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Abstract We discuss application of formalism of small-
x effective action for reggeized gluons (Gribov, Sov. Phys.
JETP 26:414, 1968; Lipatov, Nucl. Phys. B 452:369, 1995;
Lipatov, Phys. Rep. 286:131, 1997; Lipatov, Subnucl. Ser.
49:131, 2013; Lipatov, Int. J. Mod. Phys. Conf. Ser. 39:
1560082, 2015; Lipatov, Int. J. Mod. Phys. A 31(28/29):
1645011, 2016; Lipatov, EPJ Web Conf. 125:01010, 2016;
Lipatov, Sov. J. Nucl. Phys. 23:338, 1976; Kuraev et al.,
Sov. Phys. JETP 45:199, 1977; Kuraev et al., Zh Eksp, Teor.
Fiz. 72:377, 1977; Balitsky and Lipatov, Sov. J. Nucl. Phys.
28:822, 1978; Balitsky and Lipatov, Yad. Fiz. 28:1597 1978),
for the calculation of classical gluon field of relativistic color
charge, similarly to that done in CGC approach of McLer-
ran and Venugopalan, Phys. Rev. D 49:2233 (1994), Jalilian-
Marian et al., Phys. Rev. D 55:5414 (1997), Jalilian-Marian
et al., Nucl. Phys. B 504:415 (1997), Jalilian-Marian et al.,
Phys. Rev. D 59:014014 (1998), Jalilian-Marian et al., Phys.
Rev. D 59:014015 (1998), Iancu et al., Nucl. Phys. A 692:583
(2001), Iancu et al., Phys. Lett. B 510:133 (2001), Ferreiro et
al., Nucl. Phys. A 703:489 (2002). The equations of motion
with the reggeon fields are solved in LO and NLO approxima-
tions and new solutions are found. The results are compared
to the calculations performed in the CGC framework and it
is demonstrated that the LO CGC results for the classical
field are reproduced in our calculations. Possible applica-
tions of the NLO solution in the effective action and CGC
frameworks are discussed as well.

1 Introduction

In the framework of perturbative QCD, the calculations of
classical field created by a relativistic color charge is an
important task and its results are useful in many physical
applications. There are self-consistent approaches for the cal-
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culation of the mean field in the framework of Wong’s equa-
tions, in the theory of non-Abelian plasma physics and in the
classical and quantum transport theories, see [25–34] and ref-
erences therein. In the context of the Color Glass Condensate
(CGC) approach, the knowledge of solution of the equations
of motion is an important initial set up for the further small-x
evolution of the gluonic system, see [13–20].

The CGC approach is based on the renormalization group
(quantum evolution) applied to some initial classical config-
uration of the gluon field. Equations of motion for the gluon
field in this case are derived within some effective action,
see details in [13–20]. An important ingredient of the frame-
work is a source of the gluon field, see [14–20] and discus-
sion further in the paper. The structure of this term, in turn,
determines the form of equations of motion and correspond-
ingly the form of solution of the equations, which are known
to the LO precision. The Balitsky, Fadin, Kuraev, Lipatov
(BFKL) like, [8–12], small-x behavior of the gluon density,
a non-linear Gribov, Levin, Ryskin (GLR) equation, see [21]
as well as Balitsky–Kovchegov (BK) like, [35–37], correc-
tions to this density were reproduced in the framework of this
approach.

In the frameworks based on the theory of BFKL Pomeron,
[2–12], the source terms in the action are considered as well,
see [38–44]. There the Pomeron is coupled to the source, it
is usual formulation of different RFT theories, see [45–50].
The effective action approach of [2–7] can be considered as
some generalization of Gribov’s Regge calculus, [1], for the
case of QCD degrees of freedom. Besides the usual gluon
field, it includes two additional reggeon fields and widely
used for the calculations of different quasi-elastic LO and
NLO production amplitudes in the multi-Regge kinematics,
see [51–60], or calculation of NLO corrections to the BKP,
[61,62], kernel, see [63].

In our paper, we use the effective action for reggeized
gluons exploring ideas of [2–7]. Using light-cone gauge, we
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consider a problem with only one longitudinal gluon field in
the equations of motion included. With the two reggeon fields
present in the approach, the first reggeon field is defined as a
LO value of the corresponding gluon field, whereas the sec-
ond reggeon field arises as a source term in the Lagrangian.
The form of the effective currents, arising in the equations of
motion, therefore, can be obtained or directly from the effec-
tive action expression from [2–7] or from the self-consistency
conditions for the solution of the equations of motion, in both
cases we obtain the same structure of the current. Respec-
tively, in the next Sect. 2, we discuss the set up of the prob-
lem, i.e. we consider the expression for the effective action,
further, in the Sect. 3, we write equations of motion for the
gluon fields of the problem in light-cone gauge. In the Sect. 4
we solve these equations with the LO accuracy and demon-
strate that obtained solution is the same as obtained in CGC
approach in the limit of zero reggeon field. Section 5 is ded-
icated to the semi-classical Reggeon action obtained from
the initial one and in the Sect. 6 we discuss the similarities
and differences between the solutions obtained in the paper
and in the framework of CGC approach. The Conclusion is
presented in Sect. 7, a calculation of the NLO solution is in
the Appendix C and in the Appendixes A and B we discuss
the form of the current in the effective action for reggeized
gluon approach.

