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Abstract We show that a possible resolution to the stabi-
lization of an extra spatial dimension (radion) can be obtained
solely in the context of gravitational dynamics itself without
the necessity of introducing any external stabilizing field.
In this scenario the stabilized value of the radion field gets
determined in terms of the parameters appearing in the higher
curvature gravitational action. Furthermore, the mass of the
radion field and its coupling to the standard model fields are
found to be in the weak scale implying possible signatures in
the TeV scale colliders. Some resulting implications are also
discussed.

1 Introduction

Gravity has become the stumbling block in our search for a
unified theory, which probably will lead to an understanding
of the origin in our universe of the late time cosmic acceler-
ation. On the other hand, even though the standard model
of strong and electroweak interactions can explain a vast
landscape of experimental results, it continues to have some
longstanding unresolved issues, which strongly suggests one
to look for physics beyond the standard model. One of the
major drawbacks of the standard model is the necessity of fine
tuning, which originates from the large hierarchy between
the electroweak and the Planck scale, known as the gauge
hierarchy problem. It is remarkable that gravity provides a
very novel solution to this fine tuning problem through the
existence of extra dimensions. Such a gravity-based resolu-
tion of the gauge hierarchy problem was elegantly described
by Randall and Sundrum, where a single extra dimension
with manifold structure S l/ Z, was assumed, resulting in
two branes (hypersurfaces of (3 + 1) dimensions) located
at orbifold fixed points with positive and negative tensions.
Subsequently, starting from the Einstein equations in the bulk
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(higher dimensional spacetime) with a negative cosmologi-
cal constant, they could show that the physical mass of a
field confined on the negative tension brane is in the weak
scale, due to an exponential suppression, whose origin traces
back to gravity. There has been extensive work later on to
clarify some of the disadvantages of this model, as well as
to generalize to more complex settings (for a representative
class of work see [1-13]). One of the key features of the
Randall-Sundrum model is the appearance of an additional
four dimensional massless scalar field having no dynamics.
This is an undesirable feature, since without a stabilization
mechanism one cannot arrive at the desired exponential sup-
pression.

Unfortunately, the gravity sector alone could not cure this
problem. One had to introduce an additional scalar field in
the bulk, whose action, when integrated over the extra spatial
dimension, provided the potential necessary for stabilization.
Any fluctuation about this stabilized value leads to a scalar
degree of freedom, called the radion field. There have been
numerous studies later on, regarding the details of the sta-
bilization mechanism, corresponding to collider signatures
and, of course, various generalizations, e.g., time dependent
stabilization of the radion field (for a small sample of work
see [14-23] and the references therein).

Even though the above scheme of solving the gauge hier-
archy problem looked promising, there is one aspect, namely
the introduction of a bulk scalar which is put in by hand. It
would be really intriguing if the whole solution, i.e., the expo-
nential warping as well as the stabilization can come from
gravity alone. Further excitement will follow if the radion
field so obtained has observable consequences at the collider
experiments. In this work, we explore the above possibil-
ity and demonstrate explicitly that one can have the desired
warping and can stabilize the radion field using only gravi-
tational interactions! This is achieved by introducing higher
curvature corrections to the Einstein—Hilbertaction, which is
expected, since the bulk spacetime is governed by Planck
scale physics. We further delineate the phenomenology of
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the associated radion field, whose potential is being supplied
by the higher curvature corrections and demonstrate the sig-
nificance for collider physics. The phenomenological study
enables one to probe the properties of gravitational physics,
in particular that of higher curvature gravity, using colliders,
leading to new avenues of exploration.

We have organized the paper as follows: We start with
a brief introduction to higher curvature gravity and the par-
ticular model we will be interested in. Proceeding thus we
demonstrate how one can have both exponential warping
and radion stabilization in this scenario, the main theme of
this work. Finally we discuss the radion phenomenology and
comment on possible collider signatures of our model before
pointing out future directions of exploration.

2 Background: higher curvature gravity

It is generally believed that at high energies (or, small length
scales) the Einstein—Hilbertaction must be supplemented
with higher curvature corrections respecting the diffeomor-
phism invariance of the action. There are several possibili-
ties for the same, two such candidates being f(R) theories
of gravity and Lanczos—Lovelock models of gravity. The
Lanczos—Lovelock models are more complicated, but they
are free of ghosts due to the quasi-linear structure [24-29].
On the other hand the f(R) models need special care and
must satisfy few conditions in order to ensure its ghost free
behavior. The success of f(R) models lie in its excellent
match with observations as far as the cosmological arena is
considered. Further, f(R) models with a certain constraint
on its parameters can also evade the solar system tests as well
[30—44]. In this work, it will be sufficient for our purpose to
focus on the f(R) theories of gravity, satisfying a couple of
constraints ensuring its ghost free behavior.

