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Abstract We investigate the upper limit of the gravitational
radiation released upon the collision of two dilatonic black
holes by analyzing the Gauss–Bonnet term. Dilatonic black
holes have a dilaton hair coupled with this term. Using the
laws of thermodynamics, the upper limit of the radiation is
obtained, which reflected the effects of the dilaton hair. The
amount of radiation released is greater than that emitted by
a Schwarzschild black hole due to the contribution from the
dilaton hair. In the collision, most of the dilaton hair can be
released through radiation, where the energy radiated by the
dilaton hair is maximized when the horizon of one black hole
is minimized for a fixed second black hole.

1 Introduction

Gravitational waves have been detected by the Laser Interfer-
ometer Gravitational-Wave Observatory (LIGO) [1–3]. The
sources of the waves have been the mergers of binary black
holes in which the masses of the black holes have been more
than 10 times the mass of the sun. The binary system that
caused GW150914 consisted of black holes with masses of
approximately 36M� and 29M� in the source frame [1]. The
recently detected gravitational wave, GW151226, was gen-
erated by a binary black hole merger involving two black
holes with masses of 14.2M� and 7.5M� [2]. The detection
of these waves has proven that there are many black holes
in our universe and that collisions between them may be fre-
quent events.

For an asymptotic observer, a black hole in the Einstein–
Maxwell theory can be distinguished by its conserved quan-
tities: mass, angular momentum, and electric charge [4–6].
This concept is known as the no-hair theorem, in which
charges cannot be observed outside of the event horizon of
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a black hole. In the theory in which gravity is coupled with
Maxwell and antisymmetric tensor fields, the dilaton hair
concept was first introduced in association with string theory
[7–9]. Since then, many kinds of hairs have been described in
different gravity theories, such as those involving Maxwell
and Yang–Mills fields [10–18]. One of them is dilaton grav-
ity theory, which includes the Gauss–Bonnet term [19–23],
a curvature-squared term given in the effective field theory
of a heterotic string theory [24–26] and topological in four
dimensions, so that the equations of motion are the same as in
Einstein gravity when the dilaton field is turned off [19,24].
In dilaton gravity theory, the black hole solution has a dilaton
field outside the black hole horizon [27–31], and thus, dilaton
hairs are an exception to the no-hair theorem. Because dila-
ton hairs originate from the masses of black holes, dilaton
hairs are secondary hairs that grow from the primary hairs of
black holes [32,33]. The presence of a dilaton hair changes
the physical properties of the corresponding black hole, such
as its stability and thermodynamics, which have been stud-
ied in various black holes coupled with dilaton fields and
Gauss–Bonnet terms [34–43].

As a counterexample to the no-hair theorem, a dilatonic
black hole should be stable in our universe. The stability of
a dilatonic black hole can be tested and identified based on
the specific range in which the mass lies. The solution for a
dilatonic black hole is convergent to that for a Schwarzschild
black hole in the large mass limit. Thus, its stability is also
similar to that of a Schwarzschild black hole in the same
range. When the mass is low, its behavior is different. A
dilatonic black hole becomes unstable below a certain mass
known as the critical mass. Thus, a dilatonic black hole
must possess a certain minimum mass to be stable. In addi-
tion, at its critical mass, the black hole possesses minimum
entropy and thus can be related to the cosmological remnant
[29,30,44,45]. On the other hand, the solution includes a
naked singularity that is not allowed under the cosmic cen-
sorship conjecture [46]. The cosmic censorship conjecture
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for black holes prevents naked singularities, so black holes
should have horizons. Kerr black holes were first investi-
gated with reference to the conjecture mentioned above by
the inclusion of a particle [47], and many black holes have
subsequently been studied in a similar manner [48–70].

Classically, a black hole cannot emit particles, so its mass
is nondecreasing. However, a black hole can radiate parti-
cles via the quantum mechanical effect, and its temperature
can be defined in terms of the emitted radiation. The Hawk-
ing temperature is proportional to the surface gravity of a
black hole [71,72]. The horizon areas of black holes can only
increase via physical processes, which is similar to the behav-
ior of entropy in a thermal system. Using this similarity, the
entropy of a black hole, called Bekenstein–Hawking entropy,
is defined as being proportional to its horizon area [73,74].
Then a black hole can be defined as a thermal system in
terms of its Hawking temperature and Bekenstein–Hawking
entropy. The nonperturbed stability can be tested based on
the thermodynamics of the black hole and can be described
by a heat capacity. However, a dilatonic black hole is ther-
mally unstable, as its heat capacity is negative, but at the
same time, its Hawking temperature has a finite value [30],
which is similar to that of a Schwarzschild black hole. One
of the other tests for nonperturbed stability is the fragmenta-
tion instability of black holes. The fragmentation instability
is based on the entropy preference, so a black hole near an
extremal bound decays into fragmented black holes that are
thermally stable and have greater entropy than a single black
hole system. For example, a Myers–Perry (MP) black hole is
defined in higher dimensions, and its angular momentum has
no upper bound over five dimensions [75]. Then an MP black
hole becomes unstable when the large angular momentum is
sufficiently large due to its centrifugal force. Thermally, the
entropy of one extremal MP black hole is less than that of
fragmented MP black holes, so an MP black hole breaks into
multiple MP black holes [76]. The fragmentation instability
gives similar results for perturbation [77–83]. This kind of
instability can also be obtained in rotating or charged anti-de
Sitter (AdS) black holes [84,85]. A dilatonic black hole with
a Gauss–Bonnet term also has a complicated phase diagram
related to fragmentation instability [86].

