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Abstract We present a parameter-free scheme to combine
fixed-order multi-jet results with parton-shower evolution.
The scheme produces jet cross sections with leading-order
accuracy in the complete phase space of multiple emissions,
resumming large logarithms when appropriate, while not
arbitrarily enforcing ordering on momentum configurations
beyond the reach of the parton-shower evolution equation.
This requires the development of a matrix-element correc-
tion scheme for complex phase-spaces including ordering
conditions as well as a systematic scale-setting procedure
for unordered phase-space points. The resulting algorithm
does not require a merging-scale parameter. We implement
the new method in the Vincia framework and compare to
LHC data.

1 Introduction

High-energy physics in the era of the Large Hadron Collider
relies on accurate calculations of Standard-Model scattering
signatures—both to determine backgrounds when directly
searching for new physics and to allow for setting indirect
bounds by comparing measurements to precision calcula-
tions. Since measurements at the LHC are typically sensi-
tive to the formation and evolution of jets, much attention
has been devoted to calculating QCD corrections. This has
led to exquisite dedicated high-precision calculations, and to
the development of general schemes to overcome the lim-
ited applicability of individual fixed-order QCD calculations
by combining multiple calculations into a single consistent
result. To this end, modern General Purpose Event Genera-
tors [1–4] include a variety of complex matching [5–16] and
merging [17–35] schemes.

A unified Standard-Model prediction that is applicable
for precision measurements and new-physics searches alike
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must naturally include particle configurations that probe very
different aspects of the calculation. The optimal perturbative
description of very different particle (and momentum) con-
figurations can consequently vary significantly within one
measurement, so that care must be taken to avoid apply-
ing specialized arguments outside of their region of valid-
ity. Otherwise, the accuracy of the calculation is in jeop-
ardy and its uncertainty might be underestimated. For exam-
ple, applying QCD reasoning to events without large hier-
archies in the hardness of jets can lead to problematic
effects [36].

Standard-model calculations at the LHC can somewhat
artificially be categorized as focussing on momentum con-
figurations with or without large scale (hardness) hierarchies
between jets. Fixed-order QCD calculations are often appro-
priate for the latter, while the former require a resummation
of large perturbative enhancements by means of evolution
equations. Both approaches have complementary strengths
and should be combined for a state-of-the-art calculation. It
is crucial to avoid bias when constructing a single calculation
that describes very different limits.

In this article, we design a new algorithm to combine mul-
tiple fixed-order calculations for different parton multiplici-
ties with each other and with (parton-shower) resummation
of large logarithmic enhancements. The aim of this combined
calculation is to simultaneously describe up to n hard, well-
separated partons with fixed-order matrix elements while
retaining the jet evolution given by the parton shower. We
enforce strict requirements on the new scheme to improve
on previous ideas:

1. The introduction of new parameters into the calculation
is avoided. This is especially important when the corre-
lation with existing parameters is not obvious.

2. The method should provide a uniform accuracy over the
complete phase space for one particle multiplicity. For
now, this means that the rate of n jets should be given
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with leading-order accuracy in QCD, irrespectively of
the hardness of jets.

3. The method should be largely agnostic to parton-shower-
inspired arguments when configurations without large
scale hierarchies are discussed.

The resulting method borrows concepts from the CKKW-
L method of merging matrix elements and parton show-
ers [26–28], as well as from matrix-element correction
schemes [37,38]. We provide a new solution to the treat-
ment of phase-space regions beyond the reach of tradi-
tional shower evolution. Furthermore, we improve upon the
structure of the combined calculation in the parton-shower
region of soft and/or collinear emissions. Our new method
consists of two main developments: the introduction (and
implementation) of matrix-element corrections for ordered
parton-shower evolution, and the definition of a general
scale-setting prescription based on matrix elements for con-
tributions without apparent scale hierarchies. The benefit
of using matrix-element corrections for shower-like split-
ting sequences is that unitarity of fixed-order multi-jet cross
sections is automatically guaranteed in these phase-space
regions. This means that the inclusive rates for n jets will
be correctly described with fixed-order accuracy, without the
need for explicit subtractions of negative weight, even if the
rate for n + 1 jets is also corrected with matrix elements.
We will describe how the new method allows to achieve
leading-order accuracy in QCD for multi-parton configura-
tions. This establishes a baseline for future developments
beyond leading-order QCD.

The new scheme relies on applying leading-order matrix-
element corrections in phase-space regions that are accessi-
ble by a sequence of splittings ordered in a parton-shower
evolution variable, supplemented with fixed-order results
for configurations that cannot be reached by any such
sequence. We will use the misnomer “shower configura-
tions” for such states, and call states which cannot be reached
by an ordered sequence of shower emissions “non-shower
states”.

A very brief introduction to the parton-shower formalism
and the notation is established in Sect. 2. The new method
to iteratively correct parton showers with matrix elements
is described in detail in Sect. 3. The combination of this
scheme of matrix-element corrections for ordered parton-
shower evolution with non-shower states is discussed in
Sect. 4. An executive summary of the algorithm is given in
Sect. 5, followed by a discussion of the impact of combining
parton-shower-like and non-shower phase-space regions at
parton level. Then results and data comparisons are presented
in Sect. 6 before we summarize and give an outlook in Sect. 7.
Additional details about the smoothly ordered showers and
“GKS” matrix-element corrections previously used in Vin-
cia are collected in Appendix A, while a thorough validation

of new matrix-element corrections for ordered parton-shower
evolution is given in Appendix B.

2 Parton showers and matrix-element corrections

To set the scene and establish notation, let us briefly review
some parton-shower basics. We start by defining the effect of
parton-shower evolution [39,40] on an arbitrary observable
O (in the notation of [41]),

F�a(�n, t, t
′; O) = F�a(�n, t, t

′) O(�n)

+
∫ t ′

t

dt̄

t̄

dF�a(�n, t̄, t ′)
d ln t̄

F�a′(�′
n+1, t, t̄; O), (1)

where t ≡ t (�n+1/�n) is the shower evolution variable,
and the shower generating functional F depends on the list
of parton flavors �a, and the corresponding n-particle momen-
tum configuration �n . Though not explicitly stated, any n-
particle state contains an arbitrarily complicated Born state,
�n ≡ �B+n . The first term in Eq. (1) encodes the con-
tribution from no resolvable shower emissions, while the
second piece includes one or more emissions. The parton
flavors �a′ of the (n + 1)-particle momentum configuration
�n+1 include the resolved emission and the partons �a, with
momenta changed according to the recoil prescription of the
parton shower and flavor changes where applicable. The gen-
erating functional obeys the evolution equation

d lnF�a(�n, t, μ2)

dt

=
∑
i∈IS

∑
b=q,g

∫ 1−ε

xi

dz

z

αs(t)

2π
Pbai

fb(xi/z, t)

fai (xi , t)

+
∑
j∈FS

∑
b=q,g

∫ 1−ε

ε

dz
αs(t)

2π
Pa j b, (2)

where z ≡ z(�n+1/�n) is an energy-sharing variable and x
the momentum fraction of the incoming parton in �n . The
first term in Eq. (2) corresponds to evolution by initial-state
radiation, while the second term represents final-state radia-
tion. Backward evolution [39] for initial-state radiation intro-
duces a ratio of parton distribution functions (PDFs) f in the
first term. The quality of the shower real-radiation pattern
is governed by the unregularized, dimensionful splitting ker-
nels Pi j ≡ Pi j (�n+1/�n).

