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Abstract Local gravitational theories with more than four
derivatives are superrenormalizable. They also may be uni-
tary in the Lee–Wick sense. Thus it is relevant to study the
low-energy properties of these theories, especially to identify
observables which might be useful for experimental detec-
tion of higher derivatives. Using an analogy with the neutrino
physics, we explore the possibility of a gravitational seesaw
mechanism in which several dimensional parameters of the
same order of magnitude produce a hierarchy in the masses
of propagating particles. Such a mechanism could make a
relatively light degree of freedom detectable in low-energy
laboratory and astrophysical observations, such as torsion-
balance experiments and the bending of light. We demon-
strate that such a seesaw mechanism in the six- and more-
derivative theories is unable to reduce the lightest mass more
than in the simplest four-derivative model. Adding more
derivatives to the four-derivative action of gravity makes
heavier masses even greater, while the lightest massive ghost
is not strongly affected. This fact is favorable for protect-
ing the theory from instabilities but makes the experimental
detection of higher derivatives more difficult.

1 Introduction

The role of higher derivatives in quantum and classical grav-
ity theories is important, complicated and ambiguous. On
the one hand it is well known that semiclassical [1] and
quantum [2] gravity can be formulated as renormalizable
theories only with the four-derivative terms in the action
(see [3,4] for an introduction and [5] for a recent review).
On the other hand, by adding higher-derivative terms to the
Einstein–Hilbert action one introduces massive unphysical
ghosts, related instabilities and (in the quantum gravity case)
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a non-unitary S-matrix. Recently it was shown that in a the-
ory with six or more derivatives all massive poles can be
complex and the S-matrix becomes unitary in the Lee–Wick
sense [6].

Let us remember that higher derivatives also emerge in
the gravitational effective action in string theory. The cor-
responding terms are removed by means of the Zwiebach
reparametrization of the background metric in target space
[7–9]. However, this procedure is ambiguous since the no-
ghost condition does not fix many terms in the higher-
derivative sector [10]. Furthermore, another source of ambi-
guity is that the problem may be solved not only by com-
pletely removing all potentially dangerous terms but also
by reducing the effective action to a ghost-free non-local
form [11].

It is important to note that in both of these approaches the
removal of massive ghosts requires anabsolutely precisefine-
tuning of the action. Nevertheless, any small violation here
should lead to destructive instabilities and, moreover, these
instabilities are even stronger for smaller violations [12]. This
means that the ghost-killing procedure in string theory [7–
9] (or [11]) demands an absolutely precise fine-tuning of
infinitely many parameters. On the other hand, violations
of the fine-tuning cannot be avoided if the loop contributions
are taken into account [13] in the effective field theory frame-
work (see, e.g., [14]). The most reasonable position all in all
is to assume the existence of higher derivatives and try to
understand why they do not produce a total destruction of
the classical gravitational solutions [15,16].1

Keeping the string theory in mind, it can be assumed that
the action of the theory has only one fundamental dimen-

1 The results of [15,16] are coherent with previous works on the sta-
bility of the de Sitter space in fourth order gravity, which was first
considered in [17]. A more detailed analysis of cosmic perturbations
in four-derivative gravity, with qualitatively similar conclusions, was
given in a recent work [18].
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sional parameter, the Planck mass. All dimensionless coeffi-
cients are supposed to be of order one. Hence all phenomena
which occur at sub-Planckian energies may be considered as
low-energy ones. Then, assuming that there is no fine-tuning
and that the higher-derivative terms are there, the natural
questions are: (i) Do we have a chance to see the effect of
higher-derivative terms at low energies? (ii) Is the IR gravi-
tational physics protected from the ghosts if the dimensional
parameters are all related to the Planck mass? These ques-
tions are particularly relevant because already at the semi-
classical level the loop corrections produce non-local form
factors in the quadratic curvature terms.