The gravitational radiation released when two black holes
collide can be described thermodynamically. The sum of the
entropies of the separate black holes in the initial state should
be less than the entropy of the final black hole after the col-
lision [87]. Using the second law of thermodynamics, the
minimum mass of the final black hole can be obtained based
on the initial conditions. Thus, the difference between the
initial and final masses is the mass released in the form of
gravitational radiation. For Kerr black holes, the gravitational
radiation depends on the alignments of their rotation axes
[88–91]. The dependency also exists for MP black hole col-
lisions [92]. Many types of interaction energy can be released

in the form of radiation upon collision. One of these types of
interaction energy is that of the spin interaction between the
black holes. If one of the initial black holes is infinitesimally
small, the potential energy of the spin interaction is identi-
cal to the radiation energy obtained using thermodynamics
in Kerr [91] and Kerr–AdS black holes [93]. More precise
analysis can be conducted using numerical methods in rela-
tivity [94–96]. In this case, the waveform of the gravitational
radiation can be investigated for different initial conditions
[97–104].

In this study, we investigated the upper limit of the grav-
itational radiation released due to the collision of two dila-
tonic black holes through the Gauss–Bonnet term. During
the collision process, the energy of the black hole system
will be released as radiation. Most of the radiation energy
originates from the mass of the system, and the rest comes
from various interactions between the black holes. There are
many interactions, such as angular momentum and Maxwell
charge interactions, that can contribute to the emitted radia-
tion. The dilaton field is also one means through which black
holes can interact. To an asymptotic observer, the dilaton
charge, which is a secondary hair, is included in the mass
of the black hole, so it acts as a mass distribution similar
to a dust distribution around the black hole. Although the
dilaton field is not observed in our universe, information as
regards the behaviors of dust-like mass distributions in black
hole collisions can be obtained. However, in Einstein grav-
ity, a black hole cannot be coupled with a scalar field due
to the no-hair theorem. Thus, the extent to which a scalar
field can contribute to radiation is not well studied. For this
reason, using a black hole solution coupled with a dilaton
field through the Gauss–Bonnet term, the contribution of the
dilaton field to the radiation can be determined. There are dif-
ferences between dilatonic and Schwarzschild black holes,
based on which the radiation of a dilatonic black hole can
be distinguished from that of a Schwarzschild black hole.
Therefore, we will show in this report that the dilaton field
sufficiently affects the gravitational radiation released due to
the collision of two black holes coupled with a dilaton hair
through the Gauss–Bonnet term.

This paper is organized as follows. In Sect. 2, we review
the concept of dilatonic black holes, which can be numeri-
cally obtained from the equations of motion in Einstein grav-
ity coupled with a dilaton field through the Gauss–Bonnet
term. In addition, the behaviors of dilatonic black hole for
given parameters are introduced. In Sect. 3, we demonstrate
how the upper limit of the gravitational radiation that is ther-
mally allowed can be obtained and employ it to illustrate the
differences between dilatonic black holes and black holes in
Einstein gravity. In particular, we consider the contribution of
the dilaton hair, since the limit is clearly different and distin-
guishable from that of a Schwarzschild black hole. We also
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discuss our results along with those of the LIGO experiment.
In Sect. 4, we briefly summarize our results.

2 Dilatonic black holes with Gauss–Bonnet term

A dilatonic black hole is a four-dimensional solution to the
Einstein dilaton theory with the Gauss–Bonnet term given by
[27–30]. The dilaton field is coupled with the Gauss–Bonnet
term in the Lagrangian

L = R

2
− 1

2
∇μφ∇μφ + f (φ)R2

GB, (1)

where the spacetime curvature and dilaton field are denoted
as R and φ, respectively. The Einstein constant κ = 8πG is
set equal to unity for simplicity. The Gauss–Bonnet term is
R2

GB = R2 −4RμνRμν + Rμνρσ Rμνρσ and is coupled with a
function of the dilaton field, f (φ) = αeγφ . The dilaton field
is a secondary hair whose source is the mass of the conserved
charge of the black hole. The dilaton hair appears as an ele-
ment coupled with the Gauss–Bonnet term. The dilaton field
equation and Einstein equations can be obtained from Eq. (1)
and are as follows:

0 = 1√−g
∂μ

(√−g∂μφ
) + f ′(φ)R2

GB, (2)

0 = Rμν − 1

2
gμνR − ∂μφ∂μφ + 1

2
gμν∂ρφ∂ρφ + T GB

μν ,

(3)

in which the GB term contributes to the energy-momentum
tensor T GB

μν [105]. Then

T GB
μν = −4(∇μ∇ν f (φ))R + 4gμν(∇2 f (φ))R

+ 8(∇ρ∇μ f (φ))Rν
ρ + 8(∇ρ∇ν f (φ))Rμ

ρ

− 8(∇2 f (φ))Rμν − 8gμν(∇ρ∇σ f (φ))Rρσ

+ 8(∇ρ∇σ f (φ))Rμρνσ , (4)

where only the nonminimally coupled terms in four-dimensional
spacetime are presented in [106].