We will work with a five dimensional spacetime consisting
of a single extra spacelike coordinate y. The extra dimension
will assumed to be compact with a S'/Z, orbifold structure.
Like the Randall-Sundrum scenario, two branes are located
at the orbifold fixed points y = 0, , respectively, with y and
—y identified. The bulk gravitational action is assumed to be
of the following form:

1
A= / d*xdy =g [ﬂ {f(R)} — A}

_ 4 1 2 4
/d xdy / g|:2K52 {R—i—aR IBIR } A:|,
(D

where ks is the five dimensional gravitational constant with
mass dimension —3/2, A being the negative bulk cosmo-
logical constant with mass dimension 5, « and § are the

@ Springer

higher curvature couplings having mass dimensions of —2
and —6, respectively. The structure of the above Lagrangian
has been inferred from the ghost free criterion, which reads
f(R) >0, f'(R) < land f”(R) > 0[30]. For convenience
we will switch to units where the Planck mass has been set to
unity, using which the above conditions lead to @ > 0 as well
as o« > |B|. Note that the model must satisfy this criterion
at all curvature scales. An exact warped geometric solution
to the above gravitational action has been derived recently in
[45], which reads

ds? = ) [e_zA(y)n,wdx“dx" + rfdyz] ;

/(521)2 4bg
A(y) =krey + 12 EXp| =357y 2)
ks

Here v is a constant of mass dimension 3/2, we have also

defined by = (92/[B]/32¢:?) and k = ,/—A«2 /6 for con-

venience. For completeness we also present the form of the
function f(y) appearing in Eq. (2), having the following
structure:

2b
fo = [1 + ‘@2"5” exp (——fw)
Ks

~2/3
6bo

eXp|——57cy . 3
ks

Note that the solution derived above has the desired expo-
nential warping, through the term kr.y in the warp factor.
Thus, on the visible brane at y = s, the physical mass of
any field will be suppressed by exp(—kr.), leading to weak
scale behavior. This is like the Randall-Sundrum scenario,
where introducing gravity alone leads to the desired weak
scale phenomenology with a choice of kr, >~ 12. We would
like to emphasize the fact that the effect of higher curvature
gravity is through some combinations of « and B; keeping
only o or B is not sufficient to get the desired warping. The
next hurdle is to provide a stabilization mechanism for the
radion, which will drive the radion field to its value r., com-
patible with the exponential suppression. This is what we
will elaborate on in the next section.

3V3|Blkdv?
1603

3 Stabilizing the radion using higher curvature gravity

In the original Randall-Sundrum scenario, one needs to intro-
duce a bulk scalar field in order to achieve the stabilization
of the radion field. The reason is that the Lagrangian for the
Randall-Sundrum scenario, which is the Ricci scalar, has no
potential term for the radion field. The bulk field introduces
such a potential, and thereby satisfies both the suppression
of the Planck scale and the stabilization of the radion field.
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We will show that, since our action in Eq. (1) has higher cur-
vature terms, if one evaluates the same for the metric given
in Egs. (2) and (3), it will naturally lead to a potential for
the radion field and hence one can stabilize the same without
ever introducing a bulk scalar field. The additional degree of
freedom originating from the higher curvature terms actu-
ally plays the role of a stabilizing field. As a consequence,
the stabilized value would depend upon the parameters « and
B appearing as the couplings of the higher curvature terms.
It will turn out that the condition kr, >~ 12 is essentially a
condition on these higher curvature couplings and the bulk
cosmological constant.

As we have already laid out the principles involved, we
will proceed directly to the computation and will work exclu-
sively with the higher curvature action presented in Eq. (1).
Given the metric ansatz in Eq. (2) one can evaluate the Ricci
scalar in a straightforward manner. Then one has to substi-
tute the Ricci scalar in the gravitational part of the action and
obtain the corresponding f(R) Lagrangian, which to lead-
ing orders in the coupling parameters reads (for details see
Appendix 1)

20
f(R) ~ —20k% — k2 (k5v) efzborpy/;cg

V3
154/ ,
tk ("5% ”2) 405|2ﬁ—| o~ 4borey /K3 4

Given this form of the f(R) Lagrangian, one can substitute
the same in the bulk action, i.e., Eq. (1) and then integrate out
the extra dimensional coordinate y over the interval [0, 7],
thanks to the orbifold symmetry. In this integration it will turn
out that the contribution coming from the lower limit y = O1is
independent of the radion field r. and hence adds a constant
contribution to the radion potential, while the contribution
from y = 7 does have dependence on the radion field and
shall serve as the radion potential. Introducing a new field

¢(re) = Pexp[—krem], where ® = ,/24/kic52, we finally
obtain the potential for the radion field (or, equivalently, for
the new field ¢) to yield

