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Abstract In this paper, we will analyze a supersymmetric
field theory deformed by generalized uncertainty principle
and Lifshitz scaling. It will be observed that this deformed
supersymmetric field theory contains non-local fractional
derivative terms. In order to construct such a deformed
N = 1 supersymmetric theory, a harmonic extension of
functions will be used. However, the supersymmetry will
only be preserved for a free theory and will be broken by the
inclusion of interaction terms.

1 Introduction

Three dimensional supersymmetry is important as it has been
observed in the Kondo effect [1,2]. The original Kondo effect
describes a defect interacting with a free Fermi liquid of itin-
erant electrons, and the supersymmetry is introduced if the
ambient theory is an interacting CFT. In fact, this introduces
qualitatively new features into the system. A meta-magnetic
transition in models for heavy fermions has been analyzed
using a doped Kondo lattice model in two dimensions [3].
It has been demonstrated that such a system exhibits field-
driven quantum phase transitions due to a breakdown of the
Kondo effect [4,5]. Such systems are analyzed using Lifshitz
theories which are theories based on an anisotropic scaling
between space and time. The second order quantum phase
transition has also been analyzed using Lifshitz theories [6–
9]. The location of a Fermi-surface-changing Lifshitz transi-
tion is determined by carrier doping in some heavy fermion
compounds [10]. The chemical potential does not cause a
heavy band to shift rigidly due to a strong correlation. This
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is determined by the interplay of heavy and additional light
bands crossing the Fermi level.

Three dimensional supersymmetry have also been
observed in graphene [11,12]. Furthermore, the van der
Waals and Casimir interaction, between graphene and a mate-
rial plate, between a single-wall carbon nanotube and a plate,
and between graphene and an atom or a molecule, have been
analyzed using Lifshitz scaling [13]. It may be noted that
by generalizing the usual Lifshitz theory, it is possible to
describe such materials which could not be described with
the local dielectric response [14]. The Casimir–Lifshitz free
energy, between two parallel plates made of dielectric mate-
rial possessing a constant conductivity at low temperatures,
has been studied; and the temperature correction for this sys-
tem has also been analyzed [15]. Many properties of nar-
row heavy fermion bands can be described by a Zeeman-
driven Lifshitz transition [16]. The fermionic theories with
z = 3 have been analyzed [17,18]. In fact, the Nambu–Jona-
Lasinio type four-fermion coupling at the z = 3 Lifshitz fixed
point in four dimensions is asymptotically free and generates
a mass scale dynamically [19]. Furthermore, fermionic the-
ories with z = 2 have been constructed, and it has been
demonstrated that the construction of such fermionic theo-
ries requires a non-local differential operator [20]. However,
it is possible to analyze this non-local differential operator
using the harmonic extension of functions [21–25].

The Lifshitz theories based on the generalized uncertainty
principle have also been constructed [26]. The generalized
uncertainty principle is motivated by the existence of a min-
imum length scale, which in turn is predicted in almost all
approaches to quantum gravity. According to most quantum
gravity theories, the classical picture of spacetime as a con-
tinuous differential manifold breaks down below the Planck

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-017-5142-9&domain=pdf
mailto:a0086307@u.nus.edu


612 Page 2 of 6 Eur. Phys. J. C (2017) 77 :612

length. This is because fluctuations in the geometry of order
one at the Planck scale impose a minimum length scale below
which space cannot be probed. Such a minimum measur-
able length scale occurs in string theory, as space cannot be
probed below the string length scale in perturbative string
theory [27–31]. In loop quantum gravity, the existence of a
minimum length turns the big bang into a big bounce [32].
Even though the existence of a minimum measurable length
scale in predicted in almost all theories of quantum grav-
ity, it is not consistent with the usual Heisenberg uncertainty
principle. This is because according to the usual Heisenberg
uncertainty principle, the length can in principle be mea-
sured with arbitrary precision, if the momentum is not mea-
sured [33–45]. So, according to the usual Heisenberg uncer-
tainty principle, a minimum measurable length scale does
not exist. Therefore, it is necessary to modify the Heisen-
berg uncertainty principle to make it consistent with the exis-
tence of a minimum measurable length scale. This modified
uncertainty principle is called the generalized uncertainty
principle. The modification of the Heisenberg uncertainty
principle leads to a deformation of the usual Heisenberg
algebra.