A dilatonic black hole is a spherically symmetric and
asymptotically flat solution for which the ansatz is given as
[27–30]

ds2 = −eX (r)dt2 + eY (r)dr2 + r2(dθ2 + sin2 θdϕ2), (5)

where the metric exponents X and Y only depend on the
radial coordinate r . Then the dilaton field equation is

φ′′ + φ′
(
X ′ − Y ′

2
+2

r

)
−4αγ eγφ

r2

(
X ′Y ′e−Y + (1 − e−Y )

(
X ′′ + X ′

2
(X ′ − Y ′)

))
= 0, (6)

and the (t t), (rr), and (θθ) components of Einstein’s equa-
tions are

rφ′2

2
+ 1 − eY

r
− Y ′

(
1 + 4αγ eγφφ′

r
(1 − 3e−Y )

)

+ 8αγ eγφ

r
(φ′′ + γφ′2)(1 − e−Y ) = 0, (7)

rφ′2

2
− 1 − eY

r
− X ′

(
1 + 4αγ eγφφ′

r
(1 − 3e−Y )

)
= 0,

(8)

X ′′ +
(
X ′

2
+ 1

r

)
(X ′ − Y ′) + φ′2 − 8αγ eγφ−Y

r
(

φ′X ′′ + (φ′′ + γφ′2)X ′ + φ′X ′

2
(X ′ − 3Y ′)

)
= 0 . (9)

By taking the derivative of Eq. (8) with respect to r , Y ′ can
be eliminated from the equations of motion. The remaining
equations of motion can be written as ordinary coupled dif-
ferential equations:

φ′′ = N1

D
and X ′′ = N2

D
, (10)

where N1, N2, and D are only functions of X ′, Y , φ, and
φ′. The detailed expressions for these functions are given in
Appendix A. The Gauss–Bonnet term is topological term in
four-dimensional spacetime, so it cannot affect the equations
of motion without the term f (φ) of the dilaton field. This
idea can easily be shown by setting to φ = 0, where the
dilaton field is turned off, so that f (φ) = α. However, the
Gauss–Bonnet term still exists in Eq. (1). Then the dilaton
field equation vanishes, and the equations of motion from
Eqs. (7) to (9) are reduced to

1 − eY

r
− Y ′ = 0, −1 − eY

r
− X ′ = 0,

X ′′ +
(
X ′

2
+ 1

r

)
(X ′ − Y ′) = 0, (11)

which are equations of motion for Einstein’s gravity, Gμν =
0. Hence, without the dilaton field, the effect of the Gauss–
Bonnet term vanishes from the equations of motion.

The solution for a dilatonic black hole can be obtained by
numerically solving Eq. (10). The numerical solution will be
found from the outer horizon to infinity, so an initial condi-
tion at the outer horizon where the coordinate singularity is
located is required. To determine the initial condition for the
differential equations, it is necessary to investigate the behav-
ior of a dilatonic black hole in the near-horizon region rh. For
the corresponding parameters at the horizon, the subscript h
is used. At the outer horizon, the metric should satisfy the
relation grr (rh) = ∞ or grr = 0. The metric components
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can be expanded in the near-horizon limit as

e−X (r) = x1(r − rh) + x2(r − rh)
2 + · · · , (12)

eY (r) = y1(r − rh) + y2(r − rh)
2 + · · · , (13)

φ(r) = φh + φ′
h(r − rh) + φ′′

h (r − rh)
2 + · · · . (14)

To check the divergence of eY (r) at the outer horizon, eY can
be obtained using Eq. (8):

eY (r) = 1

4

((
2 − r2φ′2 + (2r + 8αγ eγφφ′)X ′)

+
√(

2−r2φ′2+(2r+8αγ eγφφ′)X ′)2−192αγ eγφφ′X ′
)

,

(15)

where the positive root has been chosen to form the hori-
zon. From Eq. (15), eY (r) has the same divergence of X ′(r).
Furthermore, the plus sign was chosen in Eq. (15) to obtain
the positive definition of eY (r) in the limit of X ′ going to the
infinity at the outer horizon. The initial value of eY (rh) can
be determined based on the values of other fields, such as
X ′(rh), φh, and φ′

h. To obtain a general solution, it is neces-
sary to assume that φh and φ′

h are finite and that X ′ tends to
infinity when r approaches the horizon as a result of Eq. (15).
By considering a series expansion up to 1/X ′ near the hori-
zon, Eq. (15) becomes

eY (r) = (r + 4αγ eγφφ′)X ′

+2r − r3φ′2 − 16αγ eγφφ′ − 4r2αγ eγφφ′3

2(r + 4αγ eγφφ′)

+O
(

1

X ′

)
, (16)

in which the leading term is X ′. To obtain detailed forms of
X ′(rh), φh, and φ′

h, Eq. (10) can be expanded at the near-
horizon limit after inserting Eq. (16). Then the leading terms
of Eq. (10) are

φ′′ = (r + 4αγ eγφφ′)(r3φ′ + 12αγ eγφ + 4r2αγ eγφφ′2)
r3(r + 4αγ eγφφ′) − 96α2γ 2e2γφ

X ′ + O(1), (17)

X ′′ = r4+8r3αγ eγφφ′−48α2γ 2e2γφ + 16r2α2γ 2e2γφφ′2

r3(r+4αγ eγφφ′) − 96α2γ 2e2γφ

X ′2 + O(X ′). (18)

Forφ′′
h to be finite, the factor (r3φ′+12αγ eγφ+4r2αγ eγφφ′2)

in Eq. (17) must be assumed to be zero, which simplifies
Eqs. (17) and (18) to

φ′′ = O(1), X ′′ = X ′2 + O(X ′), (19)

where the coefficient in front of X ′2 goes to unity at the near-
horizon limit. Now, the differential equations can be solved

to obtain the function X ′ = x1/(r − rh) + O(1) at the near-
horizon limit, fixing the coefficient x1 to unity as the initial
condition. Furthermore, φh and φ′

h are related at the horizon
rh by the condition of φ′′

h to be finite, which is

φ′
h = −rhe−γφh

8αγ

(

1 ±
√

1 − 192α2γ 2e2γφ

r4
h

)