2 Effective action for reggeized gluons with color field
source

The effective action, see [2–7], is a non-linear gauge invariant
action which correctly reproduces the production of the par-
ticles in direct channels at a quasi-multi-Regge kinematics.
It is written for the local in rapidity interactions of physi-
cal gluons in direct channels inside of some rapidity interval
(y−η/2, y+η/2). In turn, the interaction between the differ-
ent clusters of gluons at different but close rapidities can be
described with the help of reggeized gluon fields1 A− and A+
interacting in crossing channels. Those interaction are non-
local in rapidity space. This non-local term is not included
in the action, the term of interaction between the reggeon
fields in the action is local in rapidity and can be considered
as some kind of renormalization term in the Lagrangian. The
action is gauge invariant and written in the covariant form in
terms of gluon field v as

Seff = −
∫

d4 x

(
1

4
Ga

μν G
μν
a + tr

[
( A+(v+)

−A+ ) j+reg + ( A−(v−) − A− ) j−reg

] )
, (1)

1 We use the Kogut–Soper convention for the light-cone for the light-
cone definitions with x± = (x0 ± x3) /

√
2 and x± = x∓.

where

A±(v±) = 1

g
∂± O(x±, v±) = v± O(x±, v±), (2)

with O(x±, v±) as some operators, see [2–7], Appendix A,
Appendix B and Sect. 4 in Iancu et al. [14–20]. The form of
reggeon current we take is the following:2

j±reg a = 1

C(R)
∂2
i A±

a , (3)

where C(R) is the eigenvalue of Casimir operator in the rep-
resentation R, C(R) = N in the case of adjoint represen-
tation used in the paper. There are additional kinematical
constraints for the reggeon fields

∂− A+ = ∂+ A− = 0, (4)

corresponding to the strong-ordering Sudakov components
in the multi-Regge kinematics, see [2–7]. Here, as usual,
∂i denotes the derivative on transverse coordinates. In the
framework with an external source of the color charge intro-
duced, keeping only gluon field depending terms in the Eq.
(1) action, we rewrite Eq. (1) as

Seff =−
∫

d4x

(
1

4
Ga

μνG
μν
a +v− J−(v−)+v+ J+(v+)

)
,

(5)

with

J±(v±) = O(v±) j±reg. (6)

Under variation on the gluon fields these currents reproduce
the Lipatov’s induced currents

δ
(

v± J±(v±)
) = (δ v±) j ind∓ (v±) = (δ v±) j±(v±), (7)

with shortness notation j ind∓ = j± introduced. This current
posseses a covariant conservation property:

(
D± j ind∓ (v±)

)a = (
D± j±(v±)

)a = 0. (8)

Here and further we denote the induced current in the com-
ponent form in the adjoint representation3 as

j±a (v±) = − ı tr [Ta j±(v±)]
= 1

N
tr

[
fa O fb O

T
] (

∂2
i Ab∓

)
, (9)

2 It is rewritten in comparison to the current from [2–7].
3 We use ( Ta )b c = − ı fa b c definition of the matrices and write only
“external” indexes of the fa b c = ( fa)b c matrix in the trace.
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see Appendices A and B. It will be shown in the following
sections, that the requests of self-consistency of the solution
of equations of motion will lead independently to the Eqs.
(6)–(8) form and described properties of the current. Apply-
ing the light-cone gauge v− = 0, the second current term in
the r.h.s. of Eq. (5) looks equal to zero on the first sight, but
due the x− derivative in the Eq. (2) this term acquires some
non-zero value on the boundaries of integration, see also dis-
cussion in [22,23]. For our calculations these contributions
are not important, but it is interesting to note, that after the
integration on x± variables in the effective currents terms
in the Lagrangian, the remaining expressions can be inter-
preted as distribution of the light-cone straight lines in the
three dimensional space with the probabilities of distribution
determined by the reggeon fields. This geometrical picture
potentially can be very interesting, because a deformation of
this lines can lead to some interconnections of the approach
with framework of [24].