Even though the generalized uncertainty principle is moti-
vated from quantum gravity, a modification of this principle
can have low energy effects which can be detected in the lab-
oratory [46]. In fact, such effects are expected to be observed
in Lamb shift, Landau levels, and the tunneling current in a
scanning tunneling microscope [47]. Furthermore, as it has
been recently studied in graphene, it is expected that such
a low energy effect from the generalized uncertainty princi-
ple can be observed in graphene. Thus, it is both interesting
and important to analyze supersymmetric theories in three
dimensions, with Lifshitz scaling based on the generalized
uncertainty principle. Such an analysis would be important in
analyzing the low energy effect of the generalized uncertainty
principle on the Kondo effect in heavy metals, and the van der
Waals and Casimir interaction in graphene. It will be possible
to construct a free supersymmetric theory based on general-
ized uncertainty principle and Lifshitz scaling. Even though
the introduction of interactions will break the supersymme-
try of such a theory, such a theory might be interesting as free
field theories are also very important as effective field the-
ories in describing materials like graphene. It may be noted
that four dimensional supersymmetric theories with Lifshitz
scaling have been studied [48,49], but so far three dimen-
sional theories with Lifshitz scaling have not been studied.
Furthermore, the generalized uncertainty principle has never
been combined with supersymmetric field theories based on
Lifshitz scaling. However, such a construction is important
for the analysis of condensed matter systems. So, in this
paper, we will analyze three dimensional supersymmetric
field Lifshitz theories based on the generalized uncertainty
principle.

2 Deformed superspace

In this paper, we shall analyze supersymmetric Lifshitz the-
ories with the existence of a minimum measurable length
scale.

Let us first introduce these two concepts. First, the exis-
tence of a minimum measurable length scale becomes man-
ifest by deforming the usual uncertainty principle to a gen-
eralized uncertainty principle,

�x�p = 1

2
[1 + β(�p)2], (1)

where β = β0�
2
Pl , β0 is a constant normally assumed to be

of order one, and �Pl ≈ 10−35 m. This deformation of the
uncertainty principle in turn deforms the usual Heisenberg
algebra to

[xi , p j ] = i[δij + βp2δij + 2βpi p j ]. (2)

Correspondingly, the coordinate representation of the
momentum operator is modified to the first order in β as

pi = −i∂i (1 − β∂ i∂i ). (3)

Second, in theories with Lifshitz scaling, space and time
scale differently. Thus, we can write the scaling of space and
time as

x → bx,

t → bzt, (4)

where z is called the degree of anisotropy and b is called
the scaling factor. In this paper, we shall consider z = 2. It
may be noted that this transformation reduces to the usual
conformal transformation for z = 1.

Now we will incorporate the generalized uncertainty prin-
ciple into a theory with Lifshitz scaling. Such a deformed
three dimensional Lifshitz bosonic action is given by [26]

Sb = 1

2

∫
d3x

(
φ∂0∂0φ − κ2∂ iφT 2

∂ ∂iφ
)

, (5)

where the non-local fractional derivative operator T∂ is given
by

T∂ = T∂ (1 − β∂ j∂ j )

=
√

−∂ i∂i (1 − β∂ j∂ j ). (6)

Such an incorporation breaks the Lifshitz scaling, as β does
not scale with the space and time. However, it is possible to
preserve the Lifshitz scaling by promoting the parameter β

to a background field which scales as [26]

β → b2β. (7)
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It may be noted that the non-local differential opera-
tor used in the construction of the Lifshitz bosonic action
based on the generalized uncertainty principle can be ana-
lyzed using the harmonic extension of functions from R2 to
R2 ×(0,∞) [20–25]. In fact, it can be effectively viewed as a
local differential operator by using this harmonic extension of
functions. The operator T∂ can be defined by its action on the
functions f : R2 → R. In this case, its harmonic extension
u : R2 × (0,∞) → R satisfies T∂ f (x) = −∂yu(x, y)|y=0.
Now let u : R2 × (0,∞) → R be the harmonic extension
of f : R2 → R, such that its restriction to R2 coincides
with f : R2 → R. Now the solution of the Dirichlet prob-
lem defined by u(x, 0) = f (x) and ∂2u(x, y) = 0 can be
used to find u, where ∂2 is the Laplacian on R3. There exists
a unique harmonic extension u ∈ C∞(R2 × (0,∞)) for a
smooth function C∞

0 (R2). Now we can write T 2
∂ f (x) =

∂2
y u(x, y)|y=0 = −∂ i∂i u(x, y)|y=0, because T∂ f (x) also

has a harmonic extension to R2 × (0,∞). Furthermore, it
is possible to write T∂ = √−∂ i∂i , as T 2

∂ f (x) = −∂ i∂i f (x).
Thus, we obtain T∂ exp ikx = |k| exp ikx , as T 2

∂ exp ikx =
|k|2 exp ikx .

