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Abstract We apply a phase space expansion scheme to
incorporate the N -body scattering processes in the S-matrix
formulation of statistical mechanics. A generalized phase
shift function suitable for studying the thermal contribution
of N → N processes is motivated and examined in var-
ious models. Using the expansion scheme, we revisit how
the hadron resonance gas model emerges from the S-matrix
framework, and consider an example of structureless scatter-
ing in which the phase shift function can be exactly worked
out. Finally we analyze the influence of dynamics on the
phase shift function in a simple example of 3- and 4-body
scattering.

1 Introduction

The S-matrix formulation of statistical mechanics by Dashen
et al. [1] allows the computation of the grand canonical poten-
tial in terms of scattering matrix elements. The approach has
been applied to study the thermal properties of an interacting
gas of hadrons [2]. Relying on the empirical data of the scat-
tering phase shifts, the contributions from both the low-lying
resonances and the purely repulsive channels are consistently
included in the description of thermodynamics. In particular,
resonances with a large width like the σ - and κ-mesons can
be appropriately treated within this method [3,4].

The use of the empirical phase shifts makes the approach
to some extent model independent. However, this necessarily
restricts the application of the approach to the 2-body sector
and to the channels and energy range in which experimental
data are available. The latter may be solved by complemen-
tary model calculations of the relevant S-matrix elements. For
the limitation to 2-body scatterings, while it may be justified
in the low density case, where (N > 2)-body scatterings are
expected to be rare, inclusion of higher N -body scatterings

a e-mail: pmlo@gsi.de

is essential for checking the validity of the expansion and for
extending the approach to describe a dense medium.

The need for the systematic inclusion of the N -body inter-
actions in describing the thermodynamics is common for
many theoretical approaches. In the functional approach,
sophisticated truncation schemes [5] have been devised to
include a subset of N -point functions for the calculation of
the 2-point function. Treatment of the (N > 2)-point func-
tions themselves as the object of interest, though not at the
same level of sophistication, has begun [6].

On the other hand, the S-matrix formulation represents an
alternative expansion scheme of the thermodynamic poten-
tial, involving only the on-shell S- or T-matrix elements [1].
Unfortunately not much is known about the higher N -body
contribution. It is therefore a useful exercise to explore the
qualitative behaviors of these correction terms, even in the
context of some simplified models.

The S-matrix framework discussed here is flexible enough
to receive inputs from field theoretical models, potential mod-
els or experiments. Hence it is more practical to separate the
following two issues. First, the problem of searching for a
theoretical model to describe the physical S-matrix. Second,
the exploration of the influences on macroscopic quantities
based on these S-matrix elements. In this work, we shall
discuss the latter issue and make some efforts to elucidate
the expansion of the N -body trace in terms of the Lorentz
invariant phase space. This offers important insights into how
the N -body scattering processes enter the thermodynamics.
Building on this, we work towards applying the S-matrix
approach beyond the 2-body setting within some simplified
model amplitudes.

This paper is organized as follows. In the next section,
we review some of the well-known results of the S-matrix
formalism in the context of quantum mechanics. A phase
space expansion scheme for handling the 2-body trace is
introduced and the definition of a generalized phase shift
function, suitable for describing an N → N scattering pro-
cess, is motivated. In Sect. 3, we consider some applications
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of the scheme. This includes the demonstration of how the
hadron resonance gas (HRG) model emerges naturally from
the framework. Also a structureless scattering model will be
considered which illustrates how the N -body phase shift can
be exactly worked out. In Sect. 4 we explore the influence of
dynamics on the phase shift function via the quantum ampli-
tudes in a simple example of 3- and 4-body scattering. In
Sect. 5 we present the conclusion.

2 S-matrix approach to thermodynamics

Our starting point is the S-matrix formulation of statistical
mechanics by Dashen et al. [1]. It states that the interact-
ing part of the grand canonical potential can be expressed
in terms of the S-matrix, which describes the scattering pro-
cesses within a thermodynamical system1:

� ln Z =
∫

dE e−βE 1

4π i
tr

[
S−1

←→
∂

∂E
S

]

c

. (1)

The subscript c here corresponds to taking only the connected
contributions in the trace. Furthermore, as will become evi-
dent in the discussion, it is useful to rewrite the derivative
operator in the following form:

tr

[
S−1

←→
∂

∂E
S

]

c

= tr

[
S−1

(
∂

∂E
S

)
−

(
∂

∂E
S−1

)
S

]
c

= 2
∂

∂E
tr [ ln S ]c . (2)

2.1 Beth–Uhlenbeck result revisited

We first discuss the S-matrix approach in the context of quan-
tum mechanics. If we simply replace the S-matrix operator
by

S → e 2iδE , (3)

we obtain the well-known result of Beth and Uhlenbeck [7].