, (20)

where φ′
h can be determined by setting rh and φh. Then, in the

choice of rh and φh, φ′ should be real. Hence, from Eq. (20),
possible values of φh should satisfy

φh ≤ 1

2γ
log

(
r4

h

192α2γ 2

)

, (21)

in which all values of φ can solve Eq. (10). The solution for
the black hole should satisfy specific X (r), Y (r), and φ(r)
boundary conditions. In the asymptotic region, r � 1, the
flatness of the spacetime is ensured by the form of the metric
[27–30]:

eX (r) = 1 − 2M

r
+ · · · , (22)

eY (r) = 1 + 2M

r
+ · · · , (23)

φ(r) = Q

r
+ · · · , (24)

where M and Q denote the ADM mass and dilaton charge
of the dilatonic black hole. Note that the asymptotic form of
the dilaton field is proportional to 1/r . This form is different
from the logarithmic forms of dilaton fields in other models
such as [38,108,109], where there is no Gauss–Bonnet term.
The form of the dilaton field will depend on the existence of
the Gauss–Bonnet term and choice of the metric ansatz. α

and γ are fixed to obtain the dilatonic black hole solution.
In this case, each value of rh gives a range of φh satisfying
Eq. (21). A solution can then be obtained for any initial value
set (rh, φh). However, the dilaton field of the real solution is
zero in the asymptotic region, as shown in Eq. (24). The real
dilaton solution is the only one for given a set (α, γ , rh).
With (φh, rh), φ′

h can be obtained from Eq. (20), where the
positive sign is selected to retrieve the asymptotic behavior
of the dilaton field. The value of X ′ at the horizon is given
by X ′

h = 1/ε, where ε = 10−8 is introduced to avoid the
initial singularity from Eq. (19). Since the initial value of
eY (r) can be obtained from Eq. (15), the initial conditions for
the equations of motion are only

φ′
h = −e−γφhrh

8αγ

(

1 +
√

1 − 192α2γ 2e2γφ

r4
h

)

, X ′
h = 1

ε
.

(25)
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(a) φh varies from 0.49483 to 0.47368
in α = 1/16 and γ =

√
2.

(b) φh varies from 0.49829 to 0.47791
in α = 1/16 and γ = 1.35.

(c) φh varies from 0.50141 to 0.48137
in α = 1/16 and γ = 1.29859.

Fig. 1 The horizon versus mass of the dilatonic black hole with different γ

(a) α = 1/16 and γ =
√
2. (b) α = 1/16 and γ =

√
2.

Fig. 2 The metric components and φ(r) of the dilatonic black holes

To find the dilatonic black hole solution, we used one of
the Runge–Kutta methods with a specific parameter set,
the Dormand–Prince method. The equations of motion are
solved from rh+ε to rmax = 106, which was considered to be
infinity. After the equations are solved, we obtained numer-
ical functions for X ′(r), Y (t), and φ(r). Then the numerical
form of X (r) can be obtained by numerical integration of
X (r) with respect to r from rh +ε to rmax. The ADM masses
M are obtained by fitting Eq. (22) to the solution. The dila-
tonic black hole solutions are obtained for given values of γ

as shown in Fig. 1, which are the same as the dilatonic black
hole solutions reported previously [27–30].

The mass of the dilatonic black hole M increases as rh

increases. This increase is evident because the mass inside
the horizon is proportional to its length in Eq. (26). However,
for a small horizon, the mass of the black hole is bounded
at the minimum mass Mmin and is two-valued for a given
horizon, as shown in Fig. 1a, b, which is an important cause of
the interesting behavior of the upper limit of the gravitational
radiation. The effect of the dilaton hair becomes important in
a black hole with a small mass, which has less gravity than a
black hole with a greater mass. This effect originates from the
small mass of the black hole having a long hair. Hence, the
behavior depends on the coupling γ and disappears for values

less than γ = 1.29859, as shown in Fig. 1c. The overall
behavior of the metric component is shown in Fig. 2a, where
the solution can be recognized as that of a Schwarzschild
black hole coupled with a dilaton hair. As the mass of the
dilatonic black hole increases, the black hole more closely
approximates a Schwarzschild black hole, so the effect of the
dilaton hair becomes a smaller for more massive dilatonic
black holes. In the solution shown in Fig. 2, the large rh

becomes a black hole for a small value of the dilaton hair
strength φh. Then, in the asymptotic region, φh vanishes, as
can be chosen by selecting an appropriate solution to the
equations of motion.

The mass of the dilatonic black hole consists of the mass
of Schwarzschild black hole MBH and the dilaton hair con-
tribution Md. This characteristic can be seen from the metric
component grr = e−Y (r). When we consider this grr compo-
nent to be eY (r) = 1 − 2M(r)

r , where the mass function M(r)
is the mass inside a sphere of radius r , the mass function
should satisfy the boundary conditions,

M(rh) = rh

2
, lim

r→∞ M(r) = M, (26)

which implies that the ADM mass consists of two contri-
butions, one each from inside and outside the outer hori-
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zon. The mass inside the dilatonic black hole is the same
as that of a Schwarzschild black hole. Hence, we call it
the Schwarzschild mass MBH = rh

2 . Since the dilaton field
is only one component outside the horizon, the difference
between M and MBH is the mass contribution of the dilaton
hair stretched outside of the black hole. Therefore, this dif-
ference can be set equal to Md. Then the mass of the dilatonic
black hole can be written as [107]

M = MBH(rh) + Md. (27)

Thus, because the mass of the dilatonic black hole is an arith-
metic sum of two contributions, it can be treated separately.

