P) = S(q+)Γ (q; P)S(q−) , (1)

where q and P are the quark–antiquark relative and total
momenta, respectively, and the (anti)quark momenta are cho-
sen as q± = q± P/2. The renormalized dressed quark prop-
agator S(p) is obtained from its DSE,

S(p)−1 = (Z2iγ · p + Z4mq(μ)) + Σ(p) ,

Σ(p) = 4

3

∫ Λ

q
G ((p − q)2) Df

μν(p − q) γμ S(q) γν. (2)

Σ is the quark self-energy, mq is the current-quark mass
given at the renormalization scale μ, and Z2 and Z4 are
renormalization constants [5]. Df

μν represents the free gluon
propagator and γν is the Dirac structure of the bare and RL-
truncated quark–gluon vertex. Dirac and flavor indices are
omitted for brevity.

∫ Λ

q = ∫ Λ d4q/(2π)4 denotes a trans-
lationally invariant regularization of the integral, with the
regularization scale Λ [5].

The effective interactionG needs to be specified in order to
obtain numerical results. Our choice is the well-investigated
and phenomenologically successful form of Ref. [8], which
reads

G (s)

s
= 4π2D

ω6 s e−s/ω2 + 4π γmπ F (s)

1/2 ln

[
τ +

(
1 + s/Λ2

QCD

)2
] .

(3)

The parameter ω [GeV] corresponds to an effective inverse
range of the interaction, while D [GeV2] acts like an overall
strength of the first term; they determine the intermediate-
momentum part of the interaction, while the second term is
relevant for large momenta and produces the correct one-loop
perturbative QCD limit. We note that

F (s) =
[
1 − exp

(
−s/

[
4m2

t

])]
/s, (4)

where mt = 0.5 GeV, τ = e2 − 1, Nf = 4, Λ
Nf=4
QCD =

0.234 GeV, and γm = 12/(33 − 2Nf), which is unchanged
from Ref. [8].

3 Spectroscopy

3.1 RL truncation: context and corrections

Based on beyond RL studies of light mesons and the amount
and kind of corrections observed there, one could argue that
a fitting attempt such as ours is futile in terms of a reason-
able description of the spectrum. In particular, one could
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Fig. 1 The various forms of the effective coupling, Eq. (3), in condensed comparison (see text)

expect or even demand that an RL-truncated analysis over-
estimates, e. g., the mass of the ρ meson, since both resonant
and non-resonant corrections should bring its value down to
the experimental number [11]. Then the RL results would
serve as a “core” for dressings and corrections to be added to
arrive at an overall satisfactory description of the spectrum.

However, our goal is to use RL truncation with an appro-
priate sophisticated model effective interaction to obtain a
comprehensive and reasonable description of meson spec-
tra, very much akin to a constituent-quark model. Still, one
can remark that in such a comprehensive fit attempt, due to
the expected corrections beyond RL truncation, the resulting
effective scale will be overestimated.

This is a valid concern; indeed, such a tendency exists.
However, one must keep two important observations in mind:
First of all, RL truncation does actually work well enough
in the heavy-quark domain, in particular for the same set of
states considered herein, a fact very often ignored in light-
meson-based arguments. This was shown in our recent work
[83,85] and provides ample motivation for our light-quark
study, in particular considering that not all means of gener-
alizing the functional form of the effective interaction have
been exhausted yet.

Secondly, studies beyond RL truncation, out of computa-
tional necessity, only use very few combinations of model
parameters and are by no means exhaustive. Unfortunately,
the same is true for many RL studies, which claim failure of
the truncation on the basis of a very limited data set. Exhaus-
tive studies in RL are necessary to make strong claims in this
regard.

Thus, based on the heavy-quarkonium success, it is cer-
tainly legitimate to test the same strategy that was used there
also in the light-quarkonium case and determine its abil-
ity and limits, even at the risk or expense of overestimat-
ing or, more generally speaking, somewhat misrepresenting
the spectrum. Apparent model deficiencies can and should

primarily be interpreted as the need to investigate more com-
plicated Ansaetze, which is a definite and interesting task for
further study.

3.2 Effects of model parameters

In a model setup such as ours the use of different param-
eter sets can lead to similar results. A prime example is
the original work of Maris and Tandy [8] where a reason-
able fit of π and ρ properties was obtained for three (ω, D)

pairs, which are – omitting units for simplicity – (0.3, 1.24),
(0.4, 0.93), (0.5, 0.744). When simplified to a one-parameter
model via the prescription D = const./ω (the standard
Maris–Tandy value of the constant is 0.372 GeV3), one finds
that ground-state masses and decay constants are indepen-
dent of the value of ω on the domain ω ∈ [0.3, 0.5] GeV,
whereas any excitations (radial or orbital) and their proper-
ties depend rather strongly on such a choice of ω, a picture
equally valid for both mesons and baryons [11,20,21,27,29–
31,41,55,57,60,72,120–125]. This is not surprising, since its
value in the parametrization of Eq. (3) defines a scale at which
the long-range part of the effective interaction is strongest –
a characteristic expected to be relevant in excitations rather
than ground states.

Strategies to arrive at results independent of the model-
parameter values for excited states can then rely on ratios of
calculated masses for selected pairs with a strongly correlated
ω dependence in order to predict isolated quantities; see,
e. g., Refs. [19,126]. For a more comprehensive approach,
however, it is important to have a systematic broad basis of
parameter sets to investigate.

3.3 Fitting strategy

We work on a grid of ω ∈ {0.4, 0.5, 0.6, 0, 7, 0.8} GeV ×
D ∈ {0.9, 1.1, 1.2, 1.3, 1.4, 1.5, 1.7} GeV2. Figure 1 illus-
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trates the form of the effective coupling defined in Eq. (3)
for all combinations of ω and D used herein. The axes are
D, used to group curves with the same D value, but differ-
ent ω values (this is shown in the left panel of Fig. 1); and√
s = √

q2 to show the s dependence of G , but at the same
time highlight the peak of the curve and label it by the corre-
sponding value of ω (this can be seen best in the right panel
of Fig. 1). Obviously, the peak height of each curve rises with
increasing D for constant ω. Also, for equal D, the lowest
ω = 0.4 GeV produces the largest peak, while the largest of
our ω = 0.8 GeV yields the lowest peak.

Our quark-mass value of mu/d = 0.003 GeV (given at a
renormalization point μ = 19 GeV) is fixed such that the
experimental value for the pion mass is reproduced, which
is universally the case for this current-quark-mass value on
our ω–D grid, and we consider the case of isovector mesons
in the isospin-symmetric limit.

In our fitting strategy the general idea is to evaluate χ2

from the comparison of the experimental splitting(s) (Δe)i
under consideration to our calculated values (Δc)i across the
ω–D grid by computing the residuals ri = (Δe − Δc)i for
every splitting i in the chosen set and sum their squares. Nor-
malizing the sum via the number n of splittings considered
then yields χ2 = 1/n

∑n
i=1 r

2
i at every (ω, D). We then

analyze and identify trends and regions of better or worse
agreement with experiment. In a successful global fitting
attempt, we would then find overlapping regions of good
agreement with experimental splittings for all relevant cases,
such that an overall satisfactory description of the isovector-
meson masses results.

Each figure of this kind herein is plotted from the same
viewing angle onto the ω–D grid, unless the resulting χ2 sur-
face cannot be seen properly or one of its essential features is
hidden. For the cases where our calculations did not produce
a numerically convincing result, “empty grid points” may
appear in the plot. This is the result of some of the numerical
techniques used in order to arrive at our computed results;
details of the numerical setup and difficulties as well as solu-
tion strategies can be found in [72,75–77,85,86]. Error bars
corresponding to our numerical uncertainties for our results
are generated by our calculations automatically. However,
for the sake of clarity they are not given in the fitting plots
but only where results for a particular set of computed results
are plotted versus the data, such as Figs. 3 or 5. Note also
that regions of equally low χ2 in the plots do not indicate a
correlation of the model parameters ω and D, since there is
no universal pattern across the various plots herein. We treat
these two parameters as completely uncorrelated.