3 Equations of motion in light-cone gauge

The classical equations of motion for the gluon field vμ field
which arose from the Eq. (5) action are the following:

(
Dμ Gμν

)
a = ∂μ Gμν

a + g fabcvbμ Gcμν = j+a δν+ + j−a δν−

(10)

We assume also, that the form of the currents in Eq. (10) is not
fixed yet, it will be demonstrated that it can be independently
determined on the base of self-consistency request applied for
the solutions of equations of motion, see Eq. (29) in the next
section. Of course, this resulting current will be the same
as the induced current Eq. (9) introduced in the previous
Section.

The light-cone gauge va− = 0 is applied further in the
equations of motion and thereafter in the final effective action
as well. Considering Eq. (10) we obtain the following equa-
tions for the different field components.

1. The variation of the action with respect to va+ gives:

−∂i∂−via − ∂+∂−va+ − g fabcvbi
(

∂−vi c
)

= j+a (v+),

(11)

or

−
(
Di

(
∂−vi

))
a

− ∂2− va+ = j+a (v+). (12)

2. The variation on field va− provides

∂μ Gμ−
a + g fabc vbμ Gcμ− = j−a (v−), (13)

and, requesting the following current’s property j−a (v− =
0) = −∂2

i Aa +, we obtain:

(
D−G−+

)
a +

(
DiGi+

)
a

= −∂2
i Aa +. (14)

It can be written as following:

∂+ ∂− va + + g fabc vb+
(
∂− vc+

)
+∂ i

(
∂iva + − ∂+va i + g fabcvbi vc+

)

+g fabc vb i
(
∂ivc+ − ∂+vci + g f cd f vd iv f +

)

= −∂2
i Aa +, (15)

and presented in one of the forms:

(D+[v+] (∂−v+))a +
(
Di (∂i v+)

)
a

− ∂ i (D+vi )a

−g fabc vb i (D+vi )c = − ∂2
i Aa +

(16)

or

(D+[v+] (∂−v+))a +
(
Di (∂i v+)

)
a

−
(
Di [vi ] ( D+[v+] vi )

)
a

= − ∂2
i Aa +, (17)

see Appendix C for more details.
3. The variation on field va⊥ gives in turn:

(
D+G+i

)
a + (

D−G−i
)
a +

(
D jG ji

)
a

= 0. (18)

Rewriting this equation as

∂−
(
∂+va i − ∂iva + + g fabcvb+vci

)
+ ∂+∂− va i

+g fabc vb+
(
∂−vci

) +
(
D jG ji

)
a

= 0. (19)

we finally obtain:

2 (D+ (∂−vi ) )a − ( Di (∂−v+) )a +
(
D jG ji

)
a

= 0.

(20)

The LO perturbative solutions of these equations are pre-
sented in the next section.

4 The LO solution: from effective action approach to
CGC expressions

For the action without the external source, at j+a = 0, the
trivial solution at the first perturbative order can be easily
obtained:
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v⊥ = 0, v+ = A+, (21)

see [2–7]. At the presence of an external source the solution
is changing and the following ansatz as solution of Eqs. (11)–
(20) can be introduced:

v− = 0, v⊥ = �[g A+] + g�1[g A+] + · · · ,

v+ = A+ + g�[g A+, v⊥] + · · · , ∂− A+ = 0, (22)

with still unknown form of the external current, which prop-
erties we will establish from the requests of self-consistency
of the solution. We note, that this ansatz is valid for the large
values of reggeon field when g A+ ∼ 1 and in principal it
can be useful for the situations of non-symmetrical scattering
processes such as DIS or scattering off nuclei.

1. We begin from Eq. (20) taking there ∂−v+ = 0, see Eqs.
(4) and (22). We will see further that at LO Gi j = 0,
therefore the equation reads as

(D+ (∂−vi ) )a = 0. (23)

It’s solution has the following form

∂− vbi = Ubc (v+) ∂−ρc i
(
x−, x⊥

)
, (24)

with Ubc as some function which form is determined by
the request that it’s covariant derivative is equal to zero.
The form of the function ρc i

(
x−, x⊥

)
is arbitrary in this

case, it is proportional to the color charge density in the
CGC approach. With LO precision, in the sense of Eq.
(22) ansatz, we obtain:

vbi = Ubc (v+) ρci
(
x−, x⊥

)
. (25)

The form of Uab function in Eq. (25) can be written
consistently with the used in [14–20]:

vbi = tr
[
f b U−∞, x+ (v+) f c Ux+,∞ (v+)

]
ρci

(
x−, x⊥

)

= Ubcρci
(
x−, x⊥

)
, (26)

whereU−∞,x+ = P eg
∫ x+
−∞ dx

′+ va+ and which correspond
to the form of the induced current in the effective action
when O operator is taken in the form of simple ordered
exponential, see Eq. (9) and Appendices A and B.