� ln Z =
∫

dE e−βE × 1

π

∂

∂E
tr (δE ) . (4)

A more formal way to derive this result is to express the
S-matrix operator in terms of the scattering Green’s func-
tion [8]. Consider the decomposition of the Hamiltonian into

H = H0 + V, (5)

1 For simplicity, we do not tackle the problem of quantum statistics in
this work. To do this, one needs to perform proper symmetrization or
anti-symmetrization of the states in the trace.

the non-interacting and the full Green’s functions are given
by

G0 = 1

E − H0 + iε
,

G = 1

E − H + iε
. (6)

We shall show that the S-matrix operator appeared in Eq. (1)
can be expressed by

S = G∗
0 G

∗−1 G G0
−1. (7)

This expression follows from the Lippmann–Schwinger
equation. To see that, we recast the formula into a different
form:

S = G∗
0 G

∗−1 G G0
−1

= G∗
0 (I − 2iε × G) G0

−1

= G∗
0G0

−1 − 2iε × G∗
0 × (G − G0) G0

−1

= I − 2iε × G∗
0G0 × V × GG0

−1

= I + (
G0 − G∗

0

) × VGG−1
0 . (8)

Recall the expression of T-matrix from the Lippmann–
Schwinger equation

T = V + VGV,

G = G0 + G0VG, (9)

which gives

T = VGG−1
0 . (10)

Combining Eqs. (8) and (10), we obtain

S = G∗
0 G

∗−1 G G0
−1

= I − 2π i × δ(E − H0) × T, (11)

which matches the standard definition of the S-matrix for
the scattering theory. In performing the trace the operator
will be surrounded by quantum states, the proportionality
to δ(E − H0) means that only the on-shell matrix elements
are involved, and hence the replacement of S → e 2iδE is
valid. It remains to show its connection to the thermodynamic
potential.

Consider the free partition function

Z0 = tr e−βH0 =
∫

dE e−βE 1

2π
tr [2 π × δ(E − H0)]

=
∫

dE e−βE 1

2π i
(−1) × tr

[
G0 − G∗

0

]
. (12)
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The corresponding result for the interacting part of the loga-
rithm of the full partition function reads

� ln Z =
∫

dE e−βE 1

2π i
× (−1)

× tr
[
(G − G∗) − (G0 − G∗

0)
]
c . (13)

It is then straightforward to verify that

∂

∂E
tr [ ln S ]c = ∂

∂E
tr

[
ln G∗

0 G
∗−1 G G0

−1
]
c

= (−1) × tr
[
(G − G∗) − (G0 − G∗

0)
]
c ,

(14)

and finally reaching the result stated in Eq. (4). This con-
cludes our alternative derivation of the Beth–Uhlenbeck
result via the scattering Green’s functions.

2.2 Generalized phase shift function Q(M)

If the empirical phase shift for a 2-body interaction is mea-
sured in an experiment, the data can be used directly in Eq. (4)
to obtain its contribution to the thermodynamics [2–4,9].
When no such data is available, it is necessary to obtain the
relevant S-matrix element from a model. For a more gen-
eral application of the approach, we consider the case where
the S-matrix elements are obtained within a field theoretical
model.

Staying within the 2-body sector, we start from the ele-
mentary definition of the T-matrix,

SQFT = I + iTQFT, (15)

and we relate the T-matrix element to a quantum field ampli-
tude via [8]

〈k′
1k

′
2| iTQFT |k1k2〉 = (2π)4 × δ4

E × iMk′
1,k

′
2;k1k2

, (16)

where

δ4
E ≡ δ(E − E1 − E2) × δ3(k′

1 + k′
2 − k1 − k2). (17)

The amplitude iMk′
1,k

′
2;k1k2

can be constructed using the

standard Feynman rules.2

To facilitate the evaluation of the 2-body trace in Eq. (1),
we introduce the following shorthand notations:

∫
(dk) ( · · · ) →

∫
d3 p1

(2π)3

1

2E1

d3 p2

(2π)3

1

2E2
( · · · )

2 The amplitude usually involves a ladder sum of a set of tree-level
diagrams.

∫
dφ2 ( · · · ) →

∫
d3 p1

(2π)3

1

2E1

d3 p2

(2π)3

1

2E2

× (2π)4 δ4

(
PI −

∑
i

pi

)
( · · · ). (18)