In this work, the analysis focuses on the thermal upper
bound of the radiation in which the entropy of the black hole
plays an important role. The entropy of a dilatonic black hole
is given by [28]

SBH = πr2
h − 16απeγφh , (28)

where the first term is the contribution of the horizon area of
the black hole similar to the Bekenstein–Hawking entropy,
and the second term is the correction to the Gauss–Bonnet
term. The entropy has two limits related to parameters of the
black hole solution. In the limit in which α tends to zero,
the Gauss–Bonnet term is removed from the action Eq. (1).
According to the no-hair theorem, the metric becomes that
of a Schwarzschild black hole in Einstein gravity, and then
the area term only remains in Eq. (28). The other limit is
that in which γ tends to zero. In this limit, φh is negligible
in Eq. (28), and the action becomes that of Einstein gravity
coupled with the Gauss–Bonnet term in which there is no
dilaton hair. Although the Gauss–Bonnet term still exists,
the metric is the same as that of a Schwarzschild black hole,
but the entropy is given by

SBH = πr2
h − 16απ, (29)

which has a constant contribution from the Gauss–Bonnet
term. This feature caused difficulties in this analysis, which
will be discussed in the following section. Therefore, we
expect that the effect of the dilaton hair nontrivially appears
in the gravitational radiation between dilatonic black holes.
In addition, the radiation includes the energy from the dilaton
hair released in the process.

3 Upper limit of radiation under collision of dilatonic
black holes

To find the upper limit of the gravitational radiation released
in a dilatonic black hole collision, we define the initial and
final states of the process. Then the limit is obtained using

thermodynamic preference between states, and the effect of
the dilaton hair in the collisions is determined.

3.1 Analytical approach to the collision

We consider the initial state to be one with two dilaton black
holes separated far from each other in flat spacetime. Hence,
the interactions between them are considered to be negligible.
In the initial state, one black hole is defined as having mass
M1, horizon r1, and dilaton field strength φ1, while the other
had M2, r2, and φ2. The total mass of the dilaton black hole
Mtot includes the contribution of the dilaton field determined
by φ1 and φ2, making the total mass of the initial state

Mtot = M1(r1) + M2(r2). (30)

In the final state, we consider the two black holes to
merge into a dilatonic black hole with gravitational radiation
released in the process. The energy Mr released as radiation
is defined by denoting the final black hole parameters as Mf ,
rf , and φf . In this situation, the conservation of the total mass
of the final state can be expressed as

Mtot = Mf(r1, r2) + Mr(r1, r2), (31)

where the minimum mass of the final black hole can be
obtained from the inequality of the entropies of the initial
and final black holes, Ainitial and Afinal, respectively. The
horizon area of the final black hole should be larger than the
sum of the areas of the initial black holes according to the
second law of thermodynamics [87,91]. Then

Ainitial = 4πr2
1 + 4πr2

2 ≤ 4πr2
f = Afinal, (32)

where the entropies of radiation and turbulence have been
assumed to be negligible, since the entropy of the radia-
tion is less than that of the black holes and is very small
in actual observations [87]. In actual observations, the radi-
ation is about 5% [1–3], so the contributions to the entropies
of radiation and turbulence can be assumed to be sufficiently
small compared with those of black holes in the initial state.
The minimum value of the horizon rf,min can be obtained
from the equality in Eq. (32). At rf,min, the mass of the final
black hole is also a minimum, Mf,min. With this minimum
mass, the radiation energy is the maximum of Mrad, which
is the upper limit of the radiation from Eq. (31). Therefore,
the limit can be expressed as

Mrad = Mtot − Mf,min = M1 + M2 − Mf,min, (33)

where the masses depend on r1 and r2, as shown in Fig. 1, so
their behaviors are nonlinear.

Since a solution for two interacting dilatonic black holes
remains to be obtained in the action in Eq. (1), it is necessary
to assume the form of the entropy correction in two dilatonic
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black holes to describe the increase in entropy between the
initial and final states. We focus on the correction term in
Eq. (28), which is from the Gauss–Bonnet term of the action
in Eq. (1). Hence, we assume the entropy correction to be the
same in the initial and final states, causing the corrections
to cancel each other. Therefore, the inequality in Eq. (32)
can be reduced to the area theorem of black holes, because
the correction term results from the Gauss–Bonnet term in
the action in Eq. (32). This assumption also gives consistent
results for arbitrary values of γ , both zero and nonzero.

At γ = 0, the action of Eq. (1) becomes the Einstein grav-
ity coupled with the Gauss–Bonnet term. As a topological
term, the Gauss–Bonnet term does not change the equations
of motion, because it is removed as a total derivative term
in the equations of motion, so it cannot affect the dynamics.
However, the entropy in Eq. (29) has a constant correction
term, so it gives different results from Einstein gravity for
radiation released during collisions. This difference origi-
nates from the definition of the initial state. Irrespective of
how far the black holes are from each other, the initial black
holes are to be just one solution of the action (1), so the cor-
rection term can also be considered once. Then the entropy
increase that occurs due to the collision can be expressed as

Si = πr2
1 + πr2

2 − 16απ ≤ πr2
f − 16απ = Sf , (34)

which gives the same result as the Einstein gravity. If we
consider the correction twice, it may be the result obtained
by summing up two different action at γ = 0.