Now using this scalar product, we can write the bosonic
action as

Sb = 1

2

∫
d3x i∂μφ Gμν∂

νφ, (8)

where Gμν is a matrix. It is also possible to define a set of
local gamma matrices such that they satisfy

{
μ, 
ν} = 2Gμν. (9)

It is possible to write a Lifshitz fermionic operator based on
the generalized uncertainty principle as


μ∂μ = γ 0∂0 + γ iκT∂∂i . (10)

This is because if {γμ, γν} = 2ημν , then it is possible to write

0 = γ0 and 
i = κT∂γi . Furthermore, we can also write


μ∂μ
ν∂ν = ∂0∂0 − κ2(∂ i∂i (1 − β∂k∂k))
2. (11)

We can write a Lifshitz fermionic action based on generalized
uncertainty principle using three dimensional spinor fields,
ψa = ψbCba, and ψa = Cabψb. Here we have CabCcd =
δcaδ

d
b − δcbδ

d
a . The square of these spinor fields is given by

ψ2 = ψaψa/2. Now the Lifshitz fermionic action based on
generalized uncertainty principle can be written as

S f = 1

2

∫
d3x ψa(
μ∂μ)baψb

= 1

2

∫
d3x ψa(γ 0∂0 + γ iκT∂∂i )

b
aψb. (12)

We have the Lifshitz bosonic and Lifshitz fermionic the-
ories based on the generalized uncertainty principle, so we
can construct a free supersymmetric theory with N = 1
supersymmetry using these actions. Thus, motivated by the
definition of the generator of ordinary N = 1 supersymme-
try, we can write the generator of N = 1 supersymmetry for
a Lifshitz theory based on the generalized uncertainty as

Qa = ∂a − (γ 0∂0θ + γ iκT∂∂iθ)a . (13)

Now let u(x, y) be the harmonic extension of f (x), and so
∂i u(x, y) will be the harmonic extension of ∂i f (x),

T∂∂i f (x) = −∂y∂i u(x, y)|y=0

= −∂i uy(x, y)|y=0. (14)

Furthermore, we have −∂i uy(x, y)|y=0 = ∂i T∂ f (x) as
T∂ f (x) = −uy(x, 0). So, the operator T∂ commutes with
an ordinary derivative ∂i ,

T∂∂i f (x) = ∂i T∂ f (x). (15)

Thus, we can now construct a super-derivative Da which will
commute with the generator of N = 1 supersymmetry,

Da = ∂a − (γ 0∂0θ − γ iκT∂∂iθ)a . (16)

Furthermore, we have the following non-local supersymmet-
ric algebra:

{Qa, Qb} = 2(γ 0∂0 + γ iκT∂∂i )ab,

{Da, Db} = −2(γ 0∂0 + γ iκT∂∂i )ab,

{Qa, Db} = 0. (17)

The states in this theory that are invariant under a symmetry
are annihilated by generators of that symmetry. So, by taking
the trace of 〈E |{Qa, Qb}|E〉, it is possible to demonstrate that
the energy of the ground state vanishes even for this deformed
supersymmetric theory. Furthermore, as the Lifshitz momen-
tum deformed by the generalized uncertainty principle again
commutes with the generators of the supersymmetry, there
occurs a degeneracy in the mass of two states that are related
to each other by these generators of supersymmetry.

However, because of the non-local differential operator in
the definition of Qa , these variations do not obey the Leibniz
rule and so the differentiation of a product of superfields is
not the same as the differential of each of those superfields.
This problem can be evaded for free theories. This is because
for free theories we can always shift one differential operator
at a time from one field to another in the Lagrangian. Thus, in
the case of free theories, even theories with Lifshitz scaling
deformed by generalized uncertainty principle, we can still
construct a non-local supersymmetric field theory using the
superspace formalism. But as soon as the interactions are
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introduced, they will tend to break this supersymmetry. Now
we will analyze some properties of the superspace which is
suitable to construct free non-local supersymmetric theories.
First, we have

DaDb = −CabD
2 − (γ 0∂0 + γ iκT∂∂i )ab. (18)

Furthermore, the complete anti-symmetrization of three two-
dimensional indices vanishes,

2DaDbDc = Da{Db, Dc} + Db{Da, Dc} + Dc{Da, Db}.
(19)

So we can write DaDbDa = 0, and D2Da = −DaD2, where
D2Da = (γ 0∂0D + γ iκT∂∂i D)a . These properties will be
used to study various non-local Lifshitz supersymmetric field
theories based on the generalized uncertainty principle.