Following the discussion in Ref. [8], we consider a phase
space expansion for evaluating the 2-body trace:

tr2 ln SQFT =
∫

(dk) 〈k1k2| ln SQFT |k1k2〉

=
∫

(dk)
∑
l

(−1)
(−i)l

l
〈k1k2| T l

QFT |k1k2〉

≈
∑
l

(−1)
(−i)l

l

∫
(dk)(dk(1))(dk(2)) · · · (dk(l−1))

× 〈k1k2| TQFT |k(1)
1 k(1)

2 〉×〈k(1)
1 k(1)

2 | TQFT |k(2)
1 k(2)

2 〉
× · · · 〈k(l−1)

1 k(l−1)
2 | TQFT |k1k2〉

=
∑
l

(−1)
(−i)l

l

∫
dφ2 dφ

(1)
2 dφ

(2)
2 · · · dφ

(l−1)
2

× M
k1,k2;k(1)

1 k(1)
2

M
k(1)

1 k(1)
2 ;k(2)

1 k(2)
2

· · ·

× M
k(l−1)

1 k(l−1)
2 ;k1k2

×
[
V

d3P

(2π)3

]

≈
∑
l

(−1)
(−i)l

l

〈∫
dφ2 M

〉l [
V

d3P

(2π)3

]

= ln

(
1 + i

〈∫
dφ2 M

〉)
×

[
V

d3P

(2π)3

]
. (�)

Here we highlight some key steps in the derivation. The vol-
ume factor V comes from the redundant 3-dimensional Dirac
delta function in closing the chain of the resolution of the
identity from (k(l−1)

1 k(l−1)
2 ) → (k1k2), i.e.,

V = (2π)3 × δ3(k1 + k2 − k1 − k2). (19)

Inserting

∫
d3P

(2π)3 (2π)3 × δ3(P − k1 − k2) (20)

allows one to complete the leftover integral from∫
(dk) 2π × δ(E − E1 − E2)( · · · ) (21)

to∫
dφ2 ( · · · ). (22)

Furthermore, the first approximation sign corresponds to
the restriction to 2 → 2 processes with no change in particle
identities, i.e., elastic scattering. The second one corresponds
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to a factorization approximation. In case of a constant ampli-
tude, or an amplitude that depends only on the invariant mass
M = √

E2 − P2, this approximation is exact. Generally the
various phase space integrals are coupled and cannot be fac-
torized. The notation 〈· · · 〉 serves as a reminder of this fact.

With such an expression, we obtain the following formula
for the thermodynamic pressure due to the 2-body interaction
with quantum amplitude iM:

(� ln Z) = V
∫

d3P

(2π)3

dM

2π
e−β

√
P2+M2

B(M),

B(M) ≡ 2
∂

∂M
Q(M),

Q(M) ≡ 1

2
Im ln

[
1 + i

〈∫
dφ2 M

〉]
. (23)

We take this opportunity to introduce a phase shift function
Q(M) and a corresponding effective spectral function B(M).
As we shall see in the coming sections, Q is a suitable gen-
eralization of the phase shift in 2-body case for discussing
N → N processes, after replacing the integral over the 2-
body phase space φ2 with an N -body one.

2.3 Expansion in terms of T-matrix

It may be helpful to express the previous results in terms of
the T-matrix:

tr

[
S−1

←→
∂

∂E
S

]

c

= tr

[
S−1

(
∂

∂E
S

)
−

(
∂

∂E
S−1

)
S

]
c

= i × ∂

∂E
tr

[
T + T †

]
c

+ tr

[
T †

←→
∂

∂E
T

]

c

.

(24)

The first term is linear in the scattering amplitude, while the
second term has a quadratic dependence. Writing them in
terms of the phase shift δE , we obtain

1

4 i
tr

[
S−1

←→
∂

∂E
S

]

c

←→ ∂δE

∂E

1

4

∂

∂E
tr

[
T + T †

]
c

←→ (1 − 2 sin2 δE ) × ∂δE

∂E

1

4 i
tr

(
T †

←→
∂

∂E
T

)

c

←→ 2 sin2 δE × ∂δE

∂E
. (25)

If the scattering amplitude is small, it may be sufficient to
retain only the linear term. This corresponds to the approxi-
mation

Q ≈ 1

2
Im

[∫
dφ2 iM

]
. (26)

Note that the nature of the trace requires that we consider
the same momenta, ki = k′

i , for the in-coming and out-
going states of the matrix element. Hence, within the linear
assumption, only the forward-going amplitude is involved in
calculating Q. This is generally not the case when higher
order terms are considered.