L = L1 + L2 = R1

2
+ R2

1GB + R2

2
+ R2

2GB, (35)

where the indices 1 and 2 indicate the first and second black
holes, respectively. Because the Lagrangians L1 and L2 have
Schwarzschild black hole solutions and correction terms, the
sum of their entropies is twice that of the value −16απ . How-
ever, this result is the sum of black hole entropies existing
in two different spacetimes 1 and 2, hence this case can be
ruled out. In the solution for a single black hole system, the
action would be from Eq. (1)

L = R

2
+ R2

GB, (36)

where two black holes far from each other should be a solu-
tion to Eq. (36). Thus, the contribution of the Gauss–Bonnet
term may be added once to the total entropy. In addition, this
is consistent with Einstein gravity, both with and without the
Gauss–Bonnet term.

If this assumption is generalized to γ 
= 0, the correc-
tion term may be essentially the same in the initial and final
states for consistency with the γ = 0 case. Since the black
hole solution depends on rh, the initial and final black hole

entropies can be expressed as an inequality:

πr2
1 + πr2

2 + ci (r1, r2) ≤ πr2
f − 16απeγφf . (37)

For the γ = 0 case, as lim γ− > 0, ci and −16απeγφf

should converge to −16απ . Furthermore, in the massive
limit, r1, r2 � 1, a dilatonic black hole tends to a
Schwarzschild black hole. In this case, ci and −16απeγφf

should also converge to −16απ . The exact values of the cor-
rections ci remain unknown, but they might be coincident
with each other in these limits. We then checked whether ci
can be approximately equal to −16απeγφf . As rh increases,
φh rapidly decreases, as shown in Fig. 1, so an asymptotic
observer can observe that the dilaton mass Md is slightly
greater in the initial state than in the final state, since Md

is proportional to φh. However, the areas of the initial black
holes can be stretched by each other, so these two opposing
contributions can be expected to cancel each other. Thus, it
can be assumed that ci ≈ −16απeγφf , which is consistent
with the γ = 0 or M � 1 case. This result is expected based
on our assumption, and the exact value must be calculated,
which will be done in further work. The contributions of
the correction terms cancel out in Eq. (37), yielding Eq. (32).
Using Eq. (32), the limiting mass of the final black hole whose
horizon is

rf,min =
√
r2

1 + r2
2 , (38)

which can be obtained, and the limiting amount of radia-
tion will be released when the final black hole is synthesized
with the minimum mass given by Eq. (31). The dilaton field
strength of the final black hole satisfies

φh ≤ 1

2γ
log

(
(r2

1 + r2
2 )2

192α2γ 2

)

. (39)

where a real black hole solution satisfying the boundary con-
dition in the asymptotic region, limr→∞ φ(r) = 0, should
be found. The difference between the masses of the initial
and final black holes is the released radiation energy. The
maximum radiation released in the given conditions is the
upper limit that is thermodynamically allowed. The detailed
behavior of the radiation will depend on parameters such as
the horizon and dilaton field strength, as illustrated in the
following sections.

3.2 Upper limit of radiation with dilaton field

The upper limit of the gravitational radiation released by dila-
tonic black holes with the Gauss–Bonnet term is dependent
on the masses and dilaton field strengths of the black holes.
For a black hole with a large mass, the minimum horizon
of the final black hole is given by Eq. (38) and is propor-
tional to its minimum mass. As its mass increases, the limit
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(a) Overall behaviors of the limits of the radiation in α =
1/16 and γ =

√
2.

(b) The limit of the radiation at the small mass in α =
1/16 and γ =

√
2.

Fig. 3 The upper limits of the radiation for the collision of two dilatonic black holes

(a) The limit of the radiation in α = 1/16 and γ = 1.35. (b) The limit of the radiation in α = 1/16 and γ =
1.29859.

Fig. 4 The upper limits of the collision of two dilatonic black hole for different values of γ

of the radiation also increases, as shown in Fig. 3a, which
depicts the relation between the mass of the first black hole
M1 and the limit of the radiation energy when the parame-
ters of the second black hole are fixed as follows: r2 = 2,
M2 = 1.013263, and φ2 = 0.19192. Note that these values
are the same from Figs. 3, 4, 5 and 6.

The radiation energy includes the contribution from the
dilaton hair, so the limit of the radiation from a dilatonic
black hole is greater than that from a Schwarzschild black
hole. However, in a dilatonic black hole with a small mass,
the limit of the radiation begins at Mmin for the first black
hole, which has the minimum value in Mrad. This limiting
value results from the solution for a dilatonic black hole with
the minimum mass Mmin, which is shown in Fig. 1. Hence,
diatonic black holes exhibit behaviors very different from
those of Schwarzschild black holes. In Fig. 3a, the limit for
a dilatonic black hole begins at Mmin for the first black hole,
because the black hole solution does not exist for small val-
ues of rh in Fig. 1. In addition, the limit of radiation has a

minimum value and a discontinuity at Mh,min, as shown in
Fig. 3b, since the black hole solution has a minimum value
and two solutions for a given mass M , as shown in Fig. 1.
Since the mass of the final black hole has a value in the
range of

√
r2

1 + r2
2 , which is sufficiently large compared to

the range containing the two solution values, the limit of
the radiation depends on the behaviors of M1(r1) rather than
Mf,min. In the range of the two solutions, the mass of the first
black hole M1 is large at r1,min, the smallest radius, so Mrad

becomes large, as shown in Fig. 3b. For a given mass M1,

Mmin ≤ M1(r1,min), (40)

where the equality is satisfied for small γ . Hence, the radi-
ation limit has a discontinuity at Mh,min in the range of the
two solutions.