2. The leading order solution of Eq. (12)

− Di ∂− via = j+a (27)

will determine the form of unknown function ρci(
x−, x⊥

)
in terms of the given external current4 j+a ,

4 In the given framework we can take l.h.s. of Eq. (27) as definition of
the external current.

assumed to be unknown for the moment. Taking Eq. (27)
to LO, we obtain:

− ∂i ∂− via = j+a . (28)

The current in the r.h.s. of Eq. (28) we write in the form
self-consistent with Eq. (26):

j+a = −Uab (v+) J̃+
b

(
x−, x⊥

)
, (29)

we see, that this condition of self-consistency dictates the
same form of the current as induced current introduced in
Eq. (7), see Eq. (9). Now, we have to the first perturbative
order:

∂i ∂− ρi
a = J̃+

a

(
x−, x⊥

)
, (30)

which is the same equation as in [14–20]. The Eq. (30) has
no simple solution and, following to [14–20], we assume
the following structure of this term:

J̃+
a

(
x−, x⊥

) = ∂i ∂− j̃ ia
(
x−, x⊥

)
, (31)

that gives

ρi
c

(
x−, x⊥

) = j̃ ic
(
x−, x⊥

)
. (32)

In CGC approach the another assumption is done, namely
it is assumed in [13–20] that

∂− j̃ ia
(
x−, x⊥

) = δ(x−) ρ̃i
c ( x⊥ ) , (33)

with some known ρ̃i
c ( x⊥ ) functions. We note, that this

assumption providing the factorization between x− and
x⊥ coordinates in the LO leads to the difficulties in the
NLO solution, it is seen already from Eq. (12). Still,
accepting this assumption, we obtain:

j̃ ic
(
x−, x⊥

) = θ(x−) ρ̃i
c ( x⊥ ) , (34)

that provides

ρi
c

(
x−, x⊥

) = θ(x−) ρi
c (x⊥) = θ(x−) ρ̃i

c ( x⊥ ) (35)

and correspondingly

vbi
(
x+, x⊥

) = θ(x−)Ubc (v+) ρci (x⊥) , (36)

where the first term of perturbative expansion of Eq. (36)
is in full agreement with the LO CGC result of [14–20].

3. For the last equation of motion, Eq. (15), we have at the
first order

∂i ∂
i va + = − ∂2

i Aa +, (37)
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that gives

va + = Aa +, (38)

in correspondence with Eq. (22), see [2–7]. In turn, it
provides the first order solution for the field vi :

vbi
(
x+, x⊥

) = Ubc (A+) ρci
(
x−, x⊥

)
. (39)

We underlie, that this solution consists all orders of g
through the ordered exponential Ubc , that is the novel
result of our calculations.

In order to relate obtained LO solutions Eqs. (38)–(39)
with CGC results, we note, that the results of [14–20] for the
classical gluon field are reproduced taking A+ = 0 in these
expressions.

5 LO structure of the effective action

Calculations in the previous section we can consider as a
formulation of RFT calculus based on the effective action
approach. In this case, basing on the Eq. (A.8) for the current,
we consider solution of equations of motion as solution for
the classical gluon field in the presence of A− source. This
transition can be done by the following substitution:

J̃+
a → −∂2⊥ A+

a , (40)

see Eq. (A.8) again and discussions in [14–20] and [22,23].
Therefore, instead of Eq. (30), we obtain:

∂i ∂− ρi
a = − 1

N
∂2⊥ A+

a , (41)

or

ρi
a = 1

N
∂−1−

(
∂ i Aa−

)
, (42)

where the condition Gi j = 0 is provided at LO approxima-
tion. Correspondingly, all results of the previous section can
be rewritten and we obtain for Eq. (26):

vai = 1

N
Uab (v+)

(
∂−1−

(
∂i A

b−
) )

. (43)

The Eq. (38) solution for field v+ remains unchanged under
substitution Eq. (42) as well as form of the NLO solution of
Appendix C.

Inserting obtained classical gluon fields solutions in the
Eq. (1) action, we will obtain a action which will depend
only on the reggeon fields, see [2–7], determining the LO
RFT action of the approach. Formally, due to the presence

of ordered path exponential in the solutions, the action will
includes all order perturbative terms which can be important
for large v+ ≈ A+ in the processes where some large color
charge is created. The expansion of these exponential must
be supplemented by solution of equations of motion to cor-
responding orders, otherwise only part of the usual perturba-
tive corrections will be accounted. In general, the following
expansion for the action exists:

Seff =−
∫

d4 x (s1[g, A+, A−]+g s2[g, A+, A−]+· · · ) ,

(44)

where additional dependence on the coupling constants in
the different terms of the Lagrangian is arising through the
ordered exponentials in the classical solutions for the gluon
field accordingly to the ansatz of Eq. (22).