Before ending this section, we make one further remark
on the advantage of writing the phase shift function as tr ln S.
This formulation makes the generalization to multiple chan-
nels intuitive. If in addition to 1+2 → 1+2, processes such
as 1 + 2 → 3 + 4 are also possible. Assuming the simplifi-
cations made in Eq. (�) are valid, the phase space integrated
S-matrix in this case is promoted to a matrix in the reaction
channel space. It can expressed in terms of two phase shifts
(δI , δI I ) and an inelasticity parameter η as [10]

S =
(

η e2 i δI i
√

1 − η2 ei (δI+δI I )

i
√

1 − η2 ei (δI+δI I ) η e2 i δI I

)
. (27)

Noting the fact that

tr ln S → ln det [S], (28)

the generalization for Q in Eq. (23) reads

Q → δI + δI I , (29)

i.e. it is simply given by the sum of the eigenphases [11].

3 Applications

3.1 Resonance dominance model

We first investigate how the HRG model emerges naturally
from the S-matrix framework. Assuming resonance produc-
tion dominates the thermodynamics, we consider the follow-
ing class of N -body scattering amplitudes describing an s-
channel exchange of a resonance:

iM = −i ||2
M2 − m̄2

res + iMγ
,

γ = 1

2M

∫
dφN ||2, (30)

where M is the invariant mass of the N -body system, m̄res is
the pole mass of resonances. φN denotes the N -body Lorentz
invariant phase space, with the explicit expression

φN =
∫

dφN

=
∫

d3 p1

(2π)3

1

2E1

d3 p2

(2π)3

1

2E2
· · · d3 pN

(2π)3

1

2EN

× (2π)4 δ4

(
P −

∑
i

pi

)
. (31)
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Fig. 1 Empirical phase shift data [12–14] and the corresponding effective spectral functions for the ρ-meson [15]

Given a model of  or γ for the width, the generalized
phase shift function Q(M) works out to be

Q(M) = 1

2
Im

[
ln (1 +

∫
dφN iM)

]

= 1

2
Im

[
ln

(
1 + −i 2Mγ

M2 − m̄2
res + iMγ

)]

= tan−1 −Mγ

M2 − m̄2
res

. (32)

The effective spectral function B(M), and the standard spec-
tral function A(M), can be computed as follows [4,9]:

B(M) = 2
∂

∂M
Q(M), (33)

A(M) = −2M
sin 2Q(M)

M2 − m̄2
res

. (34)

In the case of a very narrow resonance, i.e., the limit of
γ → 0, we observe that the phase shift function behaves like
a theta-function

Q(M) → π × θ(M − m̄res), (35)

and the two spectral functions converge to the same limit:

B(M) ≈ A(M) → 2 π × δ(M − m̄res). (36)

This establishes the fundamental premise of the HRG model
[16,17]: contribution of resonances to the thermodynamics
is given by an uncorrelated gas of zero-width particles.

On the other hand, Eq. (33) is applicable even for a broad
resonance. It has been pointed out by Weinhold et al. [9] that

the effective spectral function B(M) contains both the contri-
bution from the full spectral function A(M) of the resonance
and a non-resonant contribution δρ (M) from the correlated
pair of the forming constituents3:

B(M) = A(M) + δρ (M). (37)

As an example, we consider the effective spectral func-
tion of a ρ-meson based on the experimental phase shift
data [12–14]. The parametrization of the phase shift func-
tion employed in fitting the data is discussed in Ref. [15] and
will not be repeated here. The phase shift and the spectral
functions derived from it via Eqs. (33) and (34) are shown in
Fig. 1.

Let us focus on the behavior of the spectral functions. Near
the pole mass of the resonance, it is seen that A(M)dominates
the contribution to the effective spectral function B(M). The
net effect of δρ (M) is to shift the spectral function towards
the lower mass region. Nevertheless, it should be noted that
near the threshold δρ (M) dominates. In fact, the behavior
of B(M) at the threshold is uniquely specified by the chiral
symmetry via the scattering length (see Sect. 3.2).

In the most commonly used statistical models the width
of resonances is sometimes implemented via a Breit–Wigner
function, on the other hand, the effect of δρ (M) is mostly
neglected. The importance of the latter term depends on the
observable under study. For the pT -spectra of the decay pions
coming from ρ-mesons, it is found that the non-resonant
term can contribute substantially to the soft part of the pT -
spectrum [15].