_ fR)

V(d))—/dy {2;%2 A}
Ni@)“[_H@(z)‘s
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where § = (2by/kx2) = (94/]B[/16ka?) is a dimensionless
constant. The usefulness of this quantity ¢ follows from the
fact that one can upgrade it immediately to the status of a
four dimensional scalar field, with . — r(x), the spacetime

dependent brane separation. The vacuum expectation value
of the same is given by r. and thus ¢ (r.) will denote the
vacuum expectation value of ¢ [14,15]. Note that the field ¢
is merely a constant depending on the radion field. If the field
is being upgraded to depend on the spacetime coordinates,
then the potential structure will remain identical, however, it
will inherit the canonical kinetic term in the action as well
(see, for example [15]).

Note that the above potential is very much similar to the
one obtained in [14, 15] using a bulk scalar field, with § iden-
tified as (m?/4k?), where m is the mass of the bulk scalar.
Thus the higher curvature terms act as a source for the radion
mass as we will explicitly illustrate later. Further in the above
scheme the condition § < 1 is identically satisfied, since the
couplings to higher and higher curvature terms are more and
more suppressed. Thus the scenario with higher curvature
gravity leads to an identical situation to that of introducing a
bulk scalar field, but it follows from the gravity sector alone.
The stabilized value of the radion field can be obtained by
finding the minima of the potential in Eq. (5), which is a
solution of the equation 0V /d¢ = 0, leading to the follow-
ing expression for . (see (20) in Appendix 1):

1602 Vs 1Bl

k AK52 1 4](0(2 (6)
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o

Thus with ksv ~ 40 and /[B]/ka?* ~ 1/20, the logarithmic
term becomes of order unity and then one readily obtains
kre >~ 12, the value desired for exponential warping. Hence
starting from a pure gravitational action, with higher cur-
vature corrections, one can produce an exponential warping
as well as a proper stabilized value for the brane separation
without ever introducing any additional structure. Further the
desired warping to address the hierarchy problem leads to a
relation between the higher curvature couplings and the bulk
cosmological constant. This completes what we set out to
prove, i.e., a derivation of the exponential warping leading to
weak scale physics and a proper stabilization mechanism for
the brane separation, both from the gravitational dynamics
alone.

For the sake of completeness we would like to discuss
the choice of f(R) gravity and its role in radion stabiliza-
tion. Since we are working in the higher curvature regime,
where bulk effects are important, it makes sense to add terms
like R" to the Einstein—Hilbertaction, with n positive. The
first such choice corresponds to adding a R? term, which
would lead to the original Goldberger—Wise scenario in the
scalar—tensor representation. The next leading order term in a
bulk spacetime with negative cosmological constant, free of
ghosts, corresponds to the one presented in (1). Interestingly
for this situation one can solve for the full scalar coupled Ein-
stein equations as depicted in [45] and the situation will differ
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considerably from the Goldberger—Wise scenario. In princi-
ple one can add more higher order terms to the Lagrangian,
however, in those scenarios one would not be able to solve the
full back-reacted problem in a scalar—tensor representation.
Moreover, these terms will be further suppressed and will
contribute insignificant corrections over and above (6). Thus
the scenario presented in this work captures all the essential
features and is simple enough to be solved in an exact man-
ner. This motivates the choice presented in (1). Given the
above, it will be worthwhile to spend some time discussing
the corresponding scenario in the scalar—tensor representa-
tion [45], which will bring out the difference of our approach
from the existing ones. This is what we elaborate on in the
next section.

4 Stabilization in the Einstein frame: scalar-tensor
representation

It is well known that any f(R) gravity model is mathe-
matically equivalent to a dual scalar—tensor representation
[21,36-38,46-52]. The mathematical equivalence follows
from the transformation of the Jordan frame action to the Ein-
stein frame, a.k.a. conformal transformation. Surprisingly,
this equivalence holds in lower dimensions as well, viz., if
one starts from a higher dimensional action and projects onto
a lower dimensional hypersurface, the field equations are
still connected by a conformal transformation, provided one
exercise caution about the boundary contributions. Despite
the mathematical equivalence, there are situations where the
two scenarios are not physically equivalent, e.g., in cos-
mological scenarios the f(R) frame may lead to late time
acceleration, while the Einstein frame advocates late time
deceleration [48,53,54]. The issue of physical inequivalence
becomes important if the spacetime inherits a singularity or
is undergoing a quick evolution phase. In particular, using
the reconstruction technique [55-58] it is possible to gener-
ate f(R) theories explaining the early inflationary phase to
a late time accelerating phase of the universe, all of which
ultimately results in a finite time future singularity. The exis-
tence of a future singularity often breaks the equivalence
with the scalar—tensor representation [48,59]. However, in
the absence of a singularity [60], the equivalence of f (R) the-
ories with scalar—tensor theories does exist. The situation dis-
cussed in this work has no such singularity in the spacetime
structure, as is evident from Eqgs. (2) and (3), respectively.
Thus one may safely use the equivalence between f(R) and
scalar—tensor theories.