1 For brevity, we will suppress the
indices of the splitting functions. The shower will produce
an accurate real-emission pattern if the sum of all products of

1 We define Pi j (�n+1/�n) as dimensionful to follow the convention
used in the antenna literature [42,43]. Thus, Pi j corresponds to P̂i j/t in
the notation of [41], leading to a marginally different notation compared
to the latter.
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splitting probabilities and transition probabilities |M(�n)|2
is a good approximation of the full real-emission probabil-
ity |M(�n+1)|2. For a transition from an n-particle to an
(n+ 1)-particle state, this can be achieved by the (symbolic)
replacement

⎡
⎣∑

�n

P(�n+1/�n) |M(�n)|2
⎤
⎦

→
⎡
⎣∑

�n

P(�n+1/�n) |M(�n)|2
⎤
⎦

× |M(�n+1)|2(∑
�′

n
P(�n+1/�′

n)
∣∣M(�′

n)
∣∣2

)

=
∑
�n

[
P(�n+1/�n) |M(�n)|2 R(�n+1)

]
. (3)

Such a process- and multiplicity-dependent redefinition
of the splitting kernel is called matrix-element correction
(MEC). It is worth noting that this replacement changes both
the shower no-emission probability and the real-emission
pattern. The real-emission pattern is corrected to a target
fixed-order accuracy. However, the accuracy of the parton-
shower resummation of virtual corrections into Sudakov fac-
tors is not improved.

The impact of ME corrections is largest for hard, well-
separated jets, as splitting kernels do not approximate the
full fixed-order matrix element well for configurations with
hard, well-separated jets. Thus, the most significant improve-
ment of ME corrections can be obtained when correcting
the n hardest splittings in the shower cascade. In practise,
this means that hardness-ordered parton showers allow for
simpler MEC schemes [44–46], which in particular do not
require knowledge of high-multiplicity matrix elements as a
function of evolution variables.2 Instead, it is sufficient that
the parton shower generates complete, physical intermediate
momenta �n that can be used to evaluate |M(�n)|2 numeri-
cally. Thus, we will limit our discussion to hardness-ordered
shower programs. This will allow for a level of process-
independence, and make the iteration of ME corrections pos-
sible.

The key technical difficulty for a consistent application of
ME corrections is the construction of the sum over parton-
shower paths in the denominator of the correction factor
R(�n+1). Since parton showers are formulated as Markov

2 A scheme to correct the hardest emission in angular-ordered showers
has been discussed in [47]. This scheme requires to apply the same cor-
rection repeatedly, to guarantee that the single hardest emission is cor-
rected to leading-order accuracy. Although promising from the resum-
mation standpoint, it is, however, not obvious how this scheme could
be used to correct the n hardest emissions.

processes, neither the weight nor the existence of each term
in the sum is known a priori when the splitting governed by
P(�n+1/�n) is generated, and all terms have to be recon-
structed explicitly.

3 Matrix-element corrections for ordered parton
showers

The formalism of ME corrections for ordered parton show-
ers (MOPS) is close in spirit to the idea of the iterative MEC
approach of [37,38].3 These previous ideas rely on a history-
independent parton shower that is able to fill the complete
available phase space. This necessitates abandoning parton-
shower ordering, i.e. the property that ensures the resumma-
tion of large logarithms in ratios of evolution scales. Sensi-
ble resummation properties then rely on the introduction of
auxiliary functions. Furthermore, configurations with hard
well-separated jets might contain poorly understood higher-
order corrections. It is thus sensible to limit ME corrections
for the parton shower to phase-space regions reachable by
an ordered sequence of branchings. This means that we need
to rederive appropriate MEC factors R(�n) that correctly
encode the presence of complicated phase-space constraints
due to ordering—making the resulting method substantially
different from previous attempts.

To not overcomplicate the derivation of the MOPS for-
malism, we drop all coupling- and PDF factors in this sec-
tion. These pieces are evaluated exactly as in an uncorrected
parton shower (the probability of a splitting at evolution
scale t includes a factor αs(t)/2π , splittings involving ini-
tial legs induce ratios of PDFs f ( xz , t)/ f (x, t), cf. Eq. (2)),
and do not enter in the MEC factors. Similarly, Sudakov fac-
tors are not explicitly written out when demonstrating the
MOPS method. The MOPS procedure is applied during the
Sudakov veto-algorithm as a redefinition of the splitting ker-
nels, meaning that both the (real) emission probability and
the no-emission probabilities are ME corrected. This ensures
the unitarity of the method, i.e. that corrections to higher par-
ton multiplicities vanish in observables that are only sensitive
to a lower multiplicity.

Consider an arbitrary Born process with factorization
scale tfac ≡ t (�0) as starting point of the parton shower.
The weight of the first branching is

P(�1/�0) �(t (�0) − t (�1/�0)) |M(�0)|2 d�1, (4)

where the shower is restricted to scales below the factoriza-
tion scale. For processes that require regularizing cuts at Born
level, the matrix element |M(�0)|2 can be suitable redefined
to include the necessary �-functions. To correct the weight

3 A short review of the GKS approach is given in Appendix A.
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of the phase-space point �1 to the full fixed-order matrix ele-
ment, all possible emissions from “underlying” Born config-
urations �′

0 that could have produced the phase-space point
�1 that we want to correct have to be taken into account. A
suitable multiplicative correction factor is thus

R(�1)

= |M(�1)|2∑
�′

0
P(�1/�

′
0) �(t (�′

0) − t (�1/�
′
0))

∣∣M(�′
0)

∣∣2 .