A prominent example for a meson-mass splitting is the
hyperfine splitting between the 0−+ and 1−− ground states.
Our comparison is shown in Fig. 2. To properly and clearly
identify splittings we introduce the following notation: A
splitting is denoted by the quantum numbers J PC together

ω [GeV
]

0.4
0.5

0.6
0.7

0.8

D [GeV 2]
0.9

1.11.21.31.41.5
1.7

0.0

0.02

0.04

0.06

0.08

0.1

χ2

Fig. 2 Hyperfine splitting between π and ρ masses

with a subscript n for the radial excitation with n = 0 denot-
ing the ground state, n = 1 the first radial excitation, etc.
For the example of the hyperfine splitting, we thus write
[1−−

0 − 0−+
0 ]. For a set of splittings fitted simultaneously we

denote them together in parentheses.
It appears that in order to provide a good fit for the hyper-

fine splitting in the isovector case one would need to inves-
tigate values towards the “traditional” values for ω and D
from the original work of Maris and Tandy: the general trend
is that the splitting is better reproduced for lower values of
both ω and D.

However, while the hyperfine splitting is iconic, there are
many others to consider and the entire picture is rather com-
plicated. Thus, we detail several groups of splittings and their
effects separately in the appendix and discuss only the over-
all result and its comparison to experimental data here for
two particular strategic cases.

The detailed analyses found in the appendices concern,
in particular: a basic set of splittings used to arrive at possi-
ble conclusions about light exotic-vector states in Appendix
B, thus complementing the discussion published in [86]; a
set of splittings of various meson masses to the pion mass in
Appendix C, which is of paramount importance in an attempt
at overall fitting success; a set of radial splittings in vari-
ous quantum-number channels in Appendix D; a set of split-
tings resulting from orbital excitations of different states in
Appendix E; and a set of various other relevant splittings in
Appendix F, which do not fit in any of the previous categories.

Turning back to the discussion of fitting strategies, we
have chosen the first example of exotic mesons, along the
lines of our previous work, in order to highlight the choice of
splittings for a good description of this particular aspect of
the light-quarkonium spectrum before moving to the overall
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Fig. 3 Light isovector quarkonium (left panel) and strangeonium (right panel) spectra of mesons with J ≤ 2 including exotic quantum numbers,
fitted to the splittings ([1++

0 − 1+−
0 ], [1++

0 − 1−−
0 ], [1+−

0 − 1−−
0 ]). Calculated values (blue circles) are compared to experimental data (red boxes)

from [127]

description. As detailed in Appendix B, it turned out that
the combination ([1++

0 −1+−
0 ], [1++

0 −0−+
0 ], [1+−

0 −0−+
0 ])

yields a good description of the π1 masses without actually
fitting to those, which provides predictive power at higher
quark masses, where 1−+ states have not yet been observed
experimentally. The apparent mass gap between the ground
state and the first candidate for a hybrid herein is consistent
with lattice-QCD studies, where one obtains roughly 1.6 GeV
[128–130].

This strategy was applied to both isovector quarkonia and
strangeonium, where for the latter we used the slightly dif-
ferent set ([1++

0 − 1+−
0 ], [1++

0 − 1−−
0 ], [1+−

0 − 1−−
0 ]) for

fitting. This was necessary to compensate for the absence
of a pseudoscalar ground-state quarkonium without hidden
strangeness. The corresponding results are shown compared
to experimental data in the left and right panels of Fig. 3,
respectively. It is remarkable that not only π1 states are rep-
resented well by this particular choice of fitted splittings, but
also the overall appearance of the spectra is reasonable in
both cases.

3.4 Technical remarks

Before we move on to the more comprehensive fitting strat-
egy, a few more remarks are in order. For example, it is inter-
esting to note that nothing prohibits us from studying light
isoscalars comprehensively as well, but this case is a lot more
complicated due to flavor mixing with the ss̄ case. While we
could attempt such a comprehensive study of the isoscalar
light sector and extend our study along these lines, the main
difficulty would be a consistent setup of flavor mixing, which
happens on the meson level on the basis of the computed nn̄
and ss̄ states, since RL truncation does not contain flavor
mixing in the BSE kernel. Indeed, the challenge of finding
a reasonable scheme for mixing our nn̄ and ss̄ states in all
J PC channels under consideration would make for a point-

less exercise in the light of the otherwise simple setup of our
approach in the present study. In particular, adding several
additional parameters by introducing various mixing angles
would lead away from the simple message of this article
and not accomplish much in terms of predictive power. Note
also that it is conceivable to work with energy-dependent
mixing angles, which would result in even more arbitrari-
ness for the discussion of excited states [131]. As a result,
herein we restrict our discussion and predictions strictly to
the case of ideal flavor mixing, which corresponds to the nat-
ural flavor content of mesons in the RL-truncated DSBSE
approach.

Another somewhat technical remark concerns so-called
spurious solutions found early on in the BSE treatment of
the Wick–Cutcosky model [132,133]. There, such states can
be identified uniquely and clearly by an analysis of the states’
dependence on the coupling strength [134,135]. In the cou-
pled DSBSE approach, however, the situation is not as clear,
since both quark propagators are dressed and not free-parti-
cle propagators like for a Wick–Cutcosky setup, and there is
no clean way to turn the coupling strength down to zero with-
out destroying essential features of the model like dynamical
chiral symmetry breaking.

Signals for spurious states could be some either techni-
cally or phenomenologically suspicious or abnormal behav-
ior of the dependence of the results on parameters like ω,
D, or the quark masses, which we do not encounter in our
investigation. Even more technically, one may observe other
instabilities in the meson-mass solutions as they are obtained
from the homogeneous BSE.

This is part of a more general picture. It is clear that in
any numerical nonperturbative approach to QCD the con-
sistent numerical extraction of information on excited states
can be expected to be harder than for ground states. This
is true, e. g., for lattice QCD and also here, since the solu-
tions of the homogeneous BSE require dealing with eigen-
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values of a large matrix as a function of the meson momen-
tum squared [75]. As already mentioned in the introduc-
tion, numerical methods to study hadron excitations in the
DSBSE approach have been improved a lot over the past
years.

Still, restrictions certainly exist a priori by choosing a trun-
cation, and subsequently a particular effective interaction or
whatever other dressing functions remain to be chosen within
a given truncation.

Concretely, in our truncation and model, this implies a few
limitations of a more general, but still technical nature such
that we would not regard information as regards excitations
higher than the ones presented here very reliable. Due to
the expected effects of mainly resonant corrections to RL
truncation we restrict our arguments to states up to the second
excitation in the 1−− channel and to states up to the first
excitation otherwise. The exotic quantum numbers can be
viewed and calculated as separate channels and therefore the
lowest-lying state in any exotic J PC channel is obtained as
a ground state.

The role of spurious states should and will be investigated
as the need arises, in future studies of higher excitations than
the ones considered here. For the low-lying states at the heart
of the discussion herein, we are confident that our results do
not contain spurious solutions of the BSE.

Finally, a short discussion of the basic philosophy regard-
ing our comparison to experimental data is in order: To make
things simple and straight-forward, we assume the point of
view that each light isovector-meson state as given by the
PDG [127] corresponds to a bound state in our calculations.
While this is straight-forward indeed, it may be oversimpli-
fied, since there is the possibility that qq̄ states such as used
herein are only the basis for the actual content of mesonic
states seen in experiment. This is also one reason for us not
to continue our study to, e. g., the isoscalar case, since there
many possible admixtures such as glueballs or molecules
would have to be taken into account. We also neglect effects
of hadronic or other decay mechanisms at this point, since
inclusion of any of the effects mentioned here would be
beyond the scope of the present study.

In summary, our results must be taken with a grain of
salt and seen as some sort of qq̄-core states in a simple
matching attempt to the experimental light-meson data set.
At the same time, we stress that more informed and detailed
comparisons based on matching principles which take into
account both non-resonant as well as resonant corrections
are immediate next steps in a comprehensive study such as
the one presented here. In particular, the covariant and well-
constrained DSBSE formalism provides an ideal candidate
for providing reliable qq̄ core states in such an improved
future study.

It is also important to note at this point that not all radial
excitations used here are well-established experimentally

like, e. g., the a1(1640) in the 1++ channel or those for higher
meson spin J . Nonetheless, we plot our basic overview using
the values provided by the PDG [127].