Given this input, it will be worthwhile to explore the cor-
responding situation in this context, namely how the radion
stabilization is affected as one considers the dual picture in
the Einstein frame and contrasts the same with the stabiliza-
tion already discussed in Sect. 3. For the f(R) action under
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our consideration, the corresponding action in the Einstein
frame becomes

R 1
A= /dSX«/_g |:W — Egabvawvbw - V(Kﬁ) - Ai|
5

(N

where v is the scalar field in the dual picture defined by
ks = (2/ ﬁ) In(1 + f’) and the corresponding potential
becomes

V() = iwz — K—52k252w4 8)
32« 6 ’

The expression for the potential brings out the key differ-
ence between the Goldberger—Wise stabilization mechanism
and the one advocated here—the potential for the scalar field
in the Goldberger—Wise mechanism lacks the quartic term
present in our analysis. Incidentally, the presence of this quar-
tic term helps to solve the full back-reacted problem, while
the original stabilization proposal was without incorporat-
ing the back-reaction of the scalar field. Hence the stabi-
lized value of the radion field derived above incorporates the
effect of the quartic potential, as well as the back-reaction of
the scalar field on the spacetime geometry and differs from
the standard scenarios. The above structure of the potential
also shows the reason for neglecting further higher curvature
terms (e.g., R®) in the action.! The scalar—tensor represen-
tation with such higher curvature terms will involve more
complicated potentials and hence cannot be solved in full
generality by incorporating the back-reaction as well. Further
the R* term in the action leads to the leading order departure
from the Goldberger—Wise action, which we have studied in
this paper. Additional higher curvature terms would lead to
further sub-leading corrections and thus can be neglected.

Given the action in the Einstein frame, one can invoke
the corresponding solution (derived in Appendix 1) and inte-
grate out the extra dimensional part present in the action.
This will result in a potential for the radion field 7., like the
Goldberger—Wise mechanism, whose minima would yield
the following stabilized value of the radion field:

N 1602 Ax? 3V1Blk3 g
e S BV 6 1“( 64ka? ©

where Y is the value of the dual scalar field in the y = 0
brane. Comparison with Eq. (6) reveals that the leading order

It is evident that the higher curvature terms are more and more
suppressed, and we choose to work with the first two leading order
corrections, compatible with the ghost free criterion, to the Einstein—
Hilbertaction.



Eur. Phys. J. C (2017) 77:573

Page 50f 12 573

behavior (i.e., the term outside the logarithm) of the stabi-
lized value of the radion field is identical in both Jordan and
Einstein frame. This observation explicitly demonstrates that
in both these frames the radion is stabilized to the desired
value necessary for exponential suppression of the Planck
scale. Thus unlike various scenarios with either singularity
or a quick evolution (where the two frames are physically
inequivalent) in this particular situation the physical equiva-
lence between the two frames is manifest.

At this stage, we may point out another alternative possi-
bility of stabilizing the radion field, by incorporating quan-
tum effects of the bulk scalar field at nonzero temperature
[61,62]. In particular, one can think of the resulting ther-
mal fluctuations to generate a modulus potential which may
inherit a minimum, thereby stabilizing the brane separation.
The brane separation necessary to solve the hierarchy prob-
lem involves considering a low temperature limit of the free
energy associated with the bulk quantum field, which may
have connections with the AdS/CFT correspondence [61,62].
However, in this context as well, one generally neglects the
effect of back-reaction and treats the bulk quantum field to
be sitting on the fixed Anti-de Sitter background, unlike the
scenario we have depicted. Thus after explicitly establishing
the differences between our approach and the existing ones,
we now concentrate on the phenomenology of the radion
field, viz. mass of the radion field and its interaction with the
standard model fields in the next section.

5 Some applications of the stabilized radion field

In this section we will briefly discuss two possible appli-
cations of the stabilized radion field in two diverse physical
contexts. The first application will discuss the implications of
this stabilized radion from the perspective of particle physics,
while the other will address the effect of the radion field on the
inflationary paradigm. In both these contexts we will demon-
strate that the stabilization of the radion field (which has its
origin in higher curvature gravity) plays a crucial role and
leads to an interesting additional structure in the correspond-
ing situations, having possible observational consequences.