(5)

Applying this correction to each individual splitting and sum-
ming over all shower contributions cancels the denominator
of Eq. (5) and gives

R(�1)
∑
�0

P(�1/�0) �(t (�0) − t (�1/�0)) |M(�0)|2

= |M(�1)|2 . (6)

The calculation of the correction factor for the weight of a
second branching becomes more cumbersome,

R(�2) = |M(�2)|2∑
�′

1
P(�2/�

′
1) R(�′

1)
∑

�′
0
�(t (�′

1/�
′
0) − t (�2/�

′
1)) P(�′

1/�
′
0) �(t (�′

0) − t (�′
1/�

′
0))

∣∣M(�′
0)

∣∣2 . (7)

Here, the denominator sums over all possible ways how the
shower can populate the phase-space point �2, taking into
account the allowed (ordered) paths through the �-functions
with the ME corrected parton-shower weights of the interme-
diate +1-particle phase-space points. Consequently, R(�2)

includes the correction factors of the previous order, R(�′
1).

It is useful to illustrate how this relatively complicated
recursive definition is obtained with an example. Consider the
case of a +2-particle state shown in Fig. 1. The +2-particle
state on top of the pyramid can be reached from the base of the
pyramid by several splitting sequences or “paths”. The paths
are not necessarily physical but rather serve the purpose of
illustration. In Fig. 1a all paths directly contribute to the +2-
particle state, as each path from the base to the top follows
a decreasing (i.e. ordered) sequence of branchings scales.
With the shorthands introduced in the caption of Fig. 1 the
correction factors for the +1-particle states are

R1
1 = M1

1

P1
1 M1

0 + P2
1 M2

0

and R2
1 = M2

1

P3
1 M3

0 + P4
1 M4

0

.

(8)

Both factors contribute to the correction to the +2-particle
state,

R2 = M2

P1
2 R1

1 (P1
1 M1

0+P2
1 M2

0)+P2
2 R2

1 (P3
1 M3

0+P4
1 M4

0)+P3
2 M3

1

= M2

P1
2 M1

1 + P2
2 M2

1 + P3
2 M3

1

. (9)

Since all paths contribute, the nesting of the MOPS factors
cancels and the denominator reduces to the sum of the split-
ting kernels, multiplied with the +1-particle matrix elements.

Some paths in Fig. 1b are unordered, which leads to +1
MOPS factors of

R1
1 = M1

1

P1
1 M1

0

and R2
1 = M2

1

P3
1 M3

0 + P4
1 M4

0

. (10)

Only one path (brown) contributes to the denominator of
R1

1—the other path (red) is unordered.
The correction to the +2-particle state is

R2 = M2

P1
2 R1

1 P1
1 M1

0 + P2
2 R2

1 P4
1 M4

0

= M2

P1
2 M1

1 + P2
2

M2
1

P3
1 M3

0 + P4
1 M4

0

P4
1 M4

0

. (11)

The red path in Fig. 1b does not contribute at all to the
+2-particle state since the first branching scale is exceeding
the factorization scale, t2

1 > t2
fac. This leads to a cancellation

in the first term of the denominator in Eq. (11). The green
path is not contributing directly to the +2-particle state, as
t2
2 > t3

1 . However, since t3
1 < t3

fac, the path is present in R2
1.

Therefore, the MOPS factor for the +2-particle state depends
on more than one “layer” in the paths, and can thus not be
calculated by reconstructing only +1-particle states from the
+2-particle state that should be corrected.

This example highlights the core features of the MOPS
method. The recursive structure of the correction factor
represents a crucial difference to the GKS method (see
Appendix A). At first sight, it seems counter-intuitive that
knowledge of ordered and unordered paths is required to cor-
rectly calculate the correction factor for a phase-space point
that has been generated by an ordered sequence of splittings.
However, the necessity becomes clear when the weight of
intermediate states is taken into account.

To obtain a uniform accuracy over the complete n-parton
phase space, states beyond the reach of the parton shower
have to be included. We discuss the treatment of these non-
shower states in the next section, and present the general
formula for the MOPS factor in Sect. 5.
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t1fac t2fac t3fac t4fac t5fac

M1
0 M2

0 M3
0 M4

0 M3
1

t11

P 1
1

t21

P 2
1

t31

P 3
1

t41

P 4
1

M1
1 M2

1

M2

t12

P 1
2

t22

P 2
2

t32

P 3
2

(a)All paths are contributing to the state M2 , i.e. all
scales fulfill ti2 < tj1 < tjfac along the lines.

t1fac t2fac t3fac t4fac t5fac

M1
0 M2

0 M3
0 M4

0 M3
1

t11

P 1
1

t21

P 2
1

t31

P 3
1

t41

P 4
1

M1
1 M2

1

M2

t12

P 1
2

t22

P 2
2

t32

P 3
2

(b) The red and purple paths do not contribute, and the
green path only contributes indirectly to the stateM2.

Fig. 1 History pyramid to illustrate different levels of contribution to the MOPS factor. The superscripts are numbering the different nodes. We
use the shorthands MX ≡ |M(�X )|2, tX ≡ t (�X /�X−1), and PX ≡ P(�X /�X−1). The top layer is the main +2-particle state and the lower
boxes represent the clustered states after one and two successive clusterings, respectively. The scales and splitting probabilities associated with the
clusterings are noted along the lines. For illustrative purposes we included a path where the Born state is reached after one clustering (purple line),
as present e.g. when combining QCD and electroweak clusterings

4 Completing the calculation with non-shower
configurations

The MOPS formalism discussed in Sect. 3 only covers
the parton-shower phase space characterized by an ordered
sequence of splitting scales (tfac > t1 > t2 . . . ). As a conse-
quence, a prescription for the missing phase space is required.
The precise definition of these regions depends on the parton
shower itself, the starting scale, definition of the evolution
variable, and recoil strategy. Configurations can either be
forbidden by restricting the first emission to scales below the
factorization scale, cuts on lowest-multiplicity phase space
points, or by the ordering property of the shower.

When combining non-shower and shower states, care has
to be taken to avoid double- or under-counting. As discussed
in Sect. 3, the shower off lowest-multiplicity events is treated
without any restrictions apart from ordering emissions in
the parton-shower evolution variable. Only those higher-
multiplicity states that cannot be reproduced by showering
lower-multiplicity states need to be added explicitly. This
criterion supersedes algorithms that rely on the introduction
of a merging cut.4 Uniform (leading-order) accuracy then is
obtained across the complete emission phase space by also

4 An arbitrary shower will not correctly describe all sub-leading logs
in its evolution variable, so that non-shower configurations may still
contain (sub-leading) logarithmic divergences. One famous example
of such configurations are the unordered, balancing soft-gluon emis-
sions leading to Parisi–Petronzio scaling in p⊥ distributions [48,49].

applying a ME corrected shower when adding soft-collinear
shower radiation to non-shower states. This will, if performed
naively, introduce overlap between (the shower off) different
non-shower states. Three steps are required to avoid the over-
lap:

1. Non-shower events are defined as unordered if no ordered
path exists, i.e. if different paths to the same ME state are
present, the event is only considered unordered if none
of the paths can be reproduced with an ordered sequence
of branchings scales.