In order to calculate this action we need to know the com-
ponents of the field strength tensor, with LO precision we
have:

Ga+− = 0, Ga
i + = ∂i A

a+, Ga
i − = − ∂− vai , Gi j = 0,

(45)

that gives

1

4
Gμν G

μν = −Gi − Gi + = (
∂− vai

)
.
(
∂i A

a+
)
. (46)

Therefore, for the Eq. (5) effective action we obtain to LO:

Seff = −
∫

d4x
( (

∂i A
a+
)
Ua b(A+) (∂−ρi b(x⊥))

+ 1

N
Aa+

(
Oa b(A+) + N δa b

) (
∂2⊥ Ab−

))
, (47)

with Oa b(A+) = Tr
[
f a O(A+) f b

]
in adjoint represen-

taion. Using Eq. (42) we rewrite this expression as

Seff = − 1

N

∫
d4x

( (
∂i A

a+
)
Ua b(A+)

(
∂i A

b−
)

+Aa+
(
Oa b(A+) + N δa b

) (
∂2⊥ Ab−

) )
. (48)

We obtained, that due the ordered exponential in the action,
there are some additional corrections which were not consid-
ered in [2–7]. However, obtained in expression Eq. (48) cor-
rections are not complete, we also need the higher order solu-
tions of equations of motion. Thus, using results of Appendix
C, we can calculate full tree NLO corrections to the reggeon-
reggeon transition vertices as well, but we postpone this task
for the following publications.
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6 Effective action for reggeized gluons and CGC
approach

In the CGC approach, auxiliary soft and semi-hard gluon
fields are added to classical gluon field. Integrating the semi-
hard fields out, some effective action is obtained and relations
similar to Eqs. (38), (39) are used there as an initial condition
for the further small-x evolution of the gluon density operator.
Therefore, it will be constructive to determine the counterpart
to the reggeon field in the CGC approach. From [14–20] we
know, that the classical gluon field va+ cl is zero there and only
the fluctuations of this field are considered

v+ cl = δv+ + a+, (49)

which are ordered in the longitudinal momenta. There are
semi-hard and soft fluctuations of the field, δv+ and a+ cor-
respondingly, see details in [14–20]. By direct comparison of
this field’s representation with Eq. (38), we see that the δv+
fluctuation in the CGC is precisely A+ reggeon field in the
effective action, see also kinematic properties of the field in
[2–7,14–20]. The difference between two approaches is that
whereas the reggeon fields are present in the effective action
initially as some parameter of the problem, which must be
considered separately after all in the path integral as indepen-
dent fields, in the CGC approach the reggeon like field δv+
appears as fluctuation around va+ cl = 0 classical solution
and integrated out. As we obtained above, taking A+ = 0 in
the Eqs. (26) and (38) we will reproduce the CGC answers
for the LO classical fields configuration. The counterpart of
gluon density operator (source) in the CGC calculations is
A−, the second reggeon field, see Eqs. (41)–(42), that allows
to relate results of the approaches. We also note, that the
classical gluon field Eq. (25) consists terms to all order of
coupling constant, that differ it from the classical solutions
considered in the CGC approach.

There is an important point that requires further clarifica-
tion. Expansion of the action in terms of background field
(reggeon field or δ v+ fluctuation) requires solution of equa-
tions of motion for gluon fields at the same order of back-
ground field. Namely, taking non-zero δv+ we will obtain
that the NLO solution for the gluon field will depend on δv+
already, see Appendix C. Thereby, expanding the Lagrangian
in terms of background fields, we have to account the same
order terms which arise also from the square of field strength
tensor and from the currents in the action. Indeed, there is
NLO solution of equations of motion, see Appendix C, which
after the insertion into the Lagrangian will reproduce the
same order terms as in the expansion of the effective currents
in respect to the soft fluctuations, these corrections are absent
in CGC approach, see also [22,23,64,65] where the NLO
correction to the CGC framework results were discussed.

We also note, that both approaches give the similar equa-
tions at the level of equations of motion, when the simplest
form of O and OT operators are used, see Appendices B
and C. This is related to the fact that the additional term in
the CGC action can be considered as resulting from the inte-
gration on x− coordinate of the current term in the effective
action for reggeized gluons, see Iancu et al. in [14–20] and
[22,23] for the relevant discussions.

7 Conclusion

In this paper we consider application of the effective action
approach for reggeized gluons to the calculation of a clas-
sical gluon field produced by relativistic color charge. We
demonstrate, that effective action for reggeized gluons can
be obtained from QCD action, when both reggeon fields are
introduced as non-zero LO solutions for the classical longi-
tudinal gluon fields and as sources of each other. The form of
effective currents in the action in this case, can be obtained
from the request of self-consistency of classical equations
of motion. We also obtained Eqs. (38), (39), (C.15) and
(C.22) expressions for the classical gluon fields calculated
in the effective action formalism, which consist all order
terms in respect to the coupling constant, this is a main result
of the paper. In these calculations the results for the classi-
cal gluon fields of CGC approach can be reproduced in the
limit of zero reggeon fields, see discussion in the previous
Section.