At low energies it is, for the sake of simplicity, natural to
assume a truncation of the infinite series in the d’Alembert
operator, leading to an effective polynomial theory of the
type [19]

S = 1

16πG

∫
d4x

√−g (R − 2�)

+
∫

d4x
√−g {c1R

2
μναβ + c2R

2
μν + c3R

2

+ d1Rμναβ�Rμναβ + d2Rμν�Rμν + d3R�R

+ d4R
3 + d5RR

μνRμν + · · · + f1Rμναβ�k Rμναβ

+ f2Rμν�k Rμν + f3R�k R + · · · + f...R
k+2
... }, (1)

where we have used the same sign conventions as in [20].
In what follows we will be interested in the modified New-

tonian potential and the bending of light by a weak gravita-
tional field. In this spirit the cosmological constant term and
those terms which are third- or higher-order in curvature can
be disregarded. Furthermore, for the sake of simplicity, we
start the analysis from the k = 1 case. As a consequence the
relevant part of the action can be cast into the form

S = Sgrav +
∫

d4x
√−gLm, (2)

Sgrav =
∫

d4x
√−g

{
2

κ2 R + α

2
R2 + β

2
R2

μν

+ A

2
R�R + B

2
Rμν�Rμν

}
, (3)

where an additional matter action was introduced; besides,
the notations were adjusted for the sake of consequent cal-
culations. Here α, β, A and B are free parameters, where the
first two are dimensionless while A and B have the dimension
of (mass)−2. In the following part we will refer to the quan-
tities |B|−1/2 and |A|−1/2 as the massive parameters of the
action. The notation κ2/2 = 16πG = M−2

P is conventional
in the quantum gravity literature.

As we have mentioned above, in string theory all mas-
sive parameters are constructed from the single dimensional
parameter α′, and hence all masses in the action are sup-
posed to have the same (typically Planck) order of magni-
tude. However, our experience with the seesaw mechanism

in neutrino physics shows that this does not rule out a situ-
ation where several huge massive parameters combine into
one particle of light mass, with the other masses becoming
even greater. In our case the quantities in the action must sat-
isfy A−1, B−1, κ−2 ∼ M2

P . In the present work we discuss
the possibility of a seesaw-like mechanism. As we show, in
the gravitational case one can have a parameter B−1 much
smaller than M2

P and still have an associate mass of the order
of MP . This scenario can be achieved by reducing the lighter
mass of the tensor excitation, which is the well-known ghost
mode.

The paper is organized as follows. In Sect. 2 we discuss
the new gravitational seesaw mechanism in the theory with
more than four derivatives, such as in (3). In Sect. 3 the results
of the previous section are extended to the case in which the
propagator has complex poles. Possible observational effects
caused by a light particle are briefly commented in Sect. 4.
We remark that the main focus of this communication is on
the seesaw mechanism, while the detailed discussion con-
cerning phenomenological aspects of the theory with six or
more derivatives of the metric will be given in the parallel
work [21], devoted to the modified Newtonian potential and
the bending of light. Finally, in Sect. 5 we draw our conclu-
sions.

2 Gravitational seesaw in higher-derivative theories

The conventional point of view is that higher derivatives are
not observable at low energies because of the Planck sup-
pression. In order to have the Planck suppression in four-
derivative gravity the coefficients of the higher-order terms
have to be of order one or at least not too many orders of
magnitude greater. However, what is correct as far as the
four-derivative model is concerned is not necessary right for
theories exhibiting six derivatives or more. Since there are
several massive parameters a specific seesaw-like mecha-
nism can be imagined, which enables two (or more) large-
mass parameters to combine in such a way that they produce
a much smaller physical mass. Let us examine in this respect
the theory (3).

In the weak-field limit, i.e. gμν = ημν + κhμν and
|κhμν | � 1, the linearized field equations can be cast into
the form
(

2

κ2 − β

2
� − B

2
�2

) (
Rμν − 1

2
ημνR

)

−
(

α + β

2
+ A� + B

2
�

) (
ημν�R − ∂μ∂νR

) = −Tμν

2
.

(4)

It is possible to show that, introducing a suitable gauge condi-
tion, the weak gravitational field generated by a static point-
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like mass, Tμν(r) = Mημ0ην0δ
(3)(r), has non-zero compo-

nents given by (more detailed and general results are found
in [22,23])

h00 = Mκ

16π

(
−1

r
+ 4

3
F2 − 1

3
F0

)
,

h11 = h22 = h33 = Mκ

16π

(
−1

r
+ 2

3
F2 + 1

3
F0

)
, (5)

where

Fk = μ2
k+

μ2
k+ − μ2

k−

e−μk−r

r
+ μ2

k−
μ2
k− − μ2

k+

e−μk+r

r
.