3 Supersymmetric field theory

In this section, we will analyze Lifshitz supersymmetric field
theories based on the generalized uncertainty principle. We
will write an action for a generalized uncertainty principle
deformed Lifshitz theory inN = 1 superspace formalism, so
that it has manifestN = 1 supersymmetry. In order to do that,
we first expand a superfield � as � = φ+ψaθa −θ2F . Now
we can write φ = [�]|, ψa = [Da�]|, F = [D2�]|, where
′|′ means that at the end of the calculations we set θa = 0.
The non-local supersymmetric transformations generated by
εaQa can be written as

εaQaφ = −εaψa,

εaQaψa = −εb[CabF + (γ 0∂0 + γ iκT∂∂i )abφ],
εaQaF = −εa(γ 0∂0 + γ iκT∂∂i )

b
aψb. (20)

We can write a free action for the deformed supersymmetic
theory in N = 1 superspace as

Sfree[�] = 1

2

∫
d3xD2[�D2�]|

= 1

2

∫
d3x[D2�D2� + Da�DaD

2� + �(D2)2�]|

= 1

2

∫
d3x

[
F2 + φ(∂0∂0 − κ2(∂ i∂i (1 − β∂ j∂ j ))

2φ

+ ψa(γ 0∂0 + γ iκT∂∂i )
b
aψb

]

= Sa + Sb + S f , (21)

where Sb is the deformed bosonic action, S f is the deformed
fermionic action, and Sa is the deformed action for the aux-
iliary field F .

In this action, the supersymmetric variations of the tem-
poral parts cancel out as in the ordinary supersymmetric field

theories. Furthermore, the non-local supersymmetric varia-
tion of a part of the bosonic action generates εaψaκ

2(∂ i∂i (1−
β∂ j∂ j ))

2φ, and this term exactly cancels with a term gener-
ated by the non-local supersymmetric variation of a part of
fermionic action. The fermionic action contains a non-local
part, εb(γ jκT∂∂ j )

a
bφ.(γ jκT∂∂ j )

c
aψc. This does not directly

cancel out with the non-local supersymmetric variation of the
bosonic part. However, if we view the non-local operator in
terms of harmonic extensions of functions, then this term can
be written as εbφκ2(∂ i∂i (1 − β∂ j∂ j ))

2ψb. Here the deriva-
tives only act on the fermionic part. Let u1(x, y) be the har-
monic extension of f1(x) to C = R2 × (0,∞), and u2(x, y)
be the harmonic extension of f2 : (x) to C = R2 × (0,∞).
Now both of these harmonic extensions vanish for |x | → ∞
and |y| → ∞, and we can write [50]

∫
C
u1(x, y)∂

2u2(x, y)dxdy −
∫
C
u2(x, y)∂

2u1(x, y)dxdy = 0.

(22)

Thus, we obtain∫
R2

(
u1(x, y)∂yu2(x, y) − u2(x, y)∂yu1(x, y)

) |y=0 dx = 0.

(23)

This can be expressed in terms of f1(x) and f2(x),

∫
R2

(
f1(x)∂y f2(x) − f2(x)∂y f1(x)

)
dx = 0. (24)

Thus, T∂ is moved from f2(x) to f1(x),

∫
R2

f1(x)T∂ f2(x) =
∫
R2

f2(x)T∂ f1(x). (25)

Now the non-local term generated by the non-local super-
symmetric variation of the fermionic action can be expressed
in terms of εaφκ2(∂ i∂i (1−β∂ j∂ j ))

2ψa , and so it also cancels
out with the non-local supersymmetric variation of the bosos-
nic action. It may be noted that this can be done only formally
by using the theory of harmonic extensions of functions from
R2 to R2 × (0,∞). Similarly, the remaining terms generated
by a non-local supersymmetric variation of the fermionic part
cancel with the terms generated by the non-local supersym-
metric variation of the auxiliary field. This theory will have a
generalized uncertainty principle associated with deformed
Lifshitz scaling and N = 1 supersymmetry, even after the
mass term, mD2[�2]|/2 = mψ2 + mAF , is added to its
Lagrangian. It is possible to show that this mass term is
also invariant under the non-local supersymmetric transfor-
mations. This is because the invariance of the temporal part is
again similar to the usual non-local supersymmetric theories
and the invariance of the remaining part can be demonstrated
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by using the theory of harmonic extensions of functions from
R2 to R2 × (0,∞), as in the previous case.

We can now use the standard method—the functional inte-
gral to quantize the supersymmetric Lifshitz free field theory
deformed by the generalized uncertainty principle. If it was
possible to have an extension to an interactive theory, we
could also obtain the Feynman graphs using this method.
However, it will be demonstrated that the interactions terms
break the supersymmetry in those theories.