2. Potential overlap between non-shower states with differ-
ent parton multiplicities has to be removed, e.g. a maxi-
mally unordered +2-particle state may also be produced
as a shower emission off a maximally unordered +1-
particle state. The explanation how this overlap is iden-
tified and removed in the higher-multiplicity states, is
deferred to the end of Sect. 5, since it is helpful to first
discuss how non-shower states are showered.

3. States produced by ordered parton showers overlap with
soft-collinear radiation attached to non-shower states if
the “history” of a phase-space point contains both ordered
and unordered paths. Therefore, both have to be ME cor-

Footnote 4 continued
To avoid such divergences in practice, we only include non-shower
phase-space points if each scale at which partons could be recombined
(as defined by the shower evolution variable) is above the parton-shower
cut-off tcut ≈ 1 GeV.
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rected with correction factors taking into account both
possibilities of population.

We now turn to the scale setting in non-shower events with
two or more additional partons. From a parton-shower stand-
point, there is no a priori guideline how non-shower config-
urations should be treated. However, since non-shower con-
figurations easily dominate LHC observables depending on
many well-separated jets, finding a sensible scale-setting pre-
scription for arbitrary processes will greatly improve the abil-
ity of fixed-order + parton-shower calculations to describe
data. Variations around the central scale can then be used to
assess the precision of the calculation.

To obtain a flexible scale-setting prescription, we bor-
row the idea of constructing all possible event histories from
the CKKW-L [26–28] The aim of the procedure is twofold:
define dynamical scales by exploiting the information about
the phase-space points with the help of the weight and “sub-
structure” of multi-jet matrix elements, while further ensur-
ing a smooth inclusion of non-shower states with shower-
accessible events.

For a sensible scale-setting prescription for non-shower
states, we follow an argument similar to the derivation of
the MOPS factor. However, ordering considerations should
not be applied to non-shower states. Assume that a phase-
space point �n+1 can be reached from multiple �′

n states by
splitting an external leg. The contribution to the cross section
due to splitting a single leg can be approximated by

αs(t (�n+1/�
′
n)) P(�n+1/�

′
n) αn

s (t
eff
n )

∣∣M(�′
n)

∣∣2
, (12)

where t eff
n is a suitable scale for the “underlying” n-particle

state. To obtain the correct (leading-order) result when sum-
ming over all possible splittings �′

n → �n+1, we can apply
the corrective factor

R(�n+1) = αn+1
s (t eff

n+1) |M(�n+1)|2∑
�′

n
αs(t (�n+1/�′

n)) P(�n+1/�′
n) αn

s (t eff
n )

∣∣M(�′
n)

∣∣2 ,

(13)

where t eff
n+1 is the desired (currently unknown) scale for the

(n + 1)-particle state. To find a suitable scale, note that

(a) if one splitting dominates over all other splittings, then
a natural scale to capture the dynamics is strongly cor-
related with the relative jet separation of the dominant
splitting,

(b) if no splitting dominates, i.e. all splittings contribute
democratically, there should be no strong preference for
a scale, and a weighted average of jet separations seems
appropriate.

Leaving aside the complications (and bias) induced by order-
ing constraints, an identical argument holds for parton-
shower-produced states. In this case, the requirements above
are fulfilled by keeping the characteristic shower-induced αs

factors for every ME corrected shower splitting. This would
be guaranteed if the αs factors in Eq. (13) would be identified
by

αn+1
s (t eff

n+1)

=
∑

�′
n
αs(t (�n+1/�

′
n)) P(�n+1/�

′
n) αn

s (t
eff
n )

∣∣M(�′
n)

∣∣2

∑
�′

n
P(�n+1/�

′
n)

∣∣M(�′
n)

∣∣2 ,

(14)

since then Eq. (13) is a simplified MEC factor. For ordered
parton-shower sequences, Eq. (14) will not lead to the correct
result. It is, however, well-suited as a scale-setting prescrip-
tion for non-shower configurations. We will use Eq. (14)
as the definition of the effective scales below, i.e. we set
the renormalization and factorization scales for non-shower
events to t eff . The effective scale also serves as a shower
(re)starting scale. The variation of the effective scale may
act as an uncertainty estimate of the prescription.

An expression for the effective scale could also have been
obtained by including PDF ratios in Eq. (13), which would
mean that the choice of effective scale captured dynamics
of underlying “hadronic” cross sections. We do not imple-
ment such a scale-setting prescription since we believe that
the scale setting should be based on perturbative parton-level
quantities.

Note that the scale-setting mechanism in Eq. (14) allows
for tfac < t eff if the scales entering the calculation are suf-
ficiently large. An example of such a configuration are non-
shower states with multiple hard (and possibly balancing) jets
without p⊥ hierarchy. In this case, using a scale defined for
the lowest-multiplicity process can result in pathologies [50].
It is desirable that t eff is not bounded by tfac, the factoriza-
tion scale assigned to a fictitious lowest-multiplicity process.
Instead, t eff should provide a more “natural” scale for this
genuine multi-jet configuration. Furthermore, t eff is bound
to remain in the perturbative region, since we only include
non-shower phase space points for which clustering scales
(as defined by the shower evolution variable) are above the
parton-shower cut-off.

In Sect. 6 we will show that the scale setting outlined in
this section results in a very good description of LHC data.

5 The complete algorithm

In this section, we summarize the combined fixed-order +
parton-shower algorithm, and present the general form of
the MOPS factor. The scheme introduces ME correction for
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several ordered consecutive parton-shower emissions. This
is in general obtained by applying the MOPS factor

R(�n+1) = |M(�n+1)|2
[ ∑

�′
n

P(�n+1/�
′
n) R(�′

n)
∑
�′

n−1

�(t (�′
n/�

′
n−1) − t (�n+1/�

′
n)) P(�′

n/�
′
n−1) R(�′

n−1)

×
k≤1∏

k=n−2

( ∑
�′

k

�(t (�′
k+1/�

′
k) − t (�′

k+2/�
′
k+1)) P(�′

k+1/�
′
k) R(�k)

)

∑
�′

0

�(t (�′
1/�′

0) − t (�′
2/�′

1))P(�′
1/�′

0) �(t (�′
0) − t (�′

1/�′
0))

∣∣M(�′
0)

∣∣2
]−1

(15)

to the splitting kernel. When including the correct weight of
each possible path, the result exhibits a recursive structure,
where R(�n+1) includes the correction factors of all previ-
ous orders, R(�′

n) to R(�′
1). Once non-shower states are

added, their contributions to the MOPS factor are taken into
account as well.