3.5 Combined fits and results

With the goal of a comprehensive and satisfactory descrip-
tion of the light-quarkonium spectrum in mind, one could
easily base a fitting strategy and analysis on a large set of
splittings, including all possible kinds and combinations of
meson masses. However, not every splitting can be consid-
ered equally important or significant. We have investigated
a large number of splittings, and the results are detailed in
the appendix. For each group or kind of splittings we started
with a large set only limited by the arguments given above,
and attempted an as satisfactory as possible description of
the data. However, this turned out to be difficult in general.
In particular, it turned out that the attempt to tune the model
parameters to certain splittings can easily destroy a good
overall description of the data. For a more serious and con-
crete attempt at a good phenomenological description of the
meson spectrum with our present setup we thus selected a
number of reliable and important splittings in a first step of
reduction. In a second such step, only very few splittings
were retained to concentrate on a rather small set of fitted
splittings and investigate the results.

These three groups are used in each appendix for the dif-
ferent kinds of splittings and their respective combinations
are also shown here for the overall fitting attempt and result
in Fig. 4: all splittings combined are shown in the left panel,
the combination of the selected splittings from all relevant
appendices is presented in the center panel, and the combina-
tion of the reduced sets from all relevant appendices is shown
in the right panel of Fig. 4.

The complete set of splittings leads to an inconclusive fit:
minimal χ2 is found at two edges of our grid, namely for
the combinations ω = 0.6 GeV with D = 0.9 GeV2 and
ω = 0.4 GeV with D = 1.7 GeV2. To check that this is
a legitimate result, we need to actually have a look at the
comparison, which is shown for the latter data set in the left
panel of Fig. 5. Apparently, the inclusion of too many (all)
splittings did not properly capture the essence of the mass
spectrum. One of the main reasons is certainly the impor-
tance and somewhat exceptional role of the pion ground state
and all associated splittings. This peculiarity of the light-
meson spectrum, however, is an essential feature and cannot
be ignored or underrepresented like in this attempt, if it is to
be successful.

As a comparison the center and right panels of Fig. 4
show a much more conclusive situation; in fact, they look
almost identical: Both for the selected and the reduced set
(which contains a total of only eight splittings), the opti-
mal set on our grid is ω = 0.5 GeV with D = 1.7 GeV2,
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Fig. 4 χ2 plot from the comparison of our calculated and the experimental splitting sets as a function of ω and D. Left panel combination of all
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Fig. 5 Light isovector quarkonium spectra of mesons with J ≤ 2 including exotic quantum numbers, fitted to all listed splittings (left) and a
combination of the reduced sets only (right). Calculated values (blue circles) are compared to experimental data (red boxes) from [127]

for which the corresponding result for light isovector-meson
masses is plotted in the right panel of Fig. 5 and provides
a reasonable, albeit still unsatisfactory match to the exper-
imental states. While having found the optimal parameter
set at the boundary of our grid suggests an enlargement of
the grid towards higher values of D, the slope of the χ2

surface shows signs of a minimum very close to our values
quoted here. Thus and due to the straight-forward and sim-
ple matching strategy employed here, we postpone such a
step to future investigations. In fact, an improved descrip-
tion of the data will probably rather be accomplished by
exploring more parameters/degrees of freedom in the RL
effective interaction or introducing corrections beyond RL
truncation, both of which are beyond the scope of the present
study.

A final remark is in order: The comparison of the two pan-
els in Fig. 5 shows also, how two points rather close together
in our ω–D parameter space can yield results of rather dif-
ferent quality. On close inspection of the various χ2 plots
one indeed finds a significant change between the two points
ω = 0.4 GeV with D = 1.7 GeV2 and ω = 0.5 GeV with
D = 1.7 GeV2 in their majority.

4 Orbital angular momentum decomposition

4.1 Orbital angular momentum in a covariant approach

In a covariant DSBSE framework the BSA of a state is more
complex than a quantum-mechanical wave function. In par-
ticular, the defining properties of total angular momentum
J , parity P and, if the meson is its own antiparticle, charge-
conjugation parity C are not restricted like in a quark-model
setup [136–138]. There, a qq̄ meson content permits only
certain sets of quantum numbers, which are usually referred
to as “conventional”, while those unavailable are referred to
as “exotic”. We list the conventional cases in Table 1 as they
are decomposed with regard to the total qq̄ spin s and orbital
angular momentum l, together with the usual spectroscopic
notation. In correspondence with the results presented herein,
we include total angular momentum J up to J = 2.

While l and s are not observable, they are typical sub-
jects in discussions of meson structure and make sense in
our approach in connection with the covariant structures in
the meson BSA and their relation to the Pauli–Lubanski oper-
ator; see [139] and Appendix A. In short, covariants in the
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Table 1 Non-exotic quantum numbers and quark-model construction
up to meson spin J = 2

Type J PC s l Spectroscopic

Peudoscalar 0−+ 0 0 1S0

Scalar 0++ 1 1 3P0

Vector 1−− 1 0 3S1

1 2 3D1

Axial-vector 1++ 1 1 3P1

1+− 0 1 1P1

Tensor 2++ 1 1 3P2

1 3 3F2

Pseudotensor 2−+ 0 2 1D2

2−− 1 2 3D2

BSA can be put in correspondence with q̄q orbital angular
momentum in the meson’s rest frame. Contrary to the restric-
tions of the quark model, however, one finds P-wave content
in, e. g., pseudoscalar and vector mesons or S-wave content
in scalar or axial-vector states.

The latter also highlights the essential difference in terms
of the construction of the relevant amplitude: a nonrelativistic
quantum-mechanical wave function is constructed via cer-
tain limited sets of s and l to have the correct J PC , while a
covariant BSA is defined via J PC , and the rest-frame s and
l contents are determined dynamically by the solution of the
homogeneous BSE.

Here we present an orbital angular momentum decompo-
sition (OAMD), i. e., an analysis based on contributions of a
state’s covariants to the canonical norm [140] of the Bethe–
Salpeter wave function χ in Eq. (1). More precisely, in RL
truncation the square of the norm is proportional to a deriva-
tive of the integral

Tr
∫ Λ

q
χ̄ (q;−P) S−1(q+) χ(q; P) S−1(q−) (5)

with respect to Pμ appearing as arguments of the inverse
quark propagators. The conjugate amplitude is defined by

χ̄ (q;−P) :=
(
C−1χ(−q;−P)C

)t
, (6)

where C is the charge-conjugation operator in Dirac space
and the superscript t denotes transposition.

Now we write χ as a sum of covariants with Lorentz-scalar
coefficient functions as

χ(μ)(q; P; γ ) :=
N∑
i=1

T (μ)
i (q; P; γ ) Fi (q

2, q · P, P2), (7)

where N = 4 if J = 0 and N = 8 otherwise, and (μ) rep-
resents open Lorentz indices, where necessary [21]. Having
the four vectors q, P , and γ at our disposal, we can construct
the four standard Dirac covariants

1

γ · P
γ · q(T )

[γ · q, γ · P], (8)

where 1 represents the unit matrix in Dirac space and the
transversely projected relative momentum q(T ) is defined via

qμ(T ) := qμ − q · P
P2 Pμ = qμ − q · P̂ P̂μ, (9)

which is apparently simplified by using the unit momentum
in P direction instead, P̂ . These four covariants constitute a
scalar meson; multiplied by a factor of γ5 each, they define
a pseudoscalar BSA.

Covariants for spin-1 mesons are necessarily transverse
with respect to P as required of a massive spin-1 boson and
have a BSA with one open Lorentz index. One can directly
construct the corresponding vector-meson covariants by mul-
tiplying both γ μ(T ) and qμ(T ) by each of the four covari-
ants given above in Eq. (8), yielding a total of eight ten-
sors. Axial-vector covariants are obtained from these eight
by multiplication with a factor of γ5 each in analogy to the
scalar/pseudoscalar case. The general construction principle
for BSAs with arbitrary J can be found in [21].

Regarding the importance of quark orbital angular momen-
tum in a state, we compute the contributions of each com-
bination of covariants from the sum as defined in Eq. (7) in
the factors χ̄ and χ to the norm in Eq. (5). To identify l via
the Ti , we have computed each covariant’s eigenvalue for the
operator L2, defined in Appendix A. A complete correspond-
ing set of covariants for the cases J P = 0+, 0−, 1−, and 1+
is given in this appendix in Eqs. (A.8)–(A.11). In addition,
Appendix A includes all technical details and a discussion of
possible influences on the OAMD as presented here.