The thermally allowed upper limit of the radiation is rep-
resented by the black line in Fig. 3b. Mh,min depends on γ

in the range of the two solutions, as shown in Fig. 4. For
large γ , the discontinuity persists, as shown in Fig. 4a, but it
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(a) The upper limit of the mass of the dilaton hair radiated
out in α = 1/16 and γ =

√
2.

(b) The ratio of between the initial mass and upper limit
in α = 1/16 and γ =

√
2.

Fig. 5 The upper limits of the radiation of a dilaton hair for the collision of two dilatonic black holes

approximates the minimum value of M1 for small γ . Finally,
for γ = 1.29859, the points overlap with each other, and
there is no discontinuous upper limit, as shown in Fig. 4b,
which has been observed for dilatonic black holes but not
Schwarzschild black holes.

The mass of a dilatonic black hole, such as M1, M2, or
Mf , includes the dilaton mass. Hence, Mrad also includes a
contribution from the dilaton hair. Therefore, the mass of the
dilaton hair that can be released due to the collision can be
determined. The mass of the black hole can be expressed in
terms of its own mass MBH and the dilaton mass Md. MBH

is half of rh from Eq. (28):

M = MBH + Md = rh

2
+ Md. (41)

Therefore, the energy of the dilaton hair released as radiation
Md,rad can be obtained as shown in Fig. 5.

The overall behavior of the upper limit of the dilaton hair
radiation is presented in Fig. 5a. Since the mass of the hair in
the dilatonic black hole is very small, the dilaton hair released
due to radiation is also very small compared to the total mass
of the initial state. As the mass of the black hole increases,
the dilatonic black hole approximates a Schwarzschild black
hole. Therefore, the dilaton contribution to the radiation is
large when the mass of the initial state is small. The dilaton
contribution to the radiation is the largest at Mh,min and starts
at the minimum mass Mmin, as shown in Fig. 3. The point of
discontinuity disappears for small values of γ . This is also
identical to the limit of the radiation. In addition, throughout
the process, most of the dilaton hair is released, as shown in
Fig. 5b, which shows the ratio of the dilaton contribution to
the radiation to the dilaton mass of the initial black hole,

Md,rad(%) = (M1 + M2 − r1
2 − r2

2 ) − (Mf − rf
2 )

M1 + M2 − r1
2 − r2

2

. (42)

This ratio is approximately 90%. Hence, most of the dilaton
hair in the initial state is radiated out during the collision pro-
cess. Due to the dilaton effect, the radiation limit still has a
point of discontinuity Mh,min, but Md,rad(%), which is close
to 100% in a massive black hole, has no maximum. As the
mass increases, a dilatonic black hole more closely approx-
imates a Schwarzschild black hole, so the above-mentioned
ratio becomes small for a massive final black hole. If the dila-
tonic black hole is massive, the dilaton hair is also released
in larger quantities, which results in the increases shown in
Fig. 5b. Therefore, since the mass of the dilatonic black hole
increases due to the collision, the final black hole is similar
to a Schwarzschild black hole, and no dilaton hair can be
detected.

3.3 Notes on GW150914 and GW151226

The radiation released with respect to the total mass of the
initial state can be obtained and divided into two parts as

Mrad(%) = (M1 + M2) − Mf

M1 + M2
= ( r1

2 + r2
2 ) − rf

2

M1 + M2

+ (M1 − r1
2 + M2 − r2

2 ) − (Mf − rf
2 )

M1 + M2
, (43)

where the first term is the contribution of the black hole mass,
and the second term is that of the dilaton hair. The mass
released due to gravitational radiation is thermally limited at
approximately 30% of the total mass of the initial state, as
shown in Fig. 6. Most of the radiation is from the black hole
mass shown in blue.

However, a dilaton black hole has a contribution from the
dilaton hair, which is given by the contribution of the dilaton
hair less than 10% of the upper limit of the total radiation
shown in red in Fig. 6. The ratio of the contribution of the
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Fig. 6 The upper limit of the radiation under the collision in α = 1/16
and γ = √

2. The total energy of the radiation is a black line, and the
radiated energy from the mass of inside of the horizon is given as a blue
line

dilaton hair to the total mass of the initial black holes is larger
when the mass is smaller, which can be seen from the solution
of the black hole.

If these results are applied to GW150914 and GW121226,
which were detected by LIGO [1,2], the upper limit is con-
sistent with the experimental observation. GW150914 was
generated by the merger of two black holes with masses of
39M� and 32M� in a detector frame considered with a red-
shift z = 0.09 [110,111]. The final state is a black hole with
a mass of 68M� and a 3M� gravitational wave. In this case,
the radiation is approximately 4% of the total mass of the
initial state. In a similar way, for GW151226, the radiation
is also approximately 4% of the total mass. Therefore, the
ratios obtained for the gravitational waves detected by LIGO
are near the upper limit of the radiation obtained from the
thermodynamics calculations. If the ratio of the dilaton hair
is assumed to be the same in the upper limit and in detec-
tion, the contribution of the dilation hair can comprise up to
approximately 10% of the radiation, so that the real contribu-
tion is 0.4% of the total amount of radiation, which is signif-
icant considering that the radiation energies are 0.3M� for
GW150914 and 0.1M� for GW151226, since the masses are
in units of solar mass. However, this is based on the maximum
ratio, so the exact contribution may be much less than 10%.