Non-shower states are added as new configurations, with
renormalization and factorization scales calculated through

αn+1
s (t eff

n+1) =
∑

�′
n
αs(t (�n+1/�′

n)) P(�n+1/�′
n) αn

s (t eff
n )

∣∣M(�′
n)

∣∣2

∑
�′

n
P(�n+1/�′

n)
∣∣M(�′

n)
∣∣2 .

(16)

This should ensure that the dynamics of the process are
encoded in a sensible scale choice, without the scale-
setting prescription being based on process- or multiplicity-
dependent arguments.

Since non-shower states are included without a hard cut-
off (e.g. a merging scale), the effective scale t eff may differ
significantly from the factorization scale tfac. In this case,
we further attach Sudakov factors by means of trial show-
ering [26,27] to the non-shower states to include a sensible
suppression due to the resummation of large logarithms of
tfac/t eff . This is relatively straight-forward for +2-particle
states—a Sudakov factor �(tfac, t eff

2 ) is applied to ensure a
sensible result if the �p⊥ of the combined Born+2-parton sys-
tem is small. For higher-multiplicity non-shower states, more
scale hierarchies arise, and a more detailed scheme is nec-
essary to cover all relevant cases. However, only two types
of scale hierarchies can remain after removing the overlap
between n-particle non-shower events and states that are pro-
duced by showering lower-multiplicity non-shower configu-
rations: the ordering tfac > t eff

n , or the ordering tfac > teff
n−1 >

tn .5 The hierarchy tfac > t eff
n is again ameliorated by apply-

ing a single Sudakov factor �(tfac, t eff
n ) to produce a sensible

5 Consider a non-shower (unordered) +4-particle state. After comput-
ing effective scales, it is possible that a scale hierarchy tfac > t eff

2 >

t3 > t4 exists. Such a configuration can be obtained in several ways

result for small �p⊥ of the combined Born+n-parton system.
If instead a hierarchy tfac > t eff

n−1 > tn can be constructed,

then a product of Sudakov factors �(tfac, t eff
n−1)�(t eff

n−1, tn)
is appropriate. This guarantees a uniform weighting of +n-
particle events arising from either +n-particle non-shower
states or showered +(n − 1)-particle configurations. Note
that the Sudakov factors �(tfac, t eff) are unity if tfac < t eff .

The information about the different types of scale hier-
archies are also used to remove the overlap between non-
shower states with different parton multiplicities. States with
scale hierarchies of the type t eff

n−m > tn−(m−1) > · · · > tn
are removed for m ≥ 2. For states that contain the hierarchy
t eff
n−1 > tn , the event is removed if the clustered +(n − 1)-

particle state is itself an unordered state. Events without scale
hierarchies that could have resulted from showering lower-
multiplicity states are kept; that includes all+2-particle states
with unordered scales t2 > t1 and +1-particle states with
t1 > tfac. For the interested reader we include further method-
ological instructions in Appendix C.

6 Results

In this section, we present results obtained with the new
method, including both the MOPS factor and the non-shower
states (called “MOPS + unordered” in the following). A
detailed validation can be found in Appendix B. The anal-
yses are performed with Rivet [51]. We begin this section

Footnote 5 continued
showering lower-multiplicity non-shower states. (a) If the reconstructed
underlying +2-particle state is not shower-like (i.e. unordered), then the
+4-particle state with the above hierarchy can be produced by adding
two ordered shower emissions to the +2-particle state. Thus, the state is
included by showering a non-shower +2-particle state. (b) If the recon-
structed +2-particle state can be reached by an ordered sequence of
emissions, and furthermore t3 > t4 then the “unordering” stems from
the +2-particle to +3-particle transition. Thus, the +4-particle config-
uration can be reached by adding one ordered shower emission to a
non-shower +3-particle state. In conclusion, the states with this more
complex scale hierarchy should not be included through a non-shower
+4-particle input, since this would result in over-counting.

123



601 Page 8 of 17 Eur. Phys. J. C (2017) 77 :601

by studying the effect of the new method on jet separations,
before moving to comparisons to LHC data. In both cases,
we juxtapose the results with the GKS ME corrections imple-
mented in Vincia. The GKS MECs scheme includes emis-
sions above the factorization scale tfac (see Appendix A2 for
how those are generated) as does the MOPS + unordered
method by adding non-shower +1-particle states. Emissions
with scales t1 > tfac would not naturally be present in the
pure or MOPS corrected shower, where Born states are show-
ered beginning at tfac. For the following results we add +1-
particle states with scales t1 > tfac explicitly to the pure
and MOPS corrected shower, and shower these states using
t1 as shower starting scale. This decreases the significance
of including non-shower states w.r.t comparing to a strictly
ordered shower evolution, but should avoid using an “overly
conservative” shower setup when comparing to default
Vincia.

6.1 Theory comparisons

Here, the general features of the new method are illustrated by
discussing jet resolution scales. These variables show signif-
icant sensitivity to hard, well-separated jets as well as parton-
shower resummation, and they can thus be used to gauge the
effect of different pieces in the calculation. To not obscure
the Sudakov shapes of the parton shower at low jet resolution,
we do not include multiparton interactions.

Hadron-level results for hadronic Z decays and Drell–Yan
events are presented in Fig. 2. The results have the expected
behavior: at low jet resolution, parton-shower effects domi-
nate, while non-shower states contribute mainly to large jet
scales. Hence, the MOPS factor is dominating the observable
at low scales. At LEP, shower states remain a dominant con-
tribution even when modeling well-separated jets, and the
effect of non-shower states remains at below 10% per bin.
Results at the LHC are in stark contrast to this. There, the
influence of shower configurations decreases substantially
for large jet resolution, and non-shower phase-space regions
become increasingly important. The uncertainty from vary-
ing the effective scale is not significant at LEP, and should
thus not be considered a realistic uncertainty estimate. At
LHC, the variation of t eff (= tfac = tren = tstart) is larger,
and increases for high jet resolution, as expected from vary-
ing scales in a tree-level fixed-order variation. At low reso-
lution, we observe a small increase in the scale uncertainty,
which stems from the interplay of very large αs values with
the Sudakov factors that are applied to non-shower states.