3 The separation of B(M) into the two pieces, however, is model depen-
dent. Also it is a different separation from the one presented in Eq. (25).
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3.2 Non-resonant scattering at threshold

Not all interaction channels among hadrons are resonance
dominated. Some are purely repulsive and some have compli-
cated energy dependence due to the intricate hadronic inter-
action. The S-matrix formalism presented here can consis-
tently take these into account [18].

Near the threshold, when the momenta of the scattering
particles are small, the interaction can be reliably described
within an effective field theory framework [19] or even by
quantum mechanical models. The phase shift, to lowest order
in the momentum, takes the following form:

Q(M) ≈ dS × (aS q) + dP × (aP q3) + · · · , (38)

where q is the momentum of the particles in the center of
mass frame

q = 1

2
M

√
1 + (m1 + m2)2

M2

√
1 + (m1 − m2)2

M2 . (39)

For a concrete example, consider the case of ππ scatter-
ing, we get

Q(M) ≈ (aI=0
S + 5 aI=2

S ) × q + 9 aI=1
P × q3. (40)

In this case, the scattering lengths are well constrained by
the chiral perturbation theory. Moreover, it has been noted
that there is an essential cancellation effect [2,3] between
the I = 0 and the I = 2 channel in the low invariant mass
region. This results in a very small S-wave contribution to
the thermodynamics. Similar conclusion applies to the κ-
meson [4].

3.3 Structureless N -body scattering

A particularly simple case in which the exact N -body gener-
alized phase shift function QN (M) can be readily extracted
is the model of structureless scattering. Assuming the general
N -body scattering matrix is to be described by a dimension-
ful (∼ E2N−4) coupling constant λN such that

iM = i λN , (41)

with

QN (M) = 1

2
Im [ln (1 + i λN × φN )] . (42)

The problem of calculating the phase shift function then boils
down to the determination of the N -body phase space func-
tion φN (M). An efficient way to accomplish this task is to
employ the Källén expansion [20], which provides a recursive

ΦN (s)/(m2
π)N−2

Fig. 2 (N = 2, 3, 4)-body phase space functions (Eq. 43), scaled by
the appropriate powers of pion mass, versus the center of mass

√
s

definition of the N -body phase space function φN (s = M2),
via

φN (s) = 1

16 π2s

∫ s′+

s′−
ds′

√
λ(s, s′,m2

N )

× φN−1(s
′,m2

1,m
2
2, ...,m

2
N−1), (43)

where λ(x, y, z) is the Källén triangle function

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz, (44)

and

s′+ = (
√
s − mN )2,

s′− =
(
N−1∑
i=1

mi

)2

. (45)

For the case of massless particles (mi = 0), the integral can
be performed analytically and the exact expression for the
N -body phase space reads

φmassless
N (s) = aN × sN−2,

aN = 2 π ×
(

1

16 π2

)N−1 1

(N − 2)! (N − 1)! .
(46)

To demonstrate how the N -body phase space function
increases with

√
s = M , we compute Eq. (42) numerically

for a system of pions. For a meaningful comparison, we scale
the dimensionful phase space function with the appropriate
powers of mπ . The result is shown in Fig. 2.
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k1

k2

k3 k3

k2

k1

Fig. 3 Set up of the triangle diagram

From a purely kinematical point of view, effects from
higher N -body phase space are generally suppressed com-
pared to the lower ones at low invariant mass. However, their
effects will show up and will eventually be dominating at
high invariant masses in the manner dictated by Eq. (46). In
case of finite density or chemical potential, the takeover by
higher N -body phase spaces can occur more rapidly due to
the fugacity factor (eμ/T )N associated with an N -body state.

The phase space dominance model discussed here may be
of interest to phenomenological studies. Performing model-
ing on the level of S-matrix elements or amplitudes, e.g. the
invariant mass dependence of λN , can establish closer con-
nection between observables and model parameters. More-
over, symmetries and physical conditions can be imposed
on the S-matrix elements to constrain their functional form.
On passing, we note that similar models [21–24] have been
applied to investigate the emergence of thermal-like behavior
of the particle spectra at freezeout conditions.

In the next Sect. 4, we investigate how the purely kinemat-
ical consideration presented here is modified by interaction
dynamics in some simple cases of 3- and 4-body scattering.

4 Further examples

4.1 3-body process: the triangle diagram

The triangle diagram is usually studied in a quantum field
theory with a λ3φ

3 interaction. Here we consider an alter-
native scenario where a fully connected 3-body amplitude is
dynamically generated by 2-body scatterings, i.e. particles
interact two at a time, forming an effective triangle diagram
as shown in Fig. 34.