The generating functional integral for the free theory can
be written as

Z0[J ] = D� exp i (Sfree[�] + J�)

D� exp i (Sfree[�]) , (26)

where

J� =
∫

d3xD2[J�)]|. (27)

Thus, we obtain

Z [J ] = exp −i
∫

d3xD2[J (D2 + m)−1 J ]|. (28)

Now the superfield propagator can be written as

〈�(p, θ1)�(−p, θ2)〉
= D2 − m

p0 p0 − κ2(pi pi (1 − βpk pk))2 − m2 δ(θ1 − θ2).

(29)

It may be noted that if we add any interaction term this
will break the supersymmetry of this theory. This is because
even though for a free field theory the non-local derivative
can be shifted from one field to the another by using harmonic
extensions of functions from R2 to R2 × (0,∞), the Leibniz
rule does not hold in general. Thus, when we have interacting
theories, the non-local supersymmetric variation of a product
of more than two fields is not equal to the individual non-local
supersymmetric variation of those fields. In fact, if we take
a simple interaction of the form

S[�] = Sfree[�] + Sint[�], (30)

where

Sint[�] = λ

6

∫
d3D2[�3]|

= λ

2

∫
d3(φψaψa + φ2F), (31)

then it is not invariant under the non-local supersym-
metric variation generated by εaQa . This is because in
ordinary supersymmetric field theories we need to show
that εaψb(γ μ∂μ)abφ

2 = 2εaψbφ(γ μ∂μ)abφ, however,
for the non-local part of this deformed theory, we have

εaψb(γ iκT∂∂i )abφ
2 	= 2εaψbφ(γ iκT∂∂i )abφ. Thus, the

non-local supersymmetric variation of the interaction terms
cannot cancel out.

4 Conclusion

In this paper, we analyzed a supersymmetric theory deformed
by generalized uncertainty principle and Lifshitz scaling. The
action of this deformed theory contains non-local fractional
derivatives. Thus, even the generators of supersymmetry con-
tain non-local fractional derivative terms. However, these
fractional derivative terms can effectively be treated as a local
operator by using harmonic extensions of functions from R2

to R2 × (0,∞). Furthermore, this non-local operator com-
mutes with the local derivatives, and so we could construct a
super-derivative which commutes with the generator of the
supersymmetry. This super-derivative was used in the con-
struction of various non-local supersymmetric field theories.
A free matter theory deformed by the generalized uncertainty
principle and Lifshitz scaling was constructed such that it was
invariant under non-local supersymmetric transformations.
It was argued that any free non-local supersymmetric theory
will be invariant under non-local supersymmetric transfor-
mations. However, it was demonstrated that even a simple
interaction term will break the supersymmetry of this theory.

The effect of the generalized uncertainty principle on
AdS/CFT has already been analyzed [51]. The AdS/CFT
correspondence relates the supergravity solutions on AdS
to a superconformal field theory on its boundary [52–56]. It
would be interesting to analyze the AdS/CFT correspondence
for Lifshitz theories based on the generalized uncertainty
principle. The holographic dual to the Lifshitz field theory
has also been analyzed [57–60]. In these Lifshitz theories, the
dependence of physical quantities such as the energy density
on the momentum scale is evaluated using the renormaliza-
tion group flow at finite temperature [61]. In fact, gravity with
anisotropic scaling is obtained from the holographic renor-
malization of asymptotically Lifshitz spacetimes [62]. The
holographic counter-terms induced near anisotropic infinity
take the form of the action for gravity at a Lifshitz point. It has
been observed that the z = 2 anisotropic Weyl anomaly in
dual field theories, in three dimensions, can be obtained from
the holographic renormalization of Horava–Lifshitz gravity
[63]. In fact, Lifshitz theories have also become important
because of the development of Horava–Lifshitz gravity [64–
68]. Even though the addition of higher order curvature terms
to the gravitational action makes it renormalizable, it spoils
the unitarity of this theory. However, it is possible to add
higher order spatial derivatives without adding any higher
order temporal derivatives. Even though we have this break-
ing of Lorentz symmetry in the Horava–Lifshitz theory of
gravity, general relativity is recovered in the infrared limit.
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It may be noted that a system at finite temperature and finite
chemical potential with a Lifshitz black hole in place of a
Lifshitz geometry has been used for analyzing the fermionic
retarded Green’s function with z = 2 [69]. In fact, the Hawk-
ing radiation for Lifshitz fermions has also been studied [70].
It would be interesting to analyze the effect that the general-
ized uncertainty principle can have on such systems.
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