Here k = 0, 2 labels the spin of the particles, whose masses
are defined by the positions of the poles of the propagator,

μ2
2± =

β ±
√

β2 + 16
κ2 B

2B
, μ2

0± =
σ1 ±

√
σ 2

1 − 8σ2
κ2

2σ2
,

(6)

with σ1 ≡ 3α+β and σ2 ≡ 3A+B. In the sixth-order gravity
massive particles occur in dependent pairs with the same spin.
The masses (6) are real and non-degenerate provided that

β, B < 0, σ1, σ2 > 0 and

β2 + 16B

κ2 > 0, σ 2
1 − 8σ2

κ2 > 0. (7)

Indeed, the quantitiesμ0± andμ2± could be complex and still
yield a real solution to the equations of motion (4) and thus
physically admissible results, e.g., through a real effective
potential [21,23]. Here, however, we restrict the analysis to
the case of real poles, while the scenario with complex poles
is explored in the following section.

Let us start the discussion of the mass relations in the six-
derivative theory from considering the tensor sector. Accord-
ing to Eq. (6) for the case of real poles with μ2

2+ < μ2
2−

the lighter massive excitation is a ghost and the other is a
healthy tensor field [19]. Using Eqs. (6) and (7) it is easy to
show the existence of a relation between β and B, namely
16|B| � κ2β2, in the special case when one of the masses
is much smaller than the other,

μ2
2+ � μ2

2−. (8)

In the theory where this condition is satisfied, the masses μ2±
can be approximated by

μ2
2+ ≈ 4

κ2|β| � μ2
2− ≈ β

B
. (9)

As in the original neutrino’s seesaw mechanism one of
the masses roughly depends on only one parameter while
the other depends on both. Moreover, this relation occurs in
such a manner that if the lighter mass is reduced the larger
mass is augmented. A remarkable difference with respect
to the neutrino’s mechanism is that while in the neutrino

case it works to make the lightest mass even lighter, in the
gravitational model the effect is to turn the largest mass even
larger according to Eq. (9). This happens due to the presence
of the parameter B in the denominator of Eq. (6), making
the lightest mass depend only on β, while the largest one
depends on both parameters.

In this vein, there are two possible ways of having μ2− of
the order of the Planck mass: to have a small |B| or a larger
|β|. The first choice is the standard one, since it prescribes that
β ∼ 1 and B ∼ M−2

P so as to have all the masses to the order
of MP . The second possibility, which relies on the seesaw
mechanism, allows one to have |B| � M−2

P and still have
μ2− ∼ MP . Of course, having a large |B| still yielding one
large mass can only be achieved by means of the ghost mass
reduction through a parameter β � 1. The final result, as can
be seen from Eq. (9), is that the existence of a much lighter
mass of the first (ghost) state depends only on the second- and
fourth-derivative terms while the six-derivative term does not
affect the presence of much lighter mass. Mutatis mutandis
these arguments also apply to the scalar modes. By the end of
the day, the six-derivative terms are not capable to produce
an efficient seesaw mechanism working like in the case of
the neutrino mass.

A general argument in favor of the non-possibility of the
strong seesaw mechanism for even higher-order gravity the-
ories, i.e. eight and more, can be presented. For instance,
consider the action (1) with k = 2 which means the eight-
derivative theory. One can write the equation for the massive
poles in the propagator in the form

1

m4
0

k6 − 3

m2
1

k4 + 3β k2 − m2
2 = 0. (10)

Herem0,1,2 are positive massive parameters coming from the
action. In string theory it is assumed that they are all of the
same order of magnitude, say

m2
0 ∼ m2

1 ∼ m2
2 ∼ M2

P . (11)

Assuming this is the case (10) can be rewritten in the more
simple form

k6 − 3m4
0

m2
1

k4 + 3β m4
0 k

2 − m4
0m

2
2 = 0. (12)