5.1 Phenomenology of the stabilized radion

Given the potential V (¢), one can immediately obtain the
mass of the ¢ excitation by computing 8%V /d¢?> and then
expressing the same using 7., given in (6). Performing the
operation, one arrives at the following expression for the
radion mass:

a2V Sk%ic2v? (qﬁ(rc)

26
W(rc) — 18 d) ) 826—2]0’@7'[ , (10)

2 _
m¢:

where ¢ (r.) can be obtained from (6). It is evident from
the expression for m, that there is an exponential suppres-
sion of the radion mass, which leads to a weak scale value
from a Planck scale quantity. Note that this expression is
very much similar to the result obtained in [14,15], with
the identification of § with m?/k%. But there is one dif-
ference, which is caused by the (¢ (r.)/ @)% term in (10).
This results in a decrease in the radion mass as compared to
the Goldberger—Wise scenario described in [15]. However,
at the same time the choice of x5v also becomes important.
To see the difference in a quantitative manner, consider the
following situation: ksv ~ 40,8 ~ 1/32, using which one
obtains kr, ~ 12, leading to my ~ 0.02k%e~2¥"<™ . For the
standard Goldberger—Wise scenario one would have obtained
mé ~ 0.05k?e~2k"e™ _This explicitly shows that the radion
mass in our approach is smaller (in this case two times) com-
pared to the one obtained in [15], showing quantitatively the
difference between these two approaches. Further note that
the results in [14,15] were derived in the context of a bulk
scalar field, we here derive the same but from a purely grav-
itational standpoint. A similar exponential suppression will
drive the masses of the low-lying Kaluza—Klein excitations
to the TeV scale [63-76]. In the context of a radion mass,
however, there is one further suppressing factor, namely 52
and thus the radion mass will be a bit smaller compared to
the low-lying Kaluza—Klein excitations of the bulk field. The
radion mass, as presented in this work, is completely of higher
curvature origin, and this suggests that detection of the radion
field ¢ may be a hint not only of higher dimensions but also
of higher curvature gravity.

In order to find the coupling of the radion field to the stan-
dard model particles, note that in this scenario the radion
appears as a gravitational degree of freedom and, since grav-
ity couples to all kinds of matter, so will the radion. Since
the standard model fields are confined on the brane hypersur-
faces, it is clear that they will couple to the induced metric
on the brane. On the brane located at y = 0, the warp factor
becomes unity and the induced metric is proportional to 7.
Thus fields confined to y = 0 hypersurface do not couple to
the radion field. On the other hand, on the visible brane (the
hypersurface y = ) the induced metric is (¢/ <I>)2n,w and
thus the radion field will couple to the standard model fields.
Here, ¢ = ¢ (r.)+5¢, where ¢ is for the fluctuations around
the minimum value ¢ (). In the case of a scalar field, say the
standard model Higgs /(x), one can reabsorb the factors of
® by redefining i — (®/¢ (r.))h(x), such that the physical
Higgs mass becomes moe %< . For a Planck scale bare mass
mg and kr. >~ 12 one immediately obtains the physical mass
in the weak scale. Further the corresponding interaction term
of a standard model field with the radion will involve

1

Ling = ——
b (re)

1
S¢T) = A—¢8¢>T“, (11)
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where Tb’f stands for the trace of the energy momentum ten-
sor of the standard model field and Ay defines the coupling
of the radion to the standard model fields. (Since the radion
is a gravitational degree of freedom it has to couple to some
combination of the matter energy momentum tensor.) Note
that, for large A ¢, the coupling becomes small and as a con-
sequence the radion will couple weakly to the standard model
fields. In particular recent bounds on both the radion mass
and the radion coupling strength shows that they are not inde-
pendent; if the radion mass is smaller the coupling will be
larger and vice versa. To get a numerical estimate, one must
provide an estimate for the value of & in Planck units. For
k ~ 0.1, the coupling satisfies the following stringent bound:
Ay > 14.3 TeV [76-81]. This leads to very weak coupling
between radion and standard model fields, resulting in non-
detectability of the radion field (even though the mass can be
as low as 200 GeV). At the same time for kK ~ 1, in Planck
units, the coupling can become Ay ~ 5 TeV. Even though
in this case the coupling is not very weak, the radion mass
becomes higher ~ 1TeV. Thus coupling and mass of the
radion field are inversely related, making it difficult to detect
in the current generation collider experiments.

For completeness, let us discuss the implications of our
model in the context of electroweak precession measure-
ments [82]. As emphasized earlier, the radion will linearly
couple to standard model fields, e.g., the gauge bosons W+
and Z with a coupling A;l , whichis (TeV)~!. These interac-
tion terms will produce three point as well as four point inter-
actions between radion and the gauge bosons due to gauge
fixing terms as well as higher loop effects in the effective
Lagrangian. Fixing the mass of the standard model Higgs
boson at 125 GeV [77] affects the electroweak parameters
such that they become insensitive to the radion mass, since
the radion mass is further suppressed by its own vacuum
expectation value [82]. Despite this, the fact that the mass of
the radion field as well as its coupling with standard model
fields are in the TeV scale makes the phenomenology of the
radion field a nice testbed for higher dimensional as well as
higher curvature physics in the next generation colliders.