4 We pay special attention to this diagram for the following reason.
In a classical system of particles interacting via a pair-wise potential, it
can be shown [25] that only Mayer graphs with such a closed triangle
topology enters the calculation of the third virial coefficient. Those
constructed with two links (open triangle), though present in the cluster
expansion, are absent in the virial expansion. See also Ref. [26] on the
definition of one-vertex-irreducible (1VI) graphs.

For our purpose we only consider the lowest order term in
λ for the topology of the diagram of interest. First, we write
down the amplitude of the process according to the Feynman
rules:

iM�(q1, q2, q3) =
∫

d4l

(2π)4 (−i λ)3

× i G(l) × i G(l + q1) × i G(l − q2)

(47)

where

G(k) = 1

k2 − m2
π + iε

,

q1 = k1 + k2,

q2 = k3 − k′
3,

q3 = k′
1 + k′

2 = q1 + q2,

PI = k1 + k2 + k3 = k′
1 + k′

2 + k′
3. (48)

Using the standard Feynman’s trick and computing the loop
momentum integral using dimensional regularization, we
obtain

iM�(q2
1 , q2

2 , s = P2
I ) = −i

λ3

16π2

∫ 1

0
dx

∫ 1−x

0
dy

1

�(x, y)
,

(49)

�(x, y) = m2
π − x(1 − x) q2

1 − y(1 − y) q2
2

− 2 x y q1 · q2 − iε. (50)

This matrix element does not satisfy the factorization condi-
tion (�) and the general computation of Q becomes notori-
ously difficult. However, if we consider only the linear term
in the expansion

Q(s) ≈ 1

2
Im

[∫
dφ3 iM�

]
, (51)

the integral only involves the amplitude with the following
on-shell condition:

k′
i = ki , (52)

or equivalently

q1 = k1 + k2,

q2 = 0,

q3 = q1. (53)

The Feynman amplitude in this case can be computed ana-
lytically to give
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Fig. 4 The generalized phase space function Q(s) for triangle (left) and box (right) diagrams under an on-shell condition discussed in the text

iM�,o.s.(q2
1 , s) = −i

λ3

16 π2

z

q2
1

ln
1 − z

1 + z
,

z = 1√
1 − 4m2

π

q2
1

. (54)

The variable z here should be understood to possess a small
and negative imaginary part. The q2

1 -dependence in the
amplitude is crucial since it is one of the integration vari-
ables in the 3-body phase space. In fact, writing s′ = q2

1 , we
have in this case

∫
dφ3 → 1

128π3

1

s2

∫ (
√
s−mπ )2

4m2
π

ds′

×
√

λ(s, s′,m2
π ) ×

√
λ(s′,m2

π ,m2
π ). (55)

The numerical result of Eq. (51) is shown in Fig. 4.
The behavior of the generalized phase shift function Q(s)

for the triangle diagram can be qualitatively understood as
follows. First, we note that close to the threshold s → 9m2

π ,

Im
(
iM�,o.s.(q2

1 , s)
)

≈ λeff
3

= λ3

16π2

1

2m2
π

,

(56)

meaning that the function Q is simply dictated by the 3-body
phase space

Q(s) ≈ 1

2
× λeff

3 × φ3(s). (57)

However, this is no longer the case at large invariant masses.
In fact, the following asymptotic expression can be obtained
for the phase shift function at s  m2

π :

Q(s) ≈ λ3

8192 π5

∫ 1

ξ0

dξ

(
1

ξ
− 1

) [
−z ln

∣∣∣∣1 − z

1 + z

∣∣∣∣
]

≈ λ3

4096 π5
×

[
1 + ln

ξ0

4
+

(
ln

ξ0

4

)2
]

(58)

where

z = 1√
1 − ξ0

ξ

,

ξ0 = 4m2
π

s
. (59)

We find that the structureless scattering approximation
is valid only for a very narrow invariant mass range near
the threshold. The phase shift function tends to be more
suppressed when the dynamics is taken into account. The
approach to the expected asymptotic limit at s  m2

π is
rather slow due to the presence of logarithmic terms. This
may be interesting for phenomenological studies and reac-
tion simulations when modeling the space-time details of an
N -body scattering.

Nevertheless, since only the lowest order diagram (in cou-
pling λ) with triangle topology is considered, the invari-
ant mass dependence obtained here is only schematic. More
sophisticated method for obtaining the 3-body T-matrix, e.g.
by solving the Faddeev equation, and the inclusion of the non-
linear terms are needed to produce a realistic assessment of
its effect in thermodynamics.