The roots of this equation are defined by the Cardano formula
and can be real or complex. Consider the particular case of
real positive roots which satisfy the hierarchy μ2

1 � μ2
2 ∼

μ2
3. Then the equation becomes

k6 − (μ2
1 + μ2

2 + μ2
3) k

4 + (μ2
1μ

2
2 + μ2

1μ
2
3 + μ2

2μ
2
3) k

2

− μ2
1μ

2
2μ

2
3 = 0. (13)

Using the hierarchy μ2
1 � μ2

2 ∼ μ2
3, the last equation boils

down to

k6 − (μ2
2 + μ2

3) k
4 + μ2

2μ
2
3 k

2 − μ2
1μ

2
2μ

2
3 = 0. (14)
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It is easy to see that there is a contradiction between Eq. (12)
with (11) and Eq. (14). According to (12) we have

3m4
0

m2
1

∼ M2
P , 3β m4

0 ∼ M4
P

and m4
0m

2
2 ∼ M6

P . (15)

However, this does not fit Eq. (14), because this requires

μ2
2 + μ2

3 ∼ M2
P , μ2

2μ
2
3 ∼ M4

P ,

but μ2
1μ

2
2μ

2
3 � M6

P . (16)

This consideration can easily be extended to the higher num-
ber of derivatives. The result will always be the same. We
leave it as an exercise to the interested reader. It is also worth
stressing that this general reasoning applies to both the tensor
and the scalar sectors of the model. Finally, the mechanism
that actually may take place in higher-derivative gravity can
be called “weak seesaw”. A larger mass can become even
larger while a smaller one does not become smaller without
using unnatural values for the dimensionless parameters of
the action.

The main conclusion is that the real poles of the propaga-
tor cannot provide a much smaller mass of the lightest ghost
constructed from the coefficients which are all of the Planck
order of magnitude. Is this bad or not from the physics side?
We know that the presence of ghost means potential instabil-
ity but, in the case of gravity, the situation may be different
[15,16], for instance because of the singular nature of non-
polynomial theory which escapes the Ostrogradsky instabil-
ity [12]. Since a consistent theory of quantum or semiclassical
gravity without higher derivatives looks impossible, the gen-
eral situation with stability looks unclear and it makes sense
to assume that ghosts exist but for some reason they do not
lead to a fast decay of the vacuum and other type of instabil-
ities. The existing explanation for this is related to the huge
mass of the ghost [15,16] (not tachyon! – see [24]) which
does not permit the creation of a ghost particle from vacuum
without generating Planck-order density of gravitons. From
this perspective it is important that the mass of the lightest
ghost is protected from the seesaw mechanism if even more
derivatives are added to the action (1).

The mass of the lightest scalar (healthy) excitation is like-
wise protected from the seesaw mechanism. Let us note that
the successful realization of the Starobinsky inflation model
[25] requires a large value of the coefficient of the R2 term
[26,27]. Such a coefficient is reducing the mass of the scalar
mode considerably but this happens without strong seesaw
mechanism. It remains to see what would be further phe-
nomenological consequences of the light ghost (and/or of a
light scalar particle) within the weak seesaw mechanism as
in (8). In Sect. 4 we consider an example of this kind.

3 Seesaw with complex poles

In the previous section we have dealt only with the case in
which the propagator has real poles. Of course, if the quan-
tities μi are complex it does not make sense to consider a
seesaw-like mechanism meaning a strong hierarchy between
those “masses”. This idea, however, can be extended keeping
in mind the original motivation for considering a gravitational
seesaw: to have huge-mass parameters in the action resulting
in a small physical particle mass. Hence, we shall define the
seesaw mechanism in the case of complex poles as a way
of having huge-mass parameters in the action yielding small
physical massive parameters, which turn out to be the real
and the imaginary parts of μi .