5.2 Cosmology and radion stabilization

Having already discussed the imprints of the stabilization
mechanism of the radion field on the phenomenological side,
we will presently address the corresponding situation in a
cosmological setting. In a more general context, follow-
ing [65] one should have made the radion field dynamical
by considering arbitrary fluctuations around the stabilized
value and hence study the dynamics in an arbitrary back-
ground. However, this will be a complicated exercise, due
to the presence of higher curvature terms in the gravitational
Lagrangian. Thus we concentrate on a specific situation with
the radion field depending on time alone, leading to the sta-
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bilized value in the cosmological context. Note that this sit-
uation has already been analyzed in the context of general
relativity in [83] and has been elaborated further in the con-
text of radion stabilization in [23]. Thus one may try to find
the cosmology on the brane in the presence of higher curva-
ture terms, whose detailed analysis for various cosmological
epochs will be presented elsewhere. In this section we will
try to answer this question in the context of the inflationary
paradigm alone. However, for completeness, we will also
provide some general computations. The metric ansatz suit-
able for our purpose corresponds to

ds? = e 2400 L_ar 4 2(0) (dx? + dy? + d2?) |
+ r()*dy? (12)

where the two branes are located at y = 0 and m, respec-
tively, and they are assumed to be expanding with the scale
factor a(t). Further, the radion field is assumed to be dynam-
ical, such that r(¢) = r. + 6r(t). Here r. corresponds to
the stabilized value of the radion field derived in the earlier
sections and 67 (t) corresponds to the fluctuations around the
stabilized value. Further A (y) should take care of all the extra
dimensional dependent quantities, which will behave as ky
to the leading order. The Ricci scalar derived for the above
ansatz on a y = constant hypersurface becomes

.. .2 .« .
R = —20k% + 62" (‘—l n "—2> — 387 (6kry — 2) 21

a a ar

.. .2

4 oy {; @ — 6kry) + :—2kyr (6kry — 4)} C13)

Having obtained the Ricci scalar one can derive the Lagran-
gian with ease which is given in (1). Derivation of the
Lagrangian enables one to obtain the corresponding field
equations for a and r, by varying the scale factor and the
radion field, respectively. The gravity theory being f(R) in
nature, the field equations will definitely inherit higher than
second derivatives of the scale factor and the radion field,
which reads

. d2 1
3a2re 1Y £(R) — 6ra? f(R)E + = {6ra2e_2k” f’(R)}
a

-\ 2
— 12ra%e 2 F1(R) <f>
a
72kryié _ 2 ¢t
+ 3e (6kry —2)ra“ f'(R)
ra

- 3% (eZkry;(6kry -~ 2)ra2f/(R)> =p. (14)

In general it looks sufficiently complicated, however, in the
case of an exponential expansion (with a(t) = e''"), i.e., for
an inflationary scenario the above equation simplifies a lot.
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In particular it is possible to approximately solve for the time
dependence of the radion field explicitly, which turns out to
be decreasing with time, similar to the corresponding situa-
tion in general relativity [23]. Thus as the universe expands
exponentially, the radion field decreases with time, finally
attaining the stabilized value as the inflation ends. Hence
the scenario depicted above can also explain a dynamical
procedure for stabilization of the radion field, modulo infla-
tionary paradigm. This provides yet another application of
the radion field a.k.a. higher curvature gravity in the present
context.

6 Discussion

The gauge hierarchy problem is a very serious fine tuning
problem in standard model physics. One avatar of the extra
dimensional physics as depicted by Randall and Sundrum has
the capability of addressing the gauge hierarchy problem by
suppressing the Planck scale to the weak scale gravitation-
ally. Unfortunately, to stabilize the above scenario one needs
to introduce an additional field. In this work, we have shown
that the introduction of such a stabilizing field is unneces-
sary and one can achieve both the suppression to weak scale
as well as a stabilization mechanism starting from a higher
curvature gravitational action alone. In this sense gravity sta-
bilizes itself!