4 Summary

We investigated the upper limit of the gravitational radiation
released in a dilaton black hole collision using the Gauss–
Bonnet term. The solutions for dilatonic black holes were
obtained numerically. In the solution, the total mass consists
of the black hole and dilaton hair masses. As the black hole
horizon becomes larger, the total mass increases, but there are
two black hole solutions for a given radius rh when smaller
masses are involved. This feature plays an important role

in radiation emission. To determine the upper limit of the
radiation that is thermally allowed, we assumed the dilatonic
black holes to be far apart from one another and a head-on
collision between them to produce the final black hole. The
mass difference between the initial and final black holes was
determined based on the energy of the gravitational radiation.
Since such collisions are irreversible, the entropy of the final
black hole should be larger than that of the initial state. In
addition, we assumed the correction terms in the entropies
to cancel each other in the initial and final states, because
such collisions occur in one spacetime and each correction
term can be expected to contribute the same value on both
sides. Using this thermal preference, the upper limit of the
radiation energy in the collision can be obtained.

The upper limit is larger than that of a Schwarzschild black
hole, since the radiation includes not only the mass of the
black hole, but also its dilaton hair. The upper limit starts
at the minimum black hole mass and is proportional to the
black hole mass; however, when the mass is small, a point
of discontinuity originates from the two solutions for a given
mass. The point of discontinuity depends on γ and vanishes
for γ < 1.29859. Due to the collision, the dilaton hair can
be radiated out. Most of the mass from the dilaton hair in
the initial state, approximately 90% of the initial hair mass,
is released, so the final black hole has a very small amount
of hair compared with the initial one. In the total mass of
the initial state, the upper limit of the radiation is approxi-
mately 30%, and the radiation of the dilaton hair contributes
a maximum of 10% to the initial mass. Therefore, the hair
contribution should be considered in gravitational radiation.
We also discussed the possible mass of the hair radiated out,
such as in GW150914 and GW151226 detected by LIGO.
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A Appendix

We have

N1 = −2r X ′2(eY r − 8eγφαγφ′)(eY r + 4eγφ

×(−3 + eY )αγ φ′)2
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+2eY (−32e2γφ(12 − 7eY + e2Y )r2α2γ 2φ′4

+8eγφrαγ (7eY r2 − e2Y r2

+24eγφαγ 2 − 48eY+γφαγ 2 + 24e2Y+γφαγ 2)φ′3

−(2e2Y r4 + e3Y r4

+16eY+γφαγ 2r2 − 32e2Y+γφαγ 2r2

+16e3Y+γφαγ 2r2

+192e2γφα2γ 2 + 64e2(Y+γφ)α2γ 2

−256eY+2γφα2γ 2)φ′2

−16eY+γφ(−1 + e2Y )rαγφ′ + 2e3Y (−1 + eY )r2)

+X ′g(−96e2γφ(−1 + eY )rα2γ 2(eY r2

−16eγφαγ 2 + 16eY+γφαγ 2)φ′4

+4eγφ(−3 + eY )αγ (e2Y r4 − 32eY+γφαγ 2r2

+32e2Y+γφαγ 2r2

−384e2γφα2γ 2 + 128eY+2γφα2γ 2)φ′3

+eY r(e2Y r4 − 32eY+γφαγ 2r2 + 32e2Y+γφαγ 2r2

−1344e2γφα2γ 2 + 64e2(Y+γφ)α2γ 2

+512eY+2γφα2γ 2)φ′2 − 8e2Y+γφ(−15 + 2eY + e2Y )

×r2αγφ′ − 2e3Y (1 + eY )r3), (44)

N2 = −8eγφrαγ (−e2Y (−3 + eY )r2

−4eY+γφ(9 − 2eY + e2Y )

×αγφ′r + 32e2γφ(3 + e2Y )α2γ 2φ′2)X ′3

+2eY (16e2γφ(−9 + 5eY )r3α2γ 2φ′3 + 2eγφαγ

×(13eY r4 − 3e2Y r4 − 768e2γφα2γ 2

+256eY+2γφα2γ 2)φ′2 − r(e2Y r4 − 96e2γφα2γ 2

+32e2(Y+γφ)α2γ 2 − 192eY+2γφα2γ 2)φ′

−4eY+γφ(3 + e2Y )r2αγ )X ′2 + eY

×(−8eY+γφr3αγ (3r2 + 32eγφαγ 2)φ′4

+r2(e2Y r4 + 16eY+γφαγ 2r2 + 16e2Y+γφ

×αγ 2r2 + 192e2γφα2γ 2 + 64e2(Y+γφ)α2γ 2

+128eY+2γφα2γ 2)φ′3 + 16eY+γφ(−2 + eY )

×r3αγφ′2 + 32eY+γφ(−1 + eY )2rαγ

−2(e2Y r4 + e3Y r4 + 192e2γφα2γ 2 + 192e2(Y+γφ)

×α2γ 2 − 384eY+2γφα2γ 2)φ′)X ′

−2e2Y (8eγφ(−3 + eY )r4αγφ′4 + r3(eY r2

+16eγφαγ 2 − 16eY+γφαγ 2)φ′3

+8eγφ(−1 − eY + 2e2Y )r2αγφ′2 + 2eY

×(−1 + eY )r3φ′ − 16eγφ(−1 + eY )2αγ ), (45)

D = 4r(8eγφ(−1 + eY )αγ X ′(−e2Y r2 − 4eY+γφ

×(−3 + eY )αγ φ′r + 48e2γφ(−1 + eY )α2γ 2φ′2)
+eY (4eY+γφ(−5 + eY )αγ φ′2r3 − 32e2γφ(−3 + eY )

×α2γ 2φ′3r2 + 8eY+γφ(−1 + eY )2αγ r

+(e2Y r4 − 96e2γφα2γ 2 − 96e2(Y+γφ)α2γ 2

+192eY+2γφα2γ 2)φ′)). (46)
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