Simply put, each occurrence of the relative quark–anti-
quark momentum q corresponds to one unit of orbital angu-
lar momentum l. In this way, among the scalar covariants
there are two S-wave and two P-wave. In the pseudoscalar
case the situation is the same. For the vector and axial-vector
cases, there are two S-wave, four P-wave, and two D-wave
covariants.

4.2 Quantifying orbital angular momentum

With these definitions we are prepared for our analysis:
inserting the sum of Eq. (7) for both χ and χ̄ in Eq. (5)
we obtain N 2 terms, each with a specific combination of one
covariant from χ and one from χ̄ , which we denote via the
corresponding pair of numbers assigned to the covariants in
Appendix A for each particular case. Squaring the contribu-
tion from each combination of covariants and normalizing
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Fig. 6 Legend for OAMD plots with annotations

the sum of all squared contributions to 1, we have a quanti-
tative as well as illustrative tool at our disposal.

The following illustrations plot these contributions in
comparison to each other and using different colors to iden-
tify contributions from S, P , and D waves, which is annotated
in Fig. 6.

The corresponding numbers are plotted in Fig. 7 for all
ground states directly accessible to our solution via the homo-
geneous BSE, i. e., for J = 0, 1, including those with exotic
quantum numbers.

We note here that mesons with exotic quantum numbers
appear naturally in our covariant approach as radial excita-
tions in a certain J P channel. Orbital angular momentum
with respect to the q̄q relative momentum as investigated
here has recently been shown to play no role in distinguish-
ing between exotic and conventional states [136], where also
an in-depth discussion of issues related to exotic quantum
numbers can be found. Thus, it is not surprising to see rather
strong similarities of, e. g., the 0−+ and 0−− or the 1−− and
1−+ ground states in Fig. 7. For our purpose, we simply
regard the states presented here as the ground states in their
respective J PC channel for the sakes of demonstration and
completeness. We also provide the numbers for the plots of
Fig. 7 for each state in Table 2 for easy reference and a thor-
ough basis for the discussion together with the correspond-
ing experimental isovector meson, where available. Note that
numbers are rounded to one decimal.

A comment on the model parameters used to obtain the
data in Figs. 7 and 8 is in order. In Fig. 7 we present results for
the best-fit data set with ω = 0.5 GeV and D = 1.7 GeV2.
Higher states are not accessible to a direct solution via the
homogeneous BSE due to the fact that quark-propagator sin-
gularities cannot easily be taken into account numerically in
our setup, which results in a maximum meson mass obtain-
able directly. One can ameliorate this situation and estimate

e. g. bound-state masses by extrapolation techniques [21,77],
solution of the inhomogeneous BSE [71,76], or making
Ansätze for the Fi in Eq. (7) together with the quark dressing
functions and taking into account the effect of singularities
explicitly [9]. However, in all these cases, the direct con-
nection to QCD via explicit solution of the quark DSE and
the homogeneous meson BSE is lost at least to some extent.
In addition, the above techniques for an OAMD analysis are
based on the normalization of the on-shell bound-state ampli-
tude.

4.3 Ground and excited states

Our results provide a picture largely consistent with expec-
tations. All ground states are predominantly represented by
their expected orbital angular momentum contribution: the
pseudoscalar- and vector-meson ground states are predom-
inantly S-wave, while the scalar- and axialvector-meson
ground states are predominantly P-wave, including their
exotic counterparts.

Naturally, the next interesting question is the OAMD for
excitations in a given J PC channel. To achieve this and over-
come the limit introduced by singularities in the quark propa-
gators discussed above, we investigate a different set of model
parameters, namely ω = 0.3 GeV and D = 1.3 GeV2,
where a number of radial excitations is directly accessible
for investigation via the homogeneous BSE [49,136]. As a
prominent and instructive example, we investigate the vector-
meson case, for which the results are plotted in Fig. 8 and
the corresponding numbers are collected in Table 3 together
with possible experimental assignments.

In particular, the first row in Fig. 8 shows the ground state
as well as the first and second excitations in the ρ-meson
channel. Comparison of the 1−− ground-state plots in Figs. 7
and 8 as well as the corresponding numbers in Tables 2 and
3 already indicate that the OAMD is robust under changes of
the model parameters ω and D within the reasonable range
employed herein. To make an even more convincing case,
we computed and plotted a large set of OAMD results for
the first 1−− excitation, spanning the entire ω − D grid, side
by side in Fig. 12 in Appendix A. From this comparison it is
apparent that the 1(1−−) OAMD results are very robust in a
both qualitative and quantitative manner.

Thus, conclusions from this different set of parameters can
be confidently expected to also hold for our best-fit parameter
choice as well as for, e. g., the pair (0.7, 1.7), which leads to
an accurate ρ(1450) mass as plotted in Fig. 3. The latter case
is interesting in particular for the reliability of the OAMD
results presented herein in the light of the sometimes rather
poor description of experimental spectra by our model results
for a certain parameter set.

We find the ρ ground state with a pure S-wave component
of roughly 87%. Pure other components are almost negligible
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0(0−+) 0(0−−) 0(0++)

0(0+−) 0(1−−) 0(1−+)

0(1++) 0(1+−)

Fig. 7 Orbital angular momentum decomposition of ground-state
mesons. Horizontal axes are labeled by indices of covariants as given in
Eqs. (A.8)–(A.11). The vertical axis gives the percentage of the squared
contribution of each respective covariant combination plotted by a bar

in the corresponding square. The heights of all bars add up to 1. The
colors represent: S-wave (blue), P-wave (green), D-wave (red), S–P
mix (cyan), S–D mix (magenta), P–D mix (yellow). Figures are rotated
to provide the best possible overview

Table 2 Orbital angular momentum content of ground states with
J = 0, 1. Numbers are given in %. For an illustration of the differ-
ent contributions, see Fig. 6

Name n(J PC ) S S–P P P−D D S−D

π 0(0−+) 73.9 26.1 0.0 – – –

– 0(0−−) 92.2 7.5 0.3 – – –

a0(980) 0(0++) 5.0 36.3 58.8 – – –

– 0(0+−) 1.5 11.4 87.1 – – –

ρ 0(1−−) 88.2 9.8 1.1 0.8 0.1 0.0

π1(1400) 0(1−+) 98.7 1.2 0.1 0.0 0.0 0.0

a1(1260) 0(1++) 0.4 9.5 85.6 4.3 0.2 0.0

b1(1235) 0(1+−) 0.1 3.6 80.5 15.4 0.5 0.0

and mixes provide the remaining contributions to the canon-
ical norm. For the first excitation in this channel, matched to
the experimental ρ(1450), the situation is a bit more com-
plex: the state has a predominant D-wave component of 73%.
Pure S-wave and P-wave contributions are small and the
remaining contributions come from mixed terms. For the sec-
ond excitation in the 1−− channel we find a predominantly
S-wave OAMD, much like for the ρ with the pure S-wave
percentage even higher at 99%. In this case, the experimen-
tal assignment in terms of the next excitation in the channel
is not clear, however, since the ρ(1570) needs confirmation;
the next higher-lying state in this channel is the ρ(1700). We
thus leave this correspondence open for the sake of simplic-
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0(1−−) 1(1−−) 2(1−−)

0(1−+) 1(1−+) 0(1−)

Fig. 8 Orbital angular momentum decomposition of vector mesons. Axes and colors as in Fig. 7

Table 3 Orbital angular
momentum content of ground
and excited vector mesons.
Numbers are given in %. For an
illustration of the different
contributions, see Fig. 6

Name n(J P(C)) S S−P P P−D D S−D

ρ 0(1−−) 86.7 9.8 1.4 1.9 0.1 0.0

ρ(1450) 1(1−−) 1.4 1.8 3.1 21.1 72.5 0.1

ρ′′ 2(1−−) 98.5 1.2 0.1 0.1 0.0 0.0

π1(1400) 0(1−+) 97.4 2.4 0.1 0.1 0.0 0.0

π1(1600) 1(1−+) 16.1 0.6 0.9 7.6 74.8 0.0

K ∗(892) 0(1−) 89.1 8.6 1.0 1.2 0.1 0.0

ity. The presence of both S- and D-wave in this channel still
suggests more excited states than, e. g., in the pseudoscalar
case.