Starting from a higher curvature gravitational action we
have derived an exact warped geometric solution with the
extra spatial dimension having S' / Z, orbifold symmetry and
two 3-branes located at the orbifold fixed points y = 0, «,
respectively. We would like to emphasize that the above solu-
tion is exact with effects from the higher curvature terms duly
accounted for, unlike the original Goldberger—Wise solution
where back-reaction of the stabilizing field was neglected. In
this respect our work is more in tune with [63], where also
solutions have been derived with inclusion of back-reaction
as well. The warp factor again has exponential suppression
and thus the Planck scale physics will be reduced to the weak
scale phenomenon on the visible brane located at y = . But,
surprisingly, the higher curvature terms provide a potential
for the radion field as well, whose minima lead to the stabi-
lized value of the radion field gravitationally. Further, the sta-
bilized value depends on the gravitational couplings present
in the higher curvature action as well as the bulk cosmologi-
cal constant, such that a particular choice of these parameters
results in kr. >~ 12, leading to the desired warping. Added to
the excitement is the result that the radion mass has similar
suppression leading to TeV scale physics, which is smaller
compared to the low-lying Kaluza—Klein spectrum of the
bulk scalar field. Being a gravitational degree of freedom,
the radion field couples to the standard model fields through
the trace of the energy momentum tensor with a coupling

having strength TeV~!. We reiterate the fact that the above
analysis has been performed completely in a gravitational
physics framework.

The above results open up a broad spectrum of further
avenues to explore. From the observational point of view,
the above result brings down the dynamics of the higher
curvature gravity to a TeV scale phenomenon, which may
become accessible in near future collider. In particular the
radion mass, which depends exclusively on the couplings
present in the higher curvature theory, may provide the first
hint towards observational signatures of higher curvature
gravity besides that of higher dimensions. A more careful
analysis in this direction can be performed following [67-
71], where a similar analysis for an additional stabilizing
scalar field has been carried out. From the theoretical point
of view, it will be worthwhile to understand the phenomenon
of generating a potential for the radion field and its subse-
quent stabilization in the context of Lanczos—Lovelock (or
Einstein—Gauss—Bonnet for simplicity) gravity. It will also
be of interest to explore the consequences of making the
radion field dynamical, in which case the kinetic term will
also contribute to the gravitational field equations resulting
in distinctive cosmological consequences of this higher cur-
vature brane world scenario, e.g., imprints on the cosmic
microwave background, the inflationary scenario and so on.
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Appendix A: Calculational details

In this section, we provide all the calculational details to
supplement the results presented in the main text. In order to
make the calculation simple, we will introduce the following
definitions:

3 Axg B K2v? _ 2b0  9VIBI.
k - T Al — T 1A A2 - _2 - —21
6 12 K2 160

V3isv. _ _3x/§|,3|'<5303

Az = :
3 2 16a3

15)

We further divide the appendix in two parts; the first done
depicts the situation with f(R) gravity, while the other illus-
trates the dual scalar—tensor description.
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A.1 Stabilization in f(R) gravity

The Ricci scalar computed for the metric presented in Eq.
(2) turns out to be

= f13 5 [ 2 (8A” _ 20A/2)
+Af @A = 1)+ (16)

where a prime denotes differentiation with respect to the extra
spatial coordinate y. Evaluation of the Ricci scalar, given the
functions A(y) and f(y), can be performed to leading orders
of exp(—Asr.y), yielding

8 32 40
R = —20k? + 427y {§A§A3 + ?kAzAg - ?szg}

32
+ e ey {80kA1A2 —~ ?kAzAg + 324143

20 20
- ?A§A§ + gszg

2 (8, 32 40 ,
A3 =AZAs + ZkArAs — —k°A
+33<323+3 243 3 3)}
= —20k% 4+ Ee A2y 4 Fe2A27ey, (17)

Let us now write down the higher curvature Lagrangian of
Eq. (1) using the above expression for the Ricci scalar,

L= (—ZOk2 + Ee ey 4 Fe—ZAmy)
2
+ o (—20k2 + Ee™A2rey 4 Fe—2A2r(-y)
4
- |:3| (_20](2 + Ee_Aery + Fe—zAzrcy)
2 4
B {_20"2”(‘20"2) ~ 181 (-208°) }
A 2 3
4 ey {E—40ak E — 41| (—204?) E}
24 ) 5 ) N2
§ 2y {F—i—aE —40ak> F 6| E* (—20¢°)
3
— 4IBIF (—20k?) }
=P+ Qe—AZVK:y + R€_2A2r"y_ (18)

Thus the bulk gravitational action reads

2K52A=/d4xfdyrcf(y)5/2e_4A(y)L

\-5/3
= /d4x/dyrc (1 + Aze A2y 4 A4e_3A2V”)

% ef4kr(\y (P + QefAery + R672A2rcy)

@ Springer

5 :
= /d4x f dyrce—4kr(-y |:P + {Q _ gPA??} e—Aer.)