In the framework of the effective action, the performed
calculations can be considered as solution of classical equa-
tions of motion with the reggeons fields introduced as LO
classical solutions of longitudinal gluon fields. Considering
field A− in the as an external source, see Eqs. (41)–(42),
the same problem can be understood as calculation of some
effective particle-reggeon-particle vertex, see expression Eq.
(5). In this case, introducing fluctuations around the classi-
cal solution and integrating them out, an one loop correction
to this vertex can be obtained. In general, we can determine
the effective action for reggeized gluons in terms of reggeon
fields only. Inserting found classical solutions solutions in the
action we will obtain some effective action for the reggeon
fields A+ and A− in the following form:


 =
∑

n,m=0

(
Aa1+ · · · Aan+ Ka1 ··· an

b1 ··· bm Ab1− · · · Abm−
)

, (50)

that will allow to calculate different reggeon-reggeon tran-
sition vertices Ka1 ··· an

b1 ··· bm responsible for the unitarization of
the scattering amplitudes at high energies, which also can be
used in calculations of the amplitudes of various processes
with multi-Regge and quasi-multi-Regge kinematics.
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In general, it will be interesting to investigate possible
relations of the considered framework with results of [64–
68] and we hope that further work in the proposed direction
will allow to establish useful correspondences between the
different small x approaches and calculate high order correc-
tions to the amplitudes of high-energy scattering.
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Appendix A: Induced current in the effective action

In this Appendix we consider an j+ component of the
induced current which can be obtained by variation of the
current term in the effective action Eq. (1):

j+ind(v+) = j ind− (v+) = 1

N
O(v+)

(
∂2
i A+ )

OT (v+).

(A.1)

The operators O and OT are introduced in [2–7]:

O = ∂+
(
D−1+

)
; OT =

(
D−1+

) ←−
∂ +, (A.2)

and have the following properties:

∂+ O = g v+ O , OT ←−
∂ + = − g OT v+, (A.3)

see Appendix B further. The Eq. (A.1) form of the current is
general, the particular representations of the current in terms
of P-exponentials, in turn, depend on the representations of O
operator, or, more precisely on the representation of the ∂−1+
operator. If we take the following simplest representation

1

∂+
f (x+) =

∫ x+

−∞
dx

′+ f (x
′+), (A.4)

we obtain for these operators:

O = P eıg
∫ x+
−∞ dx

′+ va+ Ta (A.5)

and

OT = P eıg
∫ ∞
x+ dx

′+ va+ Ta . (A.6)

The variation of interaction term in the action can be cal-
culated with the help of the formulas from Appendix B and
results by induced current from Eq. (A.1):

δ
(
A+(v+) j+reg

)

= −ı
(
δva+

)
tr [Ta j+ind(v+)] = (

δva+
)
j+a (v+)

= − 1

N

(
δva+

)
tr [ Ta O Tb O

T ]
(

∂2
i A+

b

)
, (A.7)

with v+ = ı T a va+ representation of the gluon field used. In
the case of adjoint representation5 we will obtain:

δ
(
A+(v+) j+reg

)
= (

δva+
)
j+a (v+)

= 1

N

(
δva+

)
tr

[
fa O fb O

T
] (

∂2
i A+

b

)

= 1

N

(
δva+

)
Ua b

(
∂2
i A+

b

)
, (A.8)

that provides

j+a (v+ = 0) = − ∂2
i A+

a . (A.9)

The Ua b exponential in Eq. (A.8) is the same as used in
CGC approach of [14–20], see Eq. (26). The Eqs. (A.5)–
(A.6) forms of the operators can be modified in order to
provide the action’s unitarity at x → ±∞. For that, the Eq.
(A.4) operator can be modified as:6

1

∂+
f (x+) = 1

2

∫
dx

′+ ε
(
x+ − x

′+)
f (x

′+), (A.10)

where ε
(
x+ − x

′+
)

is a sign function, that corresponds to

the different from Eq. (A.4) definition of the integral opera-
tor ∂−1+ , where the regularization of the corresponding 1/k+
pole in momentum space must be understood as principal
value prescription, see details in [2–7]. In this case, more
complicated expressions for the operators will be obtained,
see also Appendix B below.