By comparing with previous ideas below, we hope to
understand the short-comings and benefits of our MOPS +
unordered prescription. In Fig. 3 we compare the results of
Vincia2.2 without corrections, with the MOPS correction,
MOPS + unordered scheme, and Vincia2.0.01 with smooth
ordering for the GKS ME corrected orders.

The MOPS correction for purely evolution-induced events
is small for all jet resolutions. Differences are mostly at
the level of 1–5%, illustrating that the uncorrected shower
already describes the matrix elements well in phase-space
regions reachable by showering. As discussed above, the jet
resolution scales exhibit a Sudakov suppression for small val-
ues. In the Sudakov region, the corrected predictions should
not deviate greatly from the “plain” shower result. This is
indeed the case for both the MOPS + unordered and the GKS
MECs method for very small resolution scales. The GKS
MECs method generates more events with larger dm m+1

separation. Due to the unitarity of the shower, this leads
to a depletion of events with small separation compared to
the pure shower. The behavior is consistent with the find-
ings in [38], where differences between strong and smooth
ordering have been investigated. The impact of non-shower
states in the MOPS + unordered scheme remains noticeable
close to the peak of the distribution, although the modeling
of the Sudakov region approaches the uncorrected shower
more quickly than for the GKS MECs method. This means
that the handling of non-shower states with large scale hier-
archies (cf. end of Sect. 5) is important in our approach.
Merging approaches commonly discard non-shower states
with separation below a certain (merging) scale.

In conclusion, we believe that the MOPS + unordered
scheme has desirable features, and that the choices in the
method lead to the expected behavior.

6.2 Comparisons to data

To assess how the method performs for realistic observables,
we now turn to Drell–Yan + jets measurements at the LHC.
All curves employ the NNPDF 2.1 LO PDF set [56] and use
the corresponding strong coupling αs(kμ t) with one-loop
running, αs(m2

Z ) = 0.13, and kμ = 1 for all branchings. We
use these settings to compare all schemes on equal footing
and choose kμ = 1 as required for the calculation of the effec-
tive scale.6 Soft-physics parameters are kept at their current
Vincia default values. The default Vincia2.0.01 tune [38]
corresponds to different αs settings. While this results in a
slightly better data description, it does not alter the general
observations and conclusions of this section.

In Fig. 4 we confront the results of Vincia2.2 without
corrections, with the MOPS correction, MOPS + unordered
scheme, and Vincia2.0.01 with GKS ME corrections with
ATLAS [52,53] and CMS [54,55] measurements.

As already seen in Sect. 6.1, the effect of the MOPS cor-
rection factor is small for all observables. This is of benefit
for the description of the Drell–Yan p⊥ spectrum (upper left

6 Different kμ values for different branching types invalidate the inter-
pretation of the effective scale as a single parton-shower starting scale
for subsequent showering.
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(a) (b)

Fig. 2 Pythia8.2.26 +Vincia2.2 predictions for jet resolution measures dm m+1 and ym m+1 (the longitudinally invariant k⊥ jet algorithm with
R = 0.4 for hadronic initial states and the Durham jet algorithm for lepton collisions). ME corrections are applied for ≤3 emissions. The red band
is obtained by varying the effective scale t eff [GeV] in non-shower events by factors of 2

Fig. 3 Pythia8.2.26 +Vincia2.2 and Pythia8.2.15 +Vincia2.0.01 predictions for jet resolution measures in Drell–Yan events @ 7 TeV. ME
corrections are applied for ≤3 emissions

panel of Fig. 4), for which the plain shower already offers a
sensible data description. The quality of the description also
remains unchanged for the MOPS + unordered scheme. The
other observables in Fig. 4 test the existence of hard, well-

separated emissions in the tails of the distributions and are
thus poorly modeled with the parton shower alone. We find
a very good data description with the MOPS + unordered
scheme. In particular, the quality of the data description in

123



601 Page 10 of 17 Eur. Phys. J. C (2017) 77 :601

Fig. 4 Pythia8.2.26 +Vincia2.2 and Pythia8.2.15 +Vincia2.0.01 predictions compared to ATLAS data from [52,53] and CMS data from
[54,55]. Rivet analyses ATLAS_ 2013_ I1230812, ATLAS_ 2014_I1300647, CMS_ 2013_ I1209721, and CMS_ 2015_ I1310737. For the leading
jet p⊥ and the scalar p⊥ sum of jets the predictions are rescaled to the experimental inclusive one-jet cross section. ME corrections are applied for
≤3 emissions. The red band is obtained by varying the effective scale t eff [GeV] in non-shower events by factors of 2

our scheme relies crucially on the treatment of non-shower
states. The scale-setting mechanism presented in Sect. 4 pro-
duces promising results, with the naive central scale choice
close to the data, but with a large, leading-order-like uncer-
tainty due to scale variations. We anticipate that the width of
the band will decrease when performing a next-to-leading-
order calculation with a similar scale choice. The uncertainty
due to scale variations is largest in phase-space regions most
sensitive to non-shower contributions. For the S⊥ and leading
jet p⊥ distributions, the results of the GKS MECs approach
touch the uncertainty bands attributed to non-shower events
at low values, but are outside of the band in regions influ-
enced by multiple hard jets. Both of these observables are
much improved in the MOPS + unordered method, com-
pared to the uncorrected shower. For the angle between the
Z -boson and the hardest jet we observe a satisfactory data
description for both our new method and Vincia2.0.01.

7 Conclusions

We have presented an algorithm to obtain fixed-order accu-
rate predictions combined with all-order parton-shower evo-
lution that produces finite and non-overlapping results with-
out introducing a merging scale. The new algorithm requires
the introduction of a sophisticated matrix-element correction
method for evolution-induced configurations. States beyond
the reach of the parton shower are included with a system-
atic scale-setting procedure. This smoothly combines non-
shower configurations and states produced in the ordered
parton-shower evolution. The algorithm does not depend
on specific properties of the parton shower and allows for
arbitrary dead zones (which may be required by resumma-
tion considerations). The new fixed-order + parton-shower
scheme has been implemented in the Vincia parton shower
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and will be made publicly available upon the Vincia2.2
release.