5 20
+ {R - 3045+ KPAg} e*“zw] : (19)

Integrating out the extra spatial coordinate leads to a potential
term for the radion field, which contributes only at y = 7
and becomes

5
P . —3zPA
2K52V(rc) — 674](}’571 (4k> + e*4krc7'[efA210n’ { Q4k —i A2 3 }

5 20 p 42
4 o~ Hrem —2Azre { R—3043+ 5 PA3 }

4k +2A,
+ terms independent of 7. (20)

Such that the minima of the potential, leading to stabilized

value of r, can be obtained by equating dV /dr. = O resulting
in

160 | Ax?
kre = e
9 /18] 6

X In

5 20
2 (R— J0As+3PA3)

(gpA3_Q)+\/(Q—§PA3>2—4P (R-3045+3Pa3)
21

The above expression can be enormously simplified by keep-
ing terms to the leading order. In particular, one will have
P = —20k?, Q = —(40/3)k* A3 and R = 80k A A, leading
to (5), where we have assumed A} > k > A and A| > 1.1t
turns out that in order to have the stabilized value of kr, >~ 12,
the above conditions are identically satisfied. We introduce
the field ¢, such that the above potential becomes

Ay
2 (PN (¢ * o \*"TT [0—3PA;
25 V9) = (@) (6) * (6) A

A
(e {R—%Qm%mz}

P 4k +2A,

+ terms independent of r.. (22)

This is the expression, which along with the previous identifi-
cations, has been used to arrive at Eq. (6). Given the potential
V(¢), one can compute

A
LV 1 [P\ 4¢3 1 o\ T
9o o \4k) o3 "o \o

A —3pA
k 4k + Aj
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A
1 [\ 27 A,
—_(Z 4422
tale) (2
5 R—30A3+ 2PA3
4k +2A, ’

(23)

as well as

A
82‘7 1 3¢2 1 ¢ 2+ A2
27 7
0-2pa
X - =
3 3

A
_ = 34222
cals) (%)

x {R——QA3+29—OPA2} ) (24)

Thus the minimum of the potential corresponds to dV /d¢ =
07

re(%) {o-3rm)

6\2 T 5 20,
+(5) {R—gQA3+jPA3}=O. (25)

Thus the radion mass becomes

92V 1%
M= ST G =0

1 1 ¢? ¢ ? 5
=maa[‘3(a) {Q‘§PA3}

#\27 5 20
- 3<5> {R——QA3+3PA }

(8o o)

$\2T Ay 5 20,
+ <5> <3+27> {R—gQA3+3PA3}i| .

(26)
This helps to obtain the radion mass as in Eq. (10).
A.2 Stabilization in scalar—tensor representation

Since any f(R) theory of gravity has a dual description it
would be interesting to understand the situation presented
above in the dual scalar—tensor theory as well. This will pro-
vide a similar setup to the original Goldberger—Wise scheme
but with back-reaction included. In this case the gravitational
action is given by (7), with the following solution:

ds? = e_zA(y)n,wdx“dx" + rfdyz;

V() = Yo~ P
27)

2
K
A) = Ao +krey + e

Note that the correspondence between Jordan and Einstein
frames relates the parameter A, appearing here with that
earlier. The Ricci scalar for the above metric can be evaluated,
leading to

1
R=— (8A” _ 20A/2)

re

20 , (3203 40 20 5 4
=-= =22 4+ —aph - =b 28
5 % <3K5+9aoo>1// 901/f (28)

where ag is a constant to be identified with 3k, while by =
k2 A2 /4. Further one obtains

2
"0,y = (Z‘y”) = A—wz e, (29)

Thus the action becomes

20 22 A3
A= d4 /d )= 2 5
/ e [2K5 [ g0\ 73

10 , ry S
+?K5a0A2)1ﬁ0€ 2rey 36

A% 2 _Aorey 2a0 A2 apAsr 2
S RGO | W v=g R 71 i A
2 42
_ (A2 el
< 7 ) v } Ai| . (30)

Hence the potential becomes (except for terms independent
of r.) by introducing R = ®eKre™

R* 4al\ 1 17 5, 2apA;
—|—==22) =+ (=4
q>4[( 9/<52>4k+<96 2+ )"”0

(R/@)™/E (K54 w4<R/<I>)2A2/k
4k + A, 36 ] 70 4k +24,

4 4 24
KSA w 2}}\}

V(R) =

3D

In this case as well the minima of the potential originate from
the following algebraic equation:

4 q? 17 2apA
(45) - (G- 25w
5
2A2
+ (—K36 )w (R/®)*2/k =0, (32)
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leading to a solution for the stabilized potential which only
differs within the logarithm and hence shows identical lead-
ing order behavior. The mass as well as the coupling with
standard model fields work out in an identical fashion. Thus
the two frames lead to very similar expressions for the stabi-
lized value of the radion field as well as its mass and couplings
with standard model fields. Hence at least in this context the
two frames have nearly identical physical behavior.
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