4.2 4-body process: the box diagram

An analogous study can be performed for a 4-body scattering.
Here we choose the familiar box diagram, again dynamically
generated by 2-body scatterings; see Fig. 5.
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k1

k2

k3

k4 k4

k3

k2

k1

Fig. 5 Set up of the box diagram

iMbox(q1, q2, q3, q4) =
∫

d4l

(2π)4 (−i λ)4

× i G(l) × i G(l + q1)

× i G(l + q1 − q3) × i G(l − q2)

(60)

with

G(k) = 1

k2 − m2
π + iε

,

q1 = k1 + k2,

q2 = k3 + k4,

q3 = k′
2 + k′

2,

q4 = k′
3 + k′

4,

PI = k1 + k2 + k3 + k4 = k′
1 + k′

2 + k′
3 + k′

4. (61)

Using the standard Feynman’s trick and computing the
loop momentum integral using dimensional regularization:

iMbox(q1, q2, q3, q4) = i
λ4

16π2

∫ 1

0
dx

∫ 1−x

0
dy

×
∫ 1−x−y

0
dz ×

(
1

�(x, y, z)

)2

,

(62)

�(x, y, z) = m2
π − {x(1 − x) q2

1

+ y(1 − y) (q1 − q3)
2 + z(1 − z) q2

2

− 2 x y q1 · (q1 − q3) + 2 x z q1 · q2

+ 2 y z q2 · (q1 − q3) − iε}. (63)

The full matrix element does not satisfy the factorization
condition (�) and the general computation of Q is vastly
complicated. Considering only the linear term,

Q(s) ≈ 1

2
Im

[∫
dφ4 iMbox,o.s.

]
, (64)

allows us to focus on the following simplified on-shell con-
dition:

k′
i = ki , (65)

which gives

q1 = k1 + k2,

q2 = k3 + k4,

q3 = q1,

q4 = q2. (66)

Even with this simplified on-shell condition, it is not clear
whether the integral (62) over the Feynman parameters can
be computed in closed form. Nevertheless, numerical com-
putation of the real and imaginary parts can be robustly per-
formed.

The dependence onq2
1 andq2

2 ofMbox,o.s.(q2
1 , q2

2 , s) in the
amplitude is crucial in correctly determining the phase shift
function Q. Here, the numerical integration over the 4-body
phase space is much more involved. However, for amplitudes
depending only on s′

1 = q2
1 and s′

2 = q2
2 , the following

method of integrating the phase space can be applied:

∫
dφ4 → 1

4π2

∫ (
√
s−2mπ )2

4m2
π

ds′
1

∫ (
√
s−2mπ )2

4m2
π

ds′
2

× φ2(s
′
1,m

2
π ,m2

π ) × φ2(s
′
2,m

2
π ,m2

π )

× φ2

(
s, s′

1, s
′
2) × θ(

√
s −

√
s′

1 −
√
s′

2

)
. (67)

This reduces the original 8-dimensional integral into a 2-
dimensional one with the suitable integrating variables for
Mbox,o.s.. The numerical result is shown in Fig. 4.

As in the triangle diagram case, we study the expected
behavior of the phase shift function near the 4-body thresh-
old. We find

Im
(
iMbox,o.s.(q2

1 , q2
2 , s)

)
≈ λeff

4

= λ4

256π2

1

m4
π

×
(√

3

2
ln (7 − 4

√
3) + 2

)
,

(68)

which gives the following Q(s) near the threshold:

Q(s) ≈ 1

2
× λeff

4 × φ4(s). (69)

The numerical value of the effective constant turns out to be
negative, and as seen in Fig. 4, the full result deviates from
the threshold behavior very rapidly as s increases.

It should be noted that the simplified examples considered
here are by no means capturing the full complexity of the full
N -body amplitude. Nevertheless, when a realistic amplitude

123



533 Page 10 of 11 Eur. Phys. J. C (2017) 77 :533

is supplied by a model, the scheme can be directly employed
to assess its contribution to the thermodynamics.