4.4 Orbital angular momentum as a function of the quark
or pion mass

This is interesting to compare, e. g., to recent studies in lat-
tice QCD, where the meson spectrum has been an object of
intense study, including the role of orbital angular momen-
tum and the grouping of states in (super)multiplets [128–
130,141], as well as in particular the ρ meson and its exci-
tations regarding their orbital angular momentum properties
[142,143]. The former reference, for a pion mass of ∼ 700
MeV, finds the ρ(1450) to be an S-wave [130], while in the
latter, at a pion mass of 289 MeV, the ρ(1450) is found to be
predominantly D-wave. Note that the quark model predicts
the first excitation in the 1−− channel to be S-wave for all
quarkonia regardless of the quark mass, e. g., [144].

To investigate this discrepancy, we studied the S- or D-
wave assignments of the first and second excitation in the 1−−
channel in our results as functions of the pion mass, plotted
in Fig. 9. Interestingly, we find that in our model there is a
crossing of the two excited states a bit above a current-quark
mass of 250 MeV, which in our calculation corresponds to
a pion mass of mπ ≈ 1.4 GeV. Below this scale, the first
excitation in the vector channel is predominantly D-wave and
above predominantly S-wave; we have extended our study
up to the charm-quark mass, where our results and OAMD
interpretation for the first two excitations of the J/Ψ are in
line with quark model, experiment, and lattice QCD [145].

To further illustrate the crossing, we have collected a rep-
resentative set of OAMD plots along the excited-state curves
from Fig. 9 and displayed them in a very compact fashion in
Fig. 10. In this figure, the lower row represents the first and
the upper row the second excitation. One can clearly see the
transition above but apparently close to the quark-mass value
of 250 MeV.
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Fig. 9 S- and D-wave assignments of states in the 1−− channel as
functions of the pion mass

While our study presents an RL model result, it is well con-
ceivable that such a crossing is an actual feature of the spec-
trum also in lattice-QCD and will be found by both groups at
a scale in between their respective pion-mass values, thus rec-
onciling their different interpretations of the ρ(1450). Such
a scenario is in clear contrast to the traditional quark model.

However, it is important to remark that a simple interpre-
tation of the ρ(1450) in terms of a radial versus an orbital
excitation does not seem adequate in the DSBSE approach,
since all excitations belong to the same tower of 1−− states
in a natural way.

Generally speaking, in our approach there is no reason
why the excitations of the ρ found in experiment should
not be arbitrary mixtures of S- and D-waves, a feature
appearing naturally also in our RL treatment. Other inter-
pretations of the excited states found in experiment in the
1−− channel include also hybrid admixtures [146,147]. The
notion of hybrids makes use of explicit gluonic degrees of
freedom, which is content implicit in our approach via the
construction and degrees of freedom contained in a covari-
ant quark-bilinear Bethe–Salpeter amplitude [86,136,148].
Thus, there is no contradiction of our results with such
interpretations. Further information regarding an identifi-

Fig. 11 Overview of OAMD for all states presented in Figs. 7 and 8.
Bars without hatch correspond to the best-fit model parameter set used
in Fig. 7, while hatched bars correspond to the secondary parameter set
used in Fig. 8. Colors like in Fig. 7

cation of our states with regard to experimental data will
come from a study of hadronic decay widths along the
lines of [39,57], which is work in progress. This will also
allow a comparison with quark-model results and inter-
pretation, where hadronic partial widths are decisive ele-
ments pro or contra hybrid admixtures for excited ρ states
[146,147,149,150].

4.5 Further examples

To complement the vector-meson picture, we present the
ground and first excited states for the exotic 1−+, as well
as the strange ground state, i. e., the K ∗(892). The OAMD
for the two lowest-lying 1−+ is very similar to the 1−−
case. While the identification of these two 1−+ states with
the experimental π1(1400) and π1(1600) is debatable, e. g.,
[86,151,152], we find a predominantly S-wave ground state
and a D-wave first excitation. The K ∗(892) looks very simi-
lar to the ρ as well, which is not surprising, given the context
of SU (3) flavor symmetry in QCD.

To complete this section, we present all OAMD results
combined in a single plot in Fig. 11. A similar analysis for
heavy quarkonia will be provided elsewhere.

3 100 200 250 300 400 500 600 700 855

Fig. 10 Orbital angular momentum decompositions of first (lower row) and second (upper row) excitation in the 1−− channel as functions of the
current-quark or pion mass, respectively. The current-quark mass in MeV is given below each column. Axes and colors as in Fig. 7
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5 Conclusions and outlook

We present a covariant study of the light isovector-meson
spectrum. Via various comparisons of our calculated results
for mass splittings to experimental data, we investigated the
role and importance of the two characteristic features of the
effective interaction used herein, which are the strength of
the interaction’s intermediate-momentum part represented
by the parameter D on the one hand, and the inverse effective
range of the interaction represented by the parameter ω and
easily visible as the peak position of the effective interaction
in momentum space.

At the beginning of the analysis we revisit the problem of
isovector exotic-vector states, which was already discussed
previously [86] and add an in-depth discussion of the situa-
tion, presenting also predictions for the lowest-lying s̄s states
in the 1−+ channel.

Then, in a step-by-step fashion, we investigate our results
for radial, orbital, other, and pion-related isovector-meson
mass splittings and their dependence on the two parameters
in our model. The following conclusions may be drawn from
our results:

First, for most individual splittings in our investigation,
the dependence on ω was more pronounced and important
for a good match to experimental data than the one on D in
the sense that for the optimal ω region the dependence on D
was very small.

Second, since our RL-truncated approach somewhat sim-
plifies the problem and ignores both non-resonant and res-
onant effects expected beyond RL, achieving a good fit to
experimental light-meson data would not be a sign of an
accurate description of the physics mechanisms behind those
states. It is thus also unsurprising that fitting all available
splittings does not provide the best match to the data. In
order to find a better match, we select sets of splittings from
each category in two steps and, in the end, combine them as
such to arrive at an overall result. Our general impression is
that choosing a small but reliable set of splittings provides
the best results.

Third, the pion emerges as a critical state for the fitting
process in the sense that its mass is fixed in our study due to
its protection via the axial-vector Ward–Takahashi identity.
As a result, pion-related splittings appear to be substantially
more important than others for achieving a reasonable match
of our calculated results to experimental data.

Finally, regarding preferred parameter values from our
investigations we find that ω values lower on our grid together
with high D values provide the best matching result. This
means an inverse effective range of the model interaction of
0.5 GeV, which is at the upper end of the domain originally
investigated by Maris and Tandy [8], but with an increased
overall strength of the interaction. This is different from our
results obtained previously for heavy quarkonia [85], where

the resulting inverse effective range was 0.7 GeV. This means
that for our setup the important features of the effective inter-
action are shorter range in heavy quarkonia and longer range
in the light-quark sector.

In our analysis of the orbital angular momentum decom-
position of the covariant Bethe–Salpeter wave functions, the
ground states follow intuitive patterns. For excited states in
the 1−− channel, concretely for excitations of the ρ meson,
our results for theρ(1450) show a predominant D-wave com-
ponent. We compare this to corresponding and contradicting
results from lattice QCD by investigating our results as func-
tions of the pion mass from the chiral limit to charmonium.
We find a level crossing of the S- and D-wave vector exci-
tations at an intermediate scale of mπ ≈ 1.4 GeV, which,
if transferrable to lattice studies, might reconcile different
results obtained at different pion masses.

Overall, our result is in contrast to a q̄q state in the quark
model. Quark-model interpretations of the ρ excitations in
terms of hybrid admixtures are not contradicted, however,
since such contributions are implicit in our approach. Further
insight is expected from upcoming studies of hadronic partial
decay widths of these states.

As an outlook we note that the possibilities of making
the effective interaction more general and flexible have still
not been exhausted and present the most promising path for
making a study such as ours more successful in the present
RL setup. Steps beyond the current truncation are promising
as well, with a clear emphasis on non-resonant corrections,
in particular in the light-quark sector.