5 The general form of the current does not depend on the representa-
tion, in our particular case we take ( Ta )b c = − ı fa b c in the current,
representing only “external” indexes in the expression.
6 We use the Kogut–Soper convention for the metric tensor, in the
Lepage–Brodsky convention there is 1/4 coefficient in the front of the
following expression.
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Appendix B: Representation and properties of operators
O and OT

For the arbitrary representation of gauge field v+ = ı T a va+
with D+ = ∂+ − g v+, we can consider the following repre-
sentation of O and OT operators:7

Ox = δa b + g
∫

d4y G+ a a1
xy (v+(y))a1 b = 1 + g G+

xy v+y

(B.1)

and correspondingly

OT
x = 1 + g v+y G

+
yx , (B.2)

which is redefinition of the operator expansions used in [2–7]
in terms of Green’s function instead integral operators, see
Appendix A above. The Green’s function in above equations
we understand as Green’s function of the D+ operator and
express it in the perturbative sense as:

G+
xy = G+ 0

xy + g G+ 0
xz v+z G

+
zy (B.3)

and

G+
yx = G+ 0

yx + g G+
yz v+z G

+ 0
zx , (B.4)

with the bare propagators defined as (there is no integration
on index x in expressions)

∂+x G+ 0
xy = δx y, G+ 0

yx
←−
∂ +x = −δx y . (B.5)

The following properties of the operators now can be derived:

1. δ G+
xy = g G+ 0

xz (δv+z) G+
zy + G+ 0

xz v+zδG
+
zy

= g G+ 0
xz (δv+z) G+

zy + G+ 0
xz v+z

(
δG+

zp

)
D+p G

+
py

= g
(
G+ 0
xz (δv+z) G+

zy − G+ 0
xz v+z G

+
zp

(
δD+p

)
G+

py

)

= g
(
G+ 0
xp + G+ 0

xz v+z G
+
zp

)
δv+p G

+
py

= g G+
xpδv+pG

+
py; (B.6)

2. δ Ox = g G+
xy

(
δv+y

) + g
(
δG+

xy

)
v+y

= g G+
xp δv+p

(
1 + g G+

py v+y

)

= g G+
xp δv+p Op; (B.7)

7 Due the light cone gauge we consider here only O(x+) operators. The
construction of the representation of the O(x−) operators can be done
similarly. We also note, that the integration is assumed for repeating
indexes in expressions below if it is not noted otherwise.

3. ∂+x δ Ox = g
(
∂+x G

+
xp

)
δv+p Op

= g
(

1 + g v+x G
+
xp

)
δv+p Op

= g OT
x δv+x Ox ; (B.8)

4. ∂+x Ox = g
(
∂+x G

+
xy

)
v+y

= g v+x

(
1 + g G+

xy v+y

)
= g v+x Ox ; (B.9)

5. OT
x

←−
∂ +x = g v+y

(
G+

yx
←−
∂ +x

)

= − g
(

1 + v+y G+
yx

)
v+x = −g OT

x v+x .

(B.10)

We see, that the operator O and OT have the properties of
ordered exponents. For example, choosing bare propagators
as

G+ 0
xy = θ(x+ − y+) δ3

xy, G+ 0
yx = θ(y+ − x+) δ3

xy, (B.11)

we immediately reproduce:

Ox = P eg
∫ x+
−∞ dx

′+ v+(x
′+), OT

x = P eg
∫ ∞
x+ dx

′+ v+(x
′+).

(B.12)

The form of the bare propagator G+ 0
xy = 1

2

[
θ(x+ − y+)

−θ(y+ − x+)
]

δ3
xy which correspond to the Eq. (A.10) inte-

gral operator will lead to the more complicated representa-
tions of O and OT operators, see in [2–7].

Now we consider a variation of the action’s full current:

δ tr [v+x Ox ∂2
i A+] = 1

g
δ tr [(∂+x Ox ) ∂2

i A+]

= 1

g
tr [(∂+xδ Ox ) ∂2

i A+]

= tr [OT
x δv+x Ox

(
∂2
i A+)

], (B.13)

which can be rewritten in the familiar form used in the paper:

δ
(
v+ J+) = δ tr [

(
v+x Ox ∂2

i A+ )
]

= − δva+ tr [ Ta O Tb O
T ]

(
∂2
i A

+
b

)
. (B.14)

We also note, that with the help of Eq. (B.1) representation
of the O operator the full action’s current can we written as
follows

tr [(v+x Ox − A+) ∂2
i A+ ]

= tr [
(
v+ − A+ + v+x G

+
xy v+y

) (
∂2
i A

+)
]. (B.15)
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Appendix C: NLO solution of equations of motion