Instead of starting from the six-derivative gravity example
as we proceeded for the case of real poles we shall now go
directly to the general proof outlined in the previous section.
Since the poles of the propagator are defined as the roots
of a polynomial equation such as (10) it follows from the
fundamental theorem of algebra that complex poles always
occur in conjugate pairs. Let μ1 = a+ib and μ1′ = a−ib be
one such pair; then, writing the equation for the poles in terms
of the roots, as in (13), the coefficient formed by the sum of
all the roots (squared) will contain the term 2(a2 − b2). The
coefficient which involves the products of the roots chosen
two by two will have the terms

μ2
1μ

2
1′ = a4 + b4 + 2a2b2, (17)

μ2
1μ

2
2 + μ2

1′μ2
2 = 2(a2 − b2)μ2

2, (18)

for an arbitrary third root μ2
2 and so on.

Of course, all the coefficients will be real since the param-
eters of the action are also real. In this sense there is not much
difference with the case of real poles, apart from the fact that
now the relevant quantities are a2 and b2. The last term, how-
ever, formed by the product of all the roots, will contain the
term μ2

1μ
2
1′ given by (17). This conversion of the product of

all the roots into a sum changes the argument used in the last
section to show that the strong seesaw mechanism does not
work. In fact, thinking of the eight-derivative model above, it
is well possible to have m4

0m
2
2 ∼ M6

P in Eq. (15) at the same
time in Eq. (16) we have

μ2
1μ

2
1′μ2

2 = (a4 + b4 + 2a2b2)μ2
2 ∼ M6

P (19)

with either a2 � b2 ∼ M2
P or b2 � a2 ∼ M2

P .
This means that it is possible to have a strong hierarchy

between the real and imaginary parts of the roots μi – with
huge-mass parameters in the action. Yet we do not call it
a working seesaw mechanism because the physical effects
of such a hierarchy does not imply a way out of the Planck
suppression. It only means that the largest among the real
or the imaginary part is going to dominate the phenomenol-
ogy and that this quantity is on the order of MP . Indeed, if
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b2 � a2 ∼ M2
P , then to most practical purposes it can be

assumed that the pair (μ1, μ1′) behaves as degenerate modes
of mass a ∼ MP ; while if a2 � b2 ∼ M2

P they behave as a
degenerate tachyonic pair.

Moreover, this procedure proves that there is no natural
choice of massive parameters in the action which can pro-
vide a simultaneous reduction of both real and imaginary
parts of the complex “masses” of the theory. In conclusion
there is no seesaw-like mechanism efficiently working in the
polynomial higher-derivative gravity, even if the propagator
contains complex poles.

In order to close this section it is instructive to explicitly
work out the aforementioned example of the six-derivative
gravity (3). According to (6), the condition for having com-
plex poles in the propagator of the tensor modes reads
β2κ2 + 16B < 0. The “masses” μ2± can now be written
as μ2± = a2 ∓ ib2 so that

a2
2 =

−β +
√

16|B|
κ2

4|B| , b2
2 =

β +
√

16|B|
κ2

4|B| . (20)

The possible situation can be classified as follows. In case
that 16|B| is only slightly larger than β2κ2 there is a strong
hierarchy between real and imaginary parts and the “masses”
μ2± tend to be approximately equal. In fact, if β < 0 we get
a2 � b2 and both excitations behave almost like normal
particles of the same mass, while β > 0 yields a2 � b2 and
we have two tachyons. If 16|B| ≈ β2κ2 ∼ M−2

P , then

μ2
2± ≈ − 8

βκ2 ∼ M2
P . (21)

This figure can be reduced only by choosing a huge |β| (and
simultaneously, in this case, a huge |B|).

On the other hand, if 16|B| � β2κ2, there are “masses”
with real and imaginary parts of the same order of magnitude.
This scenario is a truly complex one; however, since a2 ≈ b2,
one can work with a single massive parameter. Therefore the
only possibility for a seesaw mechanism would be to reduce
this quantity far below the Planck mass. This notwithstand-
ing, we have

a2
2 ≈ b2

2 ≈
√

1

κ2|B| = MP√
2|B| . (22)

Therefore, in order to have a2
2 , b2

2 � M2
P , it is necessary

to impose |B| � M−2
P . Reducing the parameter β cannot

diminish the effective mass. The only way of achieving this
is by increasing |B| to unnatural values, i.e. by applying the
“weak seesaw” condition. It is interesting to notice that, in
opposition to the real poles weak seesaw (choosing a huge
|β|, cf. (9)), in the case of complex poles it is a condition on
B. A similar discussion applies to the complex scalar modes
μ0±.