These will be important in the light of ongoing and future
experimental efforts at JLab, where GlueX has started taking
data recently [153], the P̄ANDA facility at FAIR, as well as
programs at CERN, Beijing, and KEK with a focus on exotic
and excited meson states.
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Appendix A: Quark orbital angular momentum of the
BSA

In Sect. 4 we discuss quark orbital angular momentum in
the BSA based on the covariants present in each particular
state. In this appendix we detail the connection to the Pauli–
Lubanski operator and, in particular, the square of the orbital-
angular-momentum operator.
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Such a discussion of particle spin rests on a general, rela-
tivistic footing, where the angular momentum of a particle’s
state is obtained via the Pauli–Lubanski vector operator

Wμ := εμνρτ Pν Jρτ . (A.1)

The operators J and P are built from the 10 generators of the
Poincaré group. The square WμWμ is one of the two Casimir
operators of the Poincaré group and, in particular if P is
taken normalized to one, yields the total angular momentum
j ( j + 1) as the eigenvalue of a relativistic quantum state.

In our case, we deal with a covariant quark-bilinear BSA
with the main focus on quark orbital angular momentum,
which can be obtained by splitting Wμ := Sμ+Lμ and com-
puting the corresponding eigenvalues l(l+1) of the operator
LμLμ acting on the covariant Dirac tensors in the BSA. In
the meson’s rest frame l can then be interpreted in the usual
way, i. e., l = 0 corresponds to an S-wave, l = 1 to a P-wave,
l = 2 to a D-wave, etc.

Lμ is given by the expression

Lμ := i

2
εμνρτ P̂ν

(
qρ∂τ

q − qτ ∂ρ
q

)
, (A.2)

where q and P̂ are the quark relative four-momentum and
unit total meson momentum, respectively; see, e. g., [74].
The Dirac part is trivial and we omit it for simplicity.

L2 := LρLρ , in turn, is given by

L2 = 2qμ(T )∂μ
q −

(
q(T )2δ(T )

μν − qμ(T )qν(T )
)

∂ν
q ∂μ

q , (A.3)

where the following definitions and relations are helpful:

qμ(T ) := qμ − q · P̂ P̂μ (A.4)

is the transversely projected relative momentum with respect
to P , whose square is

q(T )2 = q2 −
(
q · P̂

)2
. (A.5)

In addition, analogously,

δ(T )
μν := δμν − P̂μ P̂ν . (A.6)

We list the covariants together with their L2 eigenvalues
in Eqs. (A.8)–(A.11) below. For completeness as well as easy
reference, we also provide the eigensign C of each covariant
under charge conjugation defined in analogy to Eq. (6), i. e.,

Ti (q; P) → C (C−1Ti (−q; P)C )t , (A.7)

where again C is the charge-conjugation operator in Dirac
space and the superscript t denotes transposition.

Applying Eq. (A.3) to the standard four linearly indepen-
dent scalar Dirac covariants as defined in Sect. 4, one obtains
the following correspondence:

i Ti l C

1 1 0 +
2 γ · P̂ 0 −
3 γ · q(T ) 1 +
4 [γ · q, γ · P̂] 1 +

(A.8)

where 1 represents the unit matrix in Dirac space. Since the
Dirac part of L2 is trivial, multiplication by γ5 does not
change any of these correspondences, which yields the pseu-
doscalar assignments:

i Ti l C

1 γ5 0 +
2 γ5 γ · P̂ 0 +
3 γ5 γ · q(T ) 1 −
4 γ5 [γ · q, γ · P̂] 1 +

(A.9)

For the vector case, one has eight covariants and finds the
following correspondence:

i Ti l C

1 γ μ(T ) 0 −
2 γ μ(T ) γ · P̂ 0 −
3 [γ μ(T ), γ · q(T )] 1 +
4 γ μ(T ) [γ · q, γ · P̂] − 2 qμ(T ) γ · P̂ 1 −
5 qμ(T ) 1 1 −
6 qμ(T ) γ · P̂ 1 +
7 qμ(T ) γ · q(T ) − 1

3q
(T )2 γ μ(T ) 2 −

8 qμ(T ) [γ · q, γ · P̂] − 1
3q

(T )2 [γ μ(T ), γ · P̂] 2 −
(A.10)

Multiplying each covariant again by γ5, one arrives at the
axial-vector case, where

i Ti l C

1 γ5 γ μ(T ) 0 +
2 γ5 γ μ(T ) γ · P̂ 0 −
3 γ5 [γ μ(T ), γ · q(T )] 1 +
4 γ5 γ μ(T ) [γ · q, γ · P̂] − 2 qμ(T ) γ5 γ · P̂ 1 +
5 qμ(T ) γ5 1 −
6 qμ(T ) γ5 γ · P̂ 1 −
7 qμ(T ) γ5 γ · q(T ) − 1

3q
(T )2 γ5 γ μ(T ) 2 +

8 qμ(T ) γ5 [γ · q, γ · P̂] − 1
3q

(T )2 γ5 [γ μ(T ), γ · P̂] 2 −
(A.11)

It is an interesting point to ask for possible influences
on the OAMD as presented here. Possible concerns include
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Fig. 12 Orbital angular momentum decomposition of first 1−− excitation where available on our ω − D grid. The particular (ω, D) pair is given
below each subfigure omitting units for brevity. Axes and colors as in Fig. 7

the non-unique construction via the canonical norm, gauge-
dependence, as well as dependences on the renormalization
and regularization procedures.

In a truncated DSBSE approach, one can always expect
some gauge dependence of the results via the truncation, in
the sense that while choosing a gauge in principle may not
make that much of a difference, truncating the system of
integral equations, albeit at the same level, may have a larger
effect by yielding different results in different gauges.

Since orbital angular momentum is not observable but
simply a welcome concept to interpret certain results in a
way that has been and still is very accessible for people to
discuss via the basic concepts of textbook quantum theory,
our construction may be altered or a quantitative object dif-
ferent from the canoncial norm may be choosen to arrive at
OAMD results. However, it is hard to see a more sensible way
to construct appropriate numbers for the S-, P-, and D-wave
interpretation than ours, given the restrictions of a covari-
ant BSA decomposed into orthogonal Dirac structures with
well-defined C -symmetry and definite eigenvalues of L2.

Dependencies on the renormalization method and cutoff
are conceivable in principle as well. However, we expect
these effects to be small due to the thorough care devoted
to the topics of renormalization and cutoff dependence from
the very beginning of studies of this kind by Maris [5,8].
These early publications also include a study of the asymp-
totic behavior of various BSA structures, from where differ-
ent sensitivities to the cutoff could result. However, since we
keep all covariant structures as well as a full angular setup
in the numerical computation, we do not see a mechanism,
from which an obvious flaw in the treatment could result, and
are confident that any dependences of our OAMD results on
the technical details are kept to a minimum.

To conclude this appendix, we consider a comparison of
the OAMD for the first ρ excitation for all points on our ω−D
grid, where the solution is directly possible via the homoge-
neous BSE. It is apparent that this result, as shown in Fig. 12,
is both qualitatively and quantitatively very robust across the

entire grid and thus supports that statements made about the
OAMD for a certain parameter set are assumed equally valid
for another parameter set. A more general speculation would
be that they are model-independent features of the BSA. Note
that for lower ω some D values were intermittently left out
in order to keep the number of plots reasonable.

Appendix B: Exotic mesons revisited

In short, the problem investigated in [86] was how to reach
a good fit of the π1 spectrum without actually fitting it. To
illustrate our region of interest we turn directly to the π1

states and plot a comparison for the radial splitting between
the ground and first excited 1−+ states, [1−+

1 − 1−+
0 ], in

the right upper corner of Fig. 13 on the one hand. On the
other hand, we add two more splittings to form a set of three,
namely the splitting of each 1−+ state to the ground-state
pseudoscalar meson together with the radial exotic splitting,
([1−+

1 − 1−+
0 ], [1−+

1 − 0−+
0 ], [1−+

0 − 0−+
0 ]) and show the

result at the left of the center row in Fig. 13. While the plot
showing merely the exotic-vector radial splitting remains
inconclusive regarding the interesting parameter domain, the
combination clearly shows a region of low χ2 in the interior
of our grid, which is the necessary prerequisite.