The effect of including ME corrections for ordered parton-
shower splittings is minor compared to the uncorrected
shower. This means that the method does not deteriorate
the shower resummation, and gives us confidence that the
improvement does not interfere with other improvement
strategies [57–59]. The main improvements stem from a care-
ful treatment of contributions from phase-space regions that
are not accessible by ordered parton showers. Such contri-
butions are included with a sophisticated scale-setting pre-
scription. For hadronic initial we find the scale setting to
have a sizable influence on observables, since large parts of
phase space are not shower accessible. We presented com-
parisons to data for the pp → Z+jets process and found the
results of our new algorithm to be in good agreement with the
data.
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Appendix A: Review of GKS matrix-element corrections

Iterative ME corrections have first been introduced in [37],
and have been applied to colorless resonance decays [37]
as well as to initial-state radiation [38]. Finite multiplica-
tive correction factors are applied order by order in perturba-
tion theory as the shower evolves. The MEC factor R(�n+1)

replaces the splitting kernels by a ratio of tree-level matrix
elements. Symbolically, the correction factor can be written
as

P(�n+1/�n) −→ R(�n+1) P(�n+1/�n)

≡ |M(�n+1)|2∑
�′

n
P(�n+1/�

′
n)

∣∣M(�′
n)

∣∣2 P(�n+1/�n). (A1)

The denominator sums over all possible n-particle states
through which the shower could have produced the (n + 1)-
particle state.

A 1. Smoothly ordered showers

The MEC formalism in [37,38] requires a history-
independent parton shower that covers the full phase space
for the ME corrected orders. Therefore, Vincia introduces
the concept of smooth ordering. At any stage of the evolu-
tion the following procedure determines at which scale the
shower off each parton in a (n+1)-particle state is restarted:

• Find all physical clusterings �n+1 → �i
n and their

branching scales t (�n+1/�
i
n). The reference scale is the

minimum of all scales, t̂(�n+1) = min i (t (�n+1/�
i
n)).

• Divide the (n + 1)-particle state into a set of “ordered”
and “unordered partons”. For more details see [38].

• The evolution of “ordered partons” is restart at the refer-
ence scale t̂ . “Unordered partons” are allowed to radiate
up to the phase-space maximum, but with the suppression
factor

Pimp
(
t̂(�n+1), t (�n+2/�n+1)

)

= t̂(�n+1)

t̂(�n+1) + t (�n+2/�n+1)
. (A2)

When taking smooth ordering into account, the MEC factor
(A1) should be defined as

R(�n+1) = |M(�n+1)|2∑
�′

n
O (

t̂(�′
n), t (�n+1/�′

n)
)
P(�n+1/�′

n)
∣∣M(�′

n)
∣∣2 .

(A3)

The ordering criterion reflects the different treatment of par-
tons,

O (
t̂(�′

n), t (�n+1/�′
n)

)

=
{
Pimp

(
t̂(�′

n), t (�n+1/�′
n)

)
for a branching of an “unordered parton”,

�
(
t̂(�′

n) − t (�n+1/�′
n)

)
for a branching of an “ordered parton”.

The procedure guarantees a history-independent parton
shower that covers the full kinematic range. However, it intro-
duces complications that are hard to constrain from QCD
considerations alone.

a. Sudakov factors in unordered regions

Consider the exclusive Born+jet cross section at the end
of parton shower with the following evolution. The shower
starts at the factorization scale of the Born process tfac. After
the branching at scale t1 < tfac, all partons explore their full
kinematic range up to the scale tmax and are evolved down
to the shower cut-off μc. Dropping the PDF factor for the
second leg and suppressing most dependences of the split-
tings kernels, the exclusive cross section for this evolution
sequence reads
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dσ 1(μc) = 	 1(tmax, μc) · αs(t1) P(t1)

× f1(x1, t1)

f0(x0, t1)
	 0(tfac, t1) · f0(x0, tfac) |M(�0)|2 d�1.

(A4)

The no-emission probability 	 1(tmax, μc) can be split up
into an ordered part 	 1(t1, μc) and a part that reflects the
evolution in the unordered region 	 uo

1 (tmax, t1). We use the
relation [60]

	 n(tn, tn+1) = fn(xn, tn+1)

fn(xn, tn)
� n(tn, tn+1) (A5)

to write the cross section in terms of Sudakov factors,

dσ 1(μc) = 	 uo
1 (tmax, t1) · f1(x1, μc) � 1(t1, μc)

× αs(t1) P(t1) � 0(tfac, t1) · |M(�0)|2 d�1. (A6)

The no-emission probability 	 uo
1 (tmax, t1) remains in the

cross section. In Vincia this factor is defined as

	 uo
1 (tmax, t1)

= exp

(
−

∑
1 → 2

∫
dz

∫ tmax

t1
dt

f2(x2, t1)

f1(x1, t1)
αs(t) Pimp P(t, z)

)
.

(A7)

Here, the scale in the PDF ratio is fixed to the scale of the
previous emission to ensure the proper cancellation between
PDF factors for branchings in the unordered region. How-
ever, (A7) does not have a direct correspondence to any term
in the DGLAP equation reformulated as a backwards evolu-
tion [39].

b. Missing evolution and configurations

For low multiplicities, all partons in the system are treated as
unordered and explore their phase space up to the kinematics
limit. However, starting for higher multiplicities, “ordered
partons” are present which restart their evolution at the
Markovian scale. By definition, this scale is smaller or equal
to the scale of the last branching. The allowed branching
range of “ordered partons” is therefore more restricted than
in an ordered shower.

As with every parton shower that only contains QCD
splittings, certain flavor configurations cannot be reached,
independent of kinematic constraints. One such example is
qq̄ → Wq ′q̄ ′′, where the W boson can only be radiated off
the final-state legs. To include such a configuration within
the MECs method an electroweak shower is necessary.

A 2. The treatment of hard jets

To avoid the concept of “power showers” and simultaneously
allow jets with scales t > tfac, Vincia distinguishes between
non-QCD and QCD processes. The latter category covers all
hard processes with partons in the final state (except partons
arising from resonance decay).

In non-QCD processes the input events are divided in two
samples. The first one is associated with no hard jets, while
the second sample contains at least one jet with t > tfac.
Because both samples are weighted differently, this intro-
duces a non-smooth transition, see the left panel of Fig. 5.
When more branchings are taken into account, the effect is
washed out and the step barely visible as shown in the right
panel of Fig. 5.

Fig. 5 Distribution of the Vincia evolution variable after the first branching (left) and the Z boson transverse momentum (right) for pp → Z+jets
at parton level
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(a) (b)

Fig. 6 Parton-level results: the distribution of the merging scale in exclusive 3-parton events (bottom) and the logarithmic distributions of differential
jet resolutions (top). Merged predictions with a merging-scale value of 5 GeV are compared to predictions with the MOPS method

The first emission off a QCD 2 → 2 process is treated
similar to the procedure summarized in Appendix A 1: all
partons are allowed to explore their full phase space, but
with a suppression of

Pimp (tfac, t (�1/�0)) = tfac

tfac + t (�1/�0)
. (A8)

Here the factorization scale replaces the Markovian reference
scale. This leads to similar, leftover no-emission probabilities
from unordered regions as discussed in Appendix A 1.