4 On the physical consequences of gravitational seesaw

From the general perspective it is interesting to discuss what
could be the phenomenological consequences of the much
lighter massive ghost. Let us note that these and related sub-
jects are discussed in detail in the context of the general six-
derivative model in the parallel paper [21]. Here we present
just a brief extract of the results which have a relation to the
seesaw mechanism. Let us start from some obvious state-
ments.

The presence of light excitations in the spectrum of the
theory would reduce the Planck suppression at both clas-
sical and semiclassical cases and would bring the physical
relevance of the massive modes to the low-energy domain.
This would imply, for example, modifications of Newton’s
inverse-square force law [21–23] which is measured in
torsion-balance experiments [28,29]. In the case of complex
poles for example, the corrections owed to the higher deriva-
tives assume the form of oscillating terms as was noticed
in [21,30]. A stimulating discussion on the perspective of
detecting oscillations in the gravitational potential can be
found in [31]. An important theoretical feature of the higher-
derivative corrections to the Newton gravitational law is that
the relevant contributions come from both tensor and scalar
sectors of the theory [2,22].

Another possibility of detecting signatures of higher
derivatives is the gravitational light bending. In this case
the tensor and scalar excitations play different roles. It was
shown (see, e.g., [20]) that the deflection of light in the
four-derivative gravity explicitly depends only on the tensor
modes of metric perturbations.

It proves interesting to discuss this issue in full detail. Let
us start from the simplest case. The linearized versions of
general relativity and the R+R2 gravity model yield the same
equations of motion for photons [32]. On the other hand, the
R + R2 model is equivalent to the Brans–Dicke theory with
a massive degree of freedom. It is possible to show that the
light bending alone cannot distinguish between this type of
metric–scalar gravity theories and general relativity [32–35].
In these references one can find the discussion concerning
the difference with the massless Brans–Dicke theory [36], in
which the mass of the massive body (e.g., a star or galaxy)
creating the gravitational field must be renormalized.

The reason for the difference between the massive and
massless Brans–Dicke theories in the framework of the
equivalent R + R2 gravity model is easily understood. The
need of rescaling Newton’s constant G and/or of the mea-
sured masses of astronomical bodies is that the Yukawa term
in the modified Newtonian potential [2]

V (r) = − GM

r

(
1 + 1

3
e−μ0r

)
(23)

becomes in the massless or very light mass limit μ0 → 0
the same as the Newtonian term. Hence, effectively in the
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massless limit GM can be replaced by 4GM/3, as occurs in
the massless Brans–Dicke theory.

The presence of a massive scalar mode with μ0 > 0 also
affects the effective quantity GM but only at the range of
distances below 1/μ0. For the massive Brans–Dicke theories
this was explicitly shown in Ref. [37]. For the properly chosen
small μ0 this leads to a mismatch between an effective mass
M which can be observed at the astrophysical and laboratory
scales [38] and may affect the predictions for the deflection of
light. This result can indeed be generalized for the R+ R�R
and more general models with even more derivatives. At the
same time in the case of higher-derivative gravity models
with six or more derivatives such a light scalar with Compton
wavelength at the astronomical scale is out of scope of the
present work. Therefore we assume much larger masses of
the massive gravitational modes.

The introduction of massive parameters in the tensor sec-
tor, on the other hand, has a direct influence on the deflection
of light. At quantum level it yields scattering cross-sections
that depend on the energy of the photon, as was shown, e.g.,
in Refs. [20,21,39]. This result, however, has little applica-
tion for the deflection by astronomical bodies [21]. From the
classical perspective those tensor modes only play an active
role if the reciprocal of their masses are comparable to the
light ray impact parameter (see [20] for a specific discussion
on light bending in the model with four derivatives and [21]
for the one with six derivatives and all possible scenarios
for the massive poles). In the case of the polynomial model
with real poles in the propagator, this would require a light
ghost which could be provided by the (weak) seesaw mech-
anism. Nonetheless, light deflection by the Sun cannot yield
better observational constraints on such masses than torsion-
balance experiments at laboratory scales [21,29].