The next step was to identify a set of non-exotic splittings
that provide similar results for our fitting attempts, i. e., a
reasonable correlation to the exotic case. It turned out that
axial-vector mesons are good indicators. In particular, we
studied several sets of splittings. To start, the simple splitting
between the 1++ and 1+− ground states [1++

0 − 1+−
0 ] is

shown in the center of Fig. 13. While there is a visible trend,
this does not show a clear preference in any small enough
region of our grid. While at least the combination high ω and
low D are excluded, more information is needed to proceed.
As a consequence, we added two more splittings analogous
to the case above, namely those of each axial-vector ground
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Fig. 13 χ2 plot from the comparison of our calculated and the experimental splitting(s) (sets) as a function of ω and D

state to the pseudoscalar ground state. The result is shown
at the right of the center row in Fig. 13 for the combination
([1++

0 − 1+−
0 ], [1++

0 − 0−+
0 ], [1+−

0 − 0−+
0 ]), which allows

one to focus on a well-defined region inside our grid as well.
Even better, this plot is nicely correlated with the exotic-
pseudoscalar splitting set and so our marker set of splittings
was found.

On a little detour to the isoscalar case, more precisely
strangeonium, one can see that additional difficulty is added
with the loss of a reliable match for the pseudoscalar ground
state due to SU (3) flavor mixing, which is not represented
in an RL BSE kernel. More precisely and unsurprisingly,

the flavor content of the meson under consideration in the
RL BSE cannot change due to the effective dressed-gluon
exchange interaction kernel. As a result, it does not make
sense to discuss all isoscalar states, where various mixing
mechanisms are at work, and we restrict our comparison to
those experimental states, where a dominant s̄s component
is expected. As a consequence, other states are omitted from
the analysis as well as from the right panel of Fig. 3 for
clarity. States like the η or η′ can still be studied in our setup
via appropriate mixing of the resulting BSAs from each light-
quarkonium calculation, an approach explored, e. g., in [126],
with additional recent insight from [136]. However, herein we
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Fig. 14 χ2 plot from the comparison of our calculated and the experimental other splitting as a function of ω and D

refrain from introducing more parameters in our calculation
and focus on a few, concrete aspects in strangeonium.

Thus, in order to have a sensible fitting Ansatz, an alter-
native to ([1++

0 − 1+−
0 ], [1++

0 − 0−+
0 ], [1+−

0 − 0−+
0 ]) must

be found to predict 1−+ states in the strangeonium system,
i. e., assuming ideal flavor mixing, along the same lines as
for the heavy quarkonia. Without too much trouble, one can
try two approaches: First, use the pseudoscalar ground state
nonetheless by employing some dummy experimental mass
for a pure light-light pseudoscalar in the comparison. Sec-
ondly, one could replace the pseudoscalar ground state by
the vector ground state, which is a good choice in strangeo-

nium due to the confirmed ideal mixing of the φ and ω

mesons.
Following the second example, we plot χ2 for the isovec-

tor case and the set ([1++
0 −1+−

0 ], [1++
0 −1−−

0 ], [1+−
0 −1−−

0 ])
in the left lower corner of Fig. 13 and also at the center of the
lower row in Fig. 13 from a different angle. Apparently this
works well by preferring also the large-ω-large-D region of
our grid, except that there is no clear “wall” or “boundary”
signaling a best value inside our grid. The same fit on the
ss̄ data set yields a plot shown in the lower right corner of
Fig. 13. It is evident that in this case the “missing of a bound-
ary” is even more pronounced, i. e., our grid is too small to
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Fig. 15 χ2 plot from the comparison of our calculated and the experimental pion-related splitting as a function of ω and D. Left panel Combination
of all pion-related splittings (see text); center panel combination of a subset of 5 splittings (see text); right panel ([1−−
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0 ])

make a definitive statement about whether or not one can find
a minimum for χ2 in this case. However, one should not for-
get that with the light and strange-quark masses being rather
close together, so should be the parameter sets optimal for the
description of the data. This comes from the fact that, while
we do allow our model parameters to be different for each
quark mass as a result of our philosophy that in our phe-
nomenological RL approach effects beyond RL truncation
could be absorbed by the effective interaction and its param-
eters including their values, the actual variation should be
moderate and thus small from the light to the strange-quark
case.

We illustrated the two cases discussed above by plotting
the corresponding spectra for the pair of model parameters
ω = 0.7 GeV and D = 1.7 GeV2 for the isovector and
ω = 0.8 GeV and D = 1.7 GeV2 for the strangeonium cases
in the left and right panels of Fig. 3 in Sect. 3.3, respectively.
In addition to what has been already provided in Ref. [86],
we thus predict the two lowest-lying s̄s states in the 1−+
channel at 1.56 and 2.02 GeV, respectively.

Appendix C: Splittings to the pion ground state

In this section we illustrate all splittings in our study of a
particular meson state to the pion ground state. This is par-
ticularly interesting, since the pion ground state is fixed to
its experimental value and, in addition, its position in our
computational framework is extremely robust via the inher-
ent satisfaction of the axial-vector Ward–Takahashi identity.
Thus, one has to pay special attention to this set of splittings
in a fitting attempt, since varying or readjusting the current-
quark mass in our framework has a drastically different effect
on pion-related mass splittings on one hand and the rest on
the other hand. In short, as immediately illustrated by the
Gell-Mann–Oakes–Renner relation, the pion mass increases
like the square root of the current-quark mass close to the chi-

ral limit, while other meson masses rise linearly plus some
small corrections.

The set presented here is comprehensive. Among these
splittings, there are more prominent or dominant ones to
observe. First, we mention the hyperfine splitting, which we
already used at the beginning of our discussion for a first
impression and example of the method and resulting state-
ments. Next, the scalar- and axial-vector-to-pion splittings
are relevant due to the lower-lying masses of these states,
after which we complete the picture with the J = 2 states.

Precisely, the list of splittings shown in Fig. 14 is [1−−
0 −

0−+
0 ], [0−+

1 −0−+
0 ], [0++

0 −0−+
0 ], [1++

0 −0−+
0 ], [1+−

0 −0−+
0 ],

[1−+
0 − 0−+

0 ], [2++
0 − 0−+

0 ], [2−+
0 − 0−+

0 ], [2−−
0 − 0−+

0 ]. At
first sight, the appearance of the plots for the various splittings
in this figure is rather diverse; one observes trends in virtually
all possible directions.

The hyperfine splitting, e. g., shows a clear preference
for low ω together with low D even beyond our grid. The
scalar–pseudoscalar splitting prefers high D and a low ω

inside our domain; both axial-vector–, the exotic-vector–, and
the pseudotensor–pseudoscalar splittings have their favored
regions toward the center of our grid. The remaining tensor-
related splittings for the 2++ and 2−− tend in opposite direc-
tions from each other.

Despite these different tendencies, the combined fit of all
these splittings, whose favored pair of ω–D values should
also already provide a reasonable match to the experimen-
tal spectrum, shows a favored “valley” from ω = 0.5 GeV
combined with our highest D to ω = 0.6 GeV combined
with a central value for D. This result is presented in the
left panel of Fig. 15. The center panel of this figure shows a
fit of five selected splittings of lower mass as an intermedi-
ate step, namely [1−−

0 − 0−+
0 ], [0++

0 − 0−+
0 ], [1++

0 − 0−+
0 ],

[2++
0 − 0−+

0 ], [2−+
0 − 0−+

0 ]. Finally, we reduce the fit to the
three splittings [1−−

0 −0−+
0 ], [0++

0 −0−+
0 ], [1++

0 −0−+
0 ] and

the corresponding result is shown in the right panel of Fig. 15.
This refinement does not do much qualitatively except that
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Fig. 16 χ2 plot from the comparison of our calculated and the experimental radial splitting as a function of ω and D

it favors a value of ω = 0.5 GeV more clearly with our two
steps of reducing the numbers of splittings involved in the
fit.

Appendix D: Radial splittings

Splittings between radial excitations and ground states of the
various quantum numbers in the meson spectrum play a dom-
inant role in phenomenology. We investigate the splittings
between ground state and first radial excitation individually
for all J PC with J < 3 and add the pseudoscalar second-
to-first radial excitation splitting as a testing case for higher

excitations; the resulting plots for χ2 as described above are
collected in Fig. 16.