4.3 Towards a cluster/virial expansion using the S-matrix
approach

Recall the cluster expansion for the logarithm of the grand
partition function

P(ξ)

kBT
= ln Z

V
= n0

∑
l

bl ξ
l (70)

where n0 is some density scale, usually taken to be 1/λ3 with
λ being the thermal wavelength of the particle. The expansion
is in powers of the fugacity ξ , and the dimensionless coeffi-
cients bl ’s are related to the cluster integral. The density can
be obtained via

n = ξ
∂

∂ξ

P(ξ)

kBT
= n0

∑
l

l × bl ξ
l . (71)

The virial expansion can be obtained by re-expressing the
pressure P in terms of density n:

P

n kBT
=

∑
bl ξ l∑

l × bl ξ l
=

∑
l

al ×
(

n

n0

)l

. (72)

Here al ’s are the dimensionless virial coefficient, and are
related to bl ’s by

a1 = 1,

a2 = −b2,

a3 = −2b3 + 4b2
2,

· · · . (73)

The S-matrix expansion in Eq. (1) naturally lends itself
to the form of a cluster expansion. In fact, the coefficients
bl ’s are related to the connected l-body S-matrix element. In
particular, for the 2-body case, one obtains the interaction
part of b2 by

�b2 = 1

n0
×

∫
d3P

(2π)3

dM

2π
e−β

√
P2+M2

2
∂

∂M
Q2, (74)

and similarly for higher bl ’s.
While the classical cluster coefficients bl ’s are well

known [25] and can be computed readily once the poten-
tial between the particles is given, the quantum version of
bl ’s beyond the 2-body case are much more challenging to
obtain. Nevertheless, important progress has been made for
the system of ultracold Fermi gas [27–30].

Evaluating the higher virial terms is an extremely impor-
tant task. In addition to checking the validity of the common
implementation of retaining only the 2-body term, i.e., the
Beth–Uhlenbeck formula, it may also help in extending the
applicability of the S-matrix formalism to study the equation
of state for a dense system. This may seem implausible since
the virial expansion is essentially an expansion in density, and
at high density it is destined to diverge. Nevertheless, even in
this situation studying the radius of convergence may reveal
important physics of the medium such as the existence of a
critical point. Moreover, for some specific systems like the
classical lattice gas, it is possible to construct a high-density
expansion [31–33] (effectively an expansion in ξ−1) for the
thermodynamic potential. The coefficients in such an expan-
sion are found to be related to the bl in the standard cluster
expansion. In any case, it would be beneficial to gain a solid
knowledge of the higher virial terms.

The current treatment of the S-matrix expansion involv-
ing the separation of kinematics (N -body phase space) and
dynamics (amplitude) may contribute to clarifying these
issues. In particular, we notice that the virial expansion can
be understood as a kind of Legendre transform of the cluster
expansion. Hence, the S-matrix diagrams that are involved in
the virial expansion is expected to be of the skeleton type (or
one-vertex irreducible [26]). This may help to shorten the list
of diagrams in the calculation. Research along this direction
is under way.

5 Conclusions

We have applied a phase space expansion scheme to evalu-
ate the N -body trace in the S-matrix formulation of statisti-
cal mechanics. A generalized phase shift function, suitable
for studying the thermodynamical contribution of N → N
processes, is proposed and explicitly worked out in some
simple cases. Using the expansion scheme we have revis-
ited how the hadron resonance gas (HRG) model emerges
from the S-matrix framework, and how resonance widths
can be consistently included, together with the non-resonant
interactions. Extension to the general N -body cases within
the phase space dominance scenario is worked out, and the
influence of dynamics within some simple models are stud-
ied.

The framework presented here is flexible enough to
encompass many theoretical approaches. The key input is
an N -body S-matrix element, which can be obtained from
the experiment (e.g. scattering phase shifts), or be calculated
within models. In this work, we have focused on the connec-
tion to field theoretical models via the quantum amplitudes.
In fact, the S-matrix elements can as well be obtained from
potential models [34,35] or from lattice calculations [36].
Moreover, from a phenomenological point of view, it may
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be more intuitive to perform modeling at the level of S-
matrix elements since these are more connected to the exper-
imentally measured quantities. Furthermore, symmetries and
other physical conditions may be imposed on the S-matrix
elements to constrain their functional form in the space of
model parameters.

Much of the discussion presented here builds on the idea
that the quantity dδ/dE represents a change of the den-
sity of state due to the interaction. An interesting alter-
native interpretation of this quantity, given in Ref. [37],
is the concept of time delay: particles spend longer or
shorter in the interaction region due to the attractive or
repulsive nature of the interaction. This has been applied
to prescribing the space-time details of particle scatterings
in a reaction simulation. It would be interesting to see
how these higher N -body contributions may be systemati-
cally included in this context, and more importantly, their
effects on heavy ion collision observables like the transport
coefficients.
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