In this Appendix we derive expressions for the next order
solution of the equations of motion. We write the longitudinal
field of interests as

va+ = Aa+ + g va+1(x⊥, x−, x+), (C.1)

and the transverse field in the next order approximation as:

vai = vai 0 + g vai 1(x⊥, x−, x+) + g ṽai 1(x⊥, x−, x+) (C.2)

with the following constraint

∂ i vai 1 = 0, (C.3)

where

vai 0 = ρb
i (x⊥, x−)Ua b(A+). (C.4)

1. Let’s consider again the equations of motion and will
begin from Eq. (12):

−
(
Di

(
∂−vi

))
a

− ∂2− va + = j+a (A+) (C.5)

which at requested order has the following form:

− g ∂ i∂− ṽai 1 −
(
∂ iUab

) (
∂−ρb

i

)

−g fabc
(
Ub b

′
ρib

′ ) (
Uc c

′ (
∂−ρc

′
i

))

−g ∂2− va+1 = 0. (C.6)

Denoting

g j+a 1 = g fabc
(
Ub b

′
ρib

′ ) (
Uc c

′ (
∂−ρc

′
i

))
, (C.7)

we obtain:

va+1 =−∂ i∂−1− ṽai 1 − 1

g

(
∂ iUab

) (
∂−1− ρb

i

)
−

(
∂−2− j+a 1

)
,

(C.8)

or

∂ i ṽai 1 = − ∂− va+1 − 1

g

(
∂ iUab

)
ρb
i −

(
∂−1− j+a 1

)
.

(C.9)

2. Now we consider equation of motion Eq. (17)

(D+[v+] (∂−v+))a +
(
Di (∂i v+)

)
a

−
(
Di [vi ] ( D+[v+] vi )

)
a

= −∂2
i Aa + (C.10)

which at NLO reads as

∂+ ∂− va+1 + ∂i∂
i va+1 − ∂+ ∂ i ṽai1

+ fabc U
b b

′
ρi
b′ ∂i A

c+ = 0. (C.11)

or

∂+ ∂− va+1 + ∂i∂
i va+1 − ∂+ ∂ i ṽai1

+ 1

g

(
∂+∂ iUab

)
ρb
i = 0. (C.12)

Inserting Eq. (C.9) into Eq. (C.11) one obtains

(
2 ∂+ ∂− + ∂i∂

i
)

va+1 = � va+1 = − 1

g

(
∂+∂ iUab

)
ρb
i

− fabc U
b b

′
ρi
b′ ∂i A

c+ −
(
∂+∂−1− j+a 1

)
, (C.13)

that gives

va+1 = − 2

g
�−1

( (
∂+∂ iUab

)
ρb
i

)
−�−1

(
∂+∂−1− j+a 1

)
.

(C.14)

Taking into account that the last term in Eq. (C.14) is of
order g2, finally for this field we have:

va+1 = − 2

g
�−1

( (
∂+∂ iUab

)
ρb
i

)
. (C.15)

In turn, inserting Eqs. (C.8) into (C.12), one obtains

2∂+
(
∂ j ṽaj 1

)
+ ∂ j∂

j
(
∂−1− ∂ i ṽai 1

)

+ 1

g
∂ j∂

j
((

∂ iUab
) (

∂−1− ρb
i

))

+
(
∂+∂− + ∂ j∂

j
) (

∂−2− j+a 1

)
= 0, (C.16)

which we rewrite as

�
(
∂ i ṽai 1

)

= − 1

g
∂ j∂

j
((

∂ iUab
)

ρb
i

)
−

(
∂+ j+a 1+∂ j∂

j∂−1− j+a 1

)
.

(C.17)

Therefore, with NLO precision, the answer is

ṽai 1 =−1

g
�−1 ∂i

((
∂ jUab

)
ρb
j

)
−�−1

(
∂i∂

−1− j+a 1

)
.

(C.18)
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3. For the last equation, Eq. (20),

2 (D+ (∂−vi ))a − (Di (∂−v+))a+
(
D jG ji

)
a

= 0,

(C.19)

at NLO we write

2 ∂+ ∂− vai 1+2∂+ ∂− ṽai 1+∂2
j vai 1+

(
∂2
j ṽai 1−∂i ∂

j ṽaj 1

)

+∂ j Fa
j i −∂i ∂− va+ 1 = 0, (C.20)

with ∂ j Fa
j i function as remaining NLO part of D j G j i

which depends on ρi and A+ fields only. Therefore

vai 1 = −�−1
(

∂ j Fa
j i

)
(C.21)

with the same Eq. (C.17) for the ṽai 1 function. The com-
plete NLO correction to vai function reads as

Va
i 1 = vai 1(x⊥, x−, x+)+ṽai 1(x⊥, x−, x+)

= −�−1
(

∂ j Fa
j i +

1

g
∂i

((
∂ jUab

)
ρbj

)
+∂i ∂

−1− j+a 1

)
.

(C.22)
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