To conclude the discussion on light deflection, if the see-
saw mechanism works in at least one of the massive sectors,
the effects of such light masses are more likely to be observed
in the modified Newtonian potential than on the bending of
light in the Solar System.

Last but not least, a light ghost could affect the cosmology
and especially the stability of classical solutions with respect
to tensor perturbations. For the four-derivative models this
issue was discussed in [15–18]. The absence of the effectively
working seesaw mechanism shows that the Planck protection
which was discussed in [15,16,40] is working the same way
in the six-derivative (and higher-derivative) gravity.

5 Conclusions and discussions

We have described a qualitatively new gravitational seesaw
mechanism which might be possible in the higher-derivative
gravity models with the number of derivatives ≥6. These

theories are characterized by a discrete spectrum of “masses”
which may be real or complex.

If the dimensional parameters of the action have Planck
order of magnitude, they could combine, in principle, in such
a way that one of the masses is still on the order of MP while
another is many orders of magnitude smaller. As we have seen
above such a strong gravitational seesaw is not possible. An
essential reduction of the mass of the lightest particle can
be achieved only by adjusting the four-derivative term in the
action. Adding the six-derivative terms does not modify the
situation in this part.

A strong reduction of the mass of the lightest tensor ghost
can be achieved by taking a huge value of the dimension-
less parameter β, exactly like in the four-derivative gravity.
This situation is qualitatively similar to the one in the extra-
dimensional theories. The difference is that here the reduc-
tion of Planck suppression occurs due to the choice of β and
not because of the incomplete compactification of some extra
dimensions.

In the more realistic case of complex poles it is still pos-
sible to extend the notion of a seesaw mechanism, which
should now be understood in the sense that the real massive
parameters that appear in the physical quantities of the theory
are much below the Planck scale. Nevertheless, we showed
that this could only be achieved by simultaneously reducing
both real and imaginary parts of one of the poles of the prop-
agator, which only happens with small massive parameters in
the action. Thus, only the weak seesaw is possible even in the
model with complex poles. Further investigations on general
higher-derivative models with complex poles are carried out
in [23].

Finally, we briefly mentioned some phenomenological
aspects which could be investigated in the presence of the
(weak) seesaw mechanism; namely, the modified Newtonian
potential and the bending of light. Further consideration on
these issues can be found in [21] whose main focus is on low-
energy aspects of the general theory with six derivatives.

Taking into account the possibility to have a continuous
mass spectrum of the models such as [11], the main conclu-
sions that can be drawn at the moment are as follows:

(i) A strong gravitational seesaw does not work in the
same way like in neutrino physics. The lightest ghost
mass cannot be reduced by tuning the parameters of the
higher-derivative action (1), except the dimensionless
parameter β.

(ii) Since huge values of the dimensionless parameters α

and β cannot be completely ruled out theoretically it is
important to derive the corresponding upper limits from
experimental and observational sides. In the present
work we made some steps in this direction.

(iii) Our results indicate the importance of developing
experimental facilities for higher precision tests of the
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inverse-square force law since the detection of such
an effect could provide a useful information on higher
derivatives in gravity. In particular, it looks relevant to
explore the possibility of an oscillating behavior of the
gravitational potential which is typical for the complex
poles [21].

(iv) From the theoretical side the generally negative result
for the gravitational seesaw mechanism is relevant for
the alternative approach for dealing with the ghost prob-
lem, suggested in [41–43]. In this case the higher-
derivative terms and the corresponding loop contribu-
tions are regarded as small corrections to the Einstein–
Hilbert action. This type of approximation may work
only if all the ghost-like states belong to the far UV
compared to the scale of the gravitational phenomena.
Keeping this in mind this is certainly an efficient ad hoc
scheme, not taking into account the price to pay for it,
which is that the Planck-scale energies cannot be dealt
with and that, for instance, the Starobinsky model of
inflation [25,26] must be forbidden [44]. Anyway, our
results are very relevant for this approach, since it can
be extended to theories with more than four derivatives.
As far as the reduction of the effective gravitational
ghosts masses does not occur without unnatural choice
of dimensionless parameters, the mentioned scheme can
be used in the more general kind of theories.
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