From the collection of comparisons in Fig. 16 one sees
a few interesting features: First of all, it appears that for
radial splittings the dependence on D is minor compared
to ω, because in the regions of optimal ω, any D-dependence
is suppressed. Investigating which values of ω favor a good
match to the experimental splittings, we arrive at lower ω

for J PC = 0−+, 0++, 2−−, and also 1−+; the latter case is
shown above in the right panel of the upper row in Fig. 13.
Higher ω is favored by 1+−, while the situation is inconclu-
sive for 2++, 2−+, and the second-to-first 0−+ radial split-
ting. 1++ as well as 1−− provide optimal ω values inside our
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Fig. 18 χ2 plot from the comparison of our calculated and the experimental orbital splitting as a function of ω and D. Left panel Combination of
all orbital splittings (see text); center panel combination of a subset of five splittings (see text); right panel ([1+−

0 − 0−+
0 ], [0++

0 − 1−−
0 ])

domain of study. Furthermore, we note at this point that the
pseudoscalar channel is special due to the particular role of
the pion as the pseudo-Goldstone boson in QCD. Pion-related
splittings are thus discussed in more detail in Appendix C.

At this point, it is insightful to compare the following
fitting results collected in Fig. 17: A combination of all
eight radial splittings between ground and first radial excited
states shown in Fig. 16 together with the same splitting
in the exotic-vector channel is plotted in the left panel of
Fig. 17. For the center panel in the same figure we reduced
the set and remain only with the radial splittings in the
0−+, 1−−, 0++, 2++, and 1−+ channels. The right panel
shows a fit with only 0−+ and 1−− radial splittings remain-
ing.

The characteristics of the three panels in Fig. 17 is sur-
prisingly different. For all splittings combined (left panel)
the region with the lowest χ2 seems to lie outside or at the
borders of our grid for the most part. Reducing the set (center
panel), we observe a general trend towards lower values of ω

almost independent of D. For the pseudoscalar-vector-only
set, however, we see the best agreement inside our grid for
ω = 0.5 GeV and medium values of D. Interpreting these

results, one may refer to arguments that non-resonant cor-
rections to RL truncation are smaller for the pseudoscalar
and vector channels than the others [154] and thus expect
the corresponding choice of splittings to be most appropri-
ate regarding a qq̄-core description. Demanding an overall
description on the basis of radial splittings alone, however,
we would have to conclude that the ω–D grid we use is too
small.

Appendix E: Orbital splittings

Another interesting group of splittings among meson states
with various quantum numbers is the set of orbital split-
tings, i. e., those corresponding to a change in the internal
quantum number corresponding to quark–antiquark orbital
angular momentum in the simple quark-model picture of
the qq̄ state. While our covariant approach is more general
and the Bethe–Salpeter amplitudes are more complex than
a quantum-mechanical wave function, we can still interpret
our splittings between different sets of J PC according to their
corresponding quark-model deconstructions.
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Fig. 19 χ2 plot from the comparison of our calculated and the experimental orbital splitting as a function of ω and D

Investigating the various possibilities, we arrive at a com-
prehensive set, for which in our notation introduced above
the labels are [1+−

0 − 0−+
0 ], [0++

0 − 1−−
0 ], [0++

1 − 1−−
1 ],

[1++
0 − 1−−

0 ], [2++
0 − 1−−

0 ], [2++
0 − 2−−

0 ], [2−+
0 − 0−+

0 ],
[2−−

0 − 1−−
0 ], [2−+

0 − 1+−
0 ]. Among the most prominent

of these for our purposes is certainly the splitting between
the scalar and vector mesons, since experimentally these are,
after the pion, the lowest-lying meson masses. We therefore
include not only the corresponding ground-state splitting,
but also the one for the first radial excitations of both the
scalar- and the vector-meson channels. Interestingly enough,
the ρ(1450) and the a0(1450) are roughly degenerate, which

makes this comparison more than a simple exercise or test of
the method for higher excited states.

We find for the particular case of the scalar-vector split-
tings that the ground-state splitting shows an optimal range
for ω = 0.6 or 0.7 GeV and slightly adjusted central val-
ues of D, while the excited-state case is not particularly well
reproduced. In general, again, we observe that for the opti-
mal ω range or case in each individual plot, it appears that
the dependence on D is secondary much like for the radial
splittings.

Of similar interest are the splittings of the ground states in
the axial-vector and tensor J++ channel to the vector chan-
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Fig. 20 χ2 plot from the comparison of our calculated and the experimental other splitting as a function of ω and D

nel for reasons of consistency and the still rather low values
of their masses. For these we find optimal ω values inside
our grid and thus a good basis for our comparison. From
the rest of the set, a convincing case comes also from the
pseudoscalar–pseudotensor splitting.

As for trends towards certain values of ω and D we observe
that lower values of ω outside our grid are only favored
by the pseudoscalar–axial-vector splitting, and higher val-
ues outside our grid seem to be favored by the ground-state
splitting of the 2−− − 1−− channels. Inconclusive situations
appear only for the radially excited splitting and the tensor–
pseudotensor splitting, the rest provides a solid base for our
strategy to find the optimal model parameters.

In the same manner as above for the radial splittings, we
present three choices also for the set of orbital splittings
in Fig. 18: all splittings, whose ω–D dependence is plot-
ted above in Fig. 19 are combined to yield the χ2 shown in
the left panel of Fig. 18. For the second plot shown in the cen-
ter panel of Fig. 18 we choose the following five splittings:
[1+−

0 − 0−+
0 ], [0++

0 − 1−−
0 ], [1++

0 − 1−−
0 ], [2++

0 − 1−−
0 ],

[2++
0 − 2−−

0 ]. Finally, we reduce the set to [1+−
0 − 0−+

0 ],
[0++

0 − 1−−
0 ] and the result is shown in the right panel of

Fig. 18.
The result from the combined fit to all orbital splittings

depicted in the left panel of Fig. 18 shows an optimal ω

of 0.6 GeV with central values of D, which is not changed
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Fig. 21 χ2 plot from the comparison of our calculated and the experimental other splitting as a function of ω and D. Left panel Combination of
all “other” splittings (see text); center panel combination of a subset of four splittings (see text); right panel ([0++

0 − 0−+
0 ], [1++

0 − 0++
0 ])

by reducing the number of splittings and plotting the cen-
ter panel of the same figure. The right panel shows only
a slight shift towards ω = 0.7 GeV for the minimal fit-
ting set of splittings and thus a very stable and uniform
result.

Appendix F: Other splittings

In this section we move towards completing the picture by
adding a set of splittings which falls neither in the radial nor
the orbital category and was not mentioned above yet (like,
e. g., the hyperfine splitting). The set investigated here and
depicted in Fig. 20 is [0++

0 − 0−+
0 ], [0++

1 − 0−+
1 ], [2−+

0 −
2++

0 ], [1++
0 −0++

0 ], [2++
0 −1++

0 ], [2++
0 −0++

0 ], [2−−
0 −2−+

0 ],
[2−+

0 − 1−−
0 ].

This is led by the pseudoscalar–scalar splitting which
again refers to states among the lowest lying in mass. Again,
we have included the analogous splitting of the correspond-
ing first radial excitations of these states. The result for the
ground-state splitting shows a significant D dependence for
the optimal ω domain for the first time, namely there is a
significant trend towards the low-ω-high-D corner. All other
plots in the set show a minor D dependence in each optimal
ω domain, once again.

The next interesting set of splittings concerns those among
the typical l = 1 states, i. e., the ground states in the 0++,
1++, and 2++ channels. Here we find a uniform and clear
trend towards ω values outside the lower end of our grid.

The section’s set of splittings is completed by those to the
2−+ pseudotensor ground state, which all favor center values
of ω without any particular preference for D.

The combined fitting attempts for the set of splittings pre-
sented in this section is shown in Fig. 21 in the usual fashion:
the left panel shows the result for all splittings combined, the
center panel shows the result for an intermediate set, namely
the four splittings: [0++

0 −0−+
0 ], [2−+

0 −2++
0 ], [1++

0 −0++
0 ],

[2++
0 − 1++

0 ], and finally, we reduce the fit to [0++
0 − 0−+

0 ],
[1++

0 − 0++
0 ] and display the result in the right panel of

Fig. 21.
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