AppendixB:Validation ofmatrix-element corrections for
ordered emissions in VINCIA

In this section we validate the numerical implementation of
the MOPS method in Vincia by comparing it to merged
predictions using the CKKW-L merging implementation in
Pythia8 [28] applied to Vincia. For the latter we define
the merging scale as the minimum of all evolution scales,
tMS = min i (t (�n+1/�

i
n)). No color information is used to
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Fig. 7 Parton-level results for pp → Z+jets: the distribution of the
merging scale in exclusive 1-parton events (bottom) and the logarithmic
distributions of differential jet resolutions (top). Merged predictions
with a merging-scale value of 5 GeV are compared to predictions with
the MOPS method

find possible clusterings. For the validation we use parton-
level results with a fixed αs for both methods and do not
include events that cannot be reproduced by Vincia with an

Fig. 8 Parton-level results for e+e− → Z → qq̄gg: the distribu-
tion of the merging scale in exclusive 4-parton events (bottom) and the
logarithmic distributions of differential jet resolutions. Comparison of
MadGraph 4, MadGraph 5, and Vincia+ MadGraph 4 + Rambo

ordered sequence of branching scales. To ensure the same
Sudakov factors ME corrections are also applied in the case
of merging.
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Figures 6 and 7 show a comparison between the results
of the MOPS method and merging including a ME corrected
first emission. Each simulation contains at least 108 input
events generated with MadGraph [61,62]. The lower pan-
els present the deviation between the two methods, normal-
ized to the statistical uncertainty of the merged prediction
in the respective bin. As both methods should provide the
same result, this distribution should exhibit statistical fluctu-
ations only. Parton-level results for e+e− → Z → jets and
τ+τ− → H → gluons are presented in Fig. 6. The devia-
tion in the lower panels clearly show that both methods are
identical up to statistical fluctuations.

Similar plots are shown for on-shell Z -boson production
in Fig. 7. Note that we exclude branchings with scales above
the factorization scale for comparison purposes. This is nec-
essary due to how such emissions are generated in Vincia,
see Appendix A 2.

When correcting the second emission, we expect slight
mismatches between the predictions of the two methods.
The matrix elements in Vincia are taken from MadGraph
4. It would thus be preferable to use MadGraph 4 input
for the merging. However, MadGraph 4 is no longer devel-
oped and does not allow for linking against LHAPDF 5 [63],
while Pythia8 requires LHAPDF 5 or higher. Thus, using
the same PDF set for hadronic initial states means that the
input for merging was generated with MadGraph 5. Mad-
Graph 4 and 5 exhibit shape and normalization differences
at the (sub-)percent level in the observables investigated for
the validation, as discussed in the following. As an exam-
ple, we compare the ME output of MadGraph 4 and 5 for
e+e− → Z → qq̄gg with a cut on the invariant mass of jet
pairs, m j j ≥ 5 GeV. We further include curves for the Vin-
cia matrix element integrated with Rambo [64] (an imple-
mentation of which is included in Vincia) and normalized to
the MadGraph 4 cross section, as we are mainly interested in
shape differences. The results are shown in Fig. 8. The ratio
plots shown in the lower panels reveal differences between
all three predictions, mostly at the level of around 0.5%.
While those mismatches are irrelevant in practical studies,
they deteriorate the quality the validation. Nevertheless the
results of the validation are satisfactory. When correcting the
third emission, we anticipate further differences between the
two methods. In Vincia, the color matrices for matrix ele-
ments with two identical quark pairs and at least one gluon
are decomposed by hand; see [38]. Therefore, higher orders
cannot be validated at the same level as the first order.

In Fig. 9 we show a comparison of merging and the MOPS
method for three corrected emissions. The lower panels show
the ratio of predictions with the MOPS method to merged

results. Small deviations between the two methods are vis-
ible at large scales. Considering that the differences are at
most 3%, and that we expect some mismatches, and that the
differences are mostly in a region where non-shower states
have a very large impact (cf. Fig. 3), we find the methods in
good agreement.

Appendix C: Identifying and removing the overlap
between states with different multiplicities

As discussed in Sects. 4 and 5, overlap between (the shower
off) non-shower states with different parton multiplicities
exists and has to be removed. In this section we briefly
explain, for interested readers and practitioners, how differ-
ent states are treated to remove potential overlap.

+0-particle states: The shower is started at the factor-
ization scale tfac of the Born state and no further restrictions
apply.

+1-particle states:Only events where all scales t1 exceed
the factorization scale, t1 > tfac, are taken into account. After
a path is chosen, the shower off the +1-particle state starts
at the scale t1.

+2-particle states: To avoid overlap with the shower off
non-shower +1-particle states, an ordering of the clustering
scales with respect to the factorization scale is not checked.
Only events, where t2 > t1 holds for all paths, are taken into
account and the effective scale t eff

2 is calculated. If tfac > t eff
2

a Sudakov factor �(tfac, t eff
2 ) is attached by trial-showering

the clustered Born state. The shower off the +2-particle state
starts at t eff

2 .
+n-particle states (n ≥ 3): As for the non-shower +2-

particle states, an ordering of the clustering scales with
respect to the factorization scale is not checked. Only events
without an ordered path are taken into account. The effec-
tive scales t eff

2 , t eff
3 , . . . t eff

n are calculated and the smallest
k ∈ {2 . . . n} which leads to an ordered sequence of scales,
t eff
k > tk+1 > · · · > tn , is found. If k ≤ n − 2, the event

is removed from consideration due to overlap with show-
ering lower-multiplicity non-shower states, see Sect. 5. If
k = n − 1, i.e. t eff

n−1 > tn , the event is removed, if the clus-
tered +(n − 1)-particle state is itself a non-shower state.
For events that are not rejected we chose one of the paths
for which t eff

n−1 > tn holds and attached the Sudakov fac-
tors �(tfac, t eff

n−1)�(t eff
n−1, tn). The shower off the +n-particle

state starts at tn . If no scale hierarchy is found, the event is
retained, the Sudakov factor �(tfac, t eff

n ) is attached, and the
+n-particle states is showered from t eff

n .
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(a) (b)

Fig. 9 Parton-level results: the distribution of the merging scale in exclusive 4- and 5-parton events (bottom) and the logarithmic distributions of
differential jet resolutions (top). Merged predictions with a merging-scale value of 5 GeV are compared to predictions with the MOPS method
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