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Abstract We consider a plasma consisting of electrons
and ions in the presence of a background neutrino gas and
develop the magnetohydrodynamic equations for the system.
We show that the electron neutrino interaction can induce
vorticity in the plasma even in the absence of any electro-
magnetic perturbations if the background neutrino density is
left-right asymmetric. This induced vorticity supports a new
kind of Alfvén wave whose velocity depends on both the
external magnetic field and on the neutrino asymmetry. The
normal mode analysis show that in the presence of neutrino
background the Alfvén waves can have different velocities.
We also discuss our results in the context of dense astrophys-
ical plasma such as magnetars and show that the difference
in the Alfvén velocities can be used to explain the observed
pulsar kick. We discuss also the relativistic generalisation
of the electron fluid in presence of an asymmetric neutrino
background.

1 Introduction

It is important to study the characteristics of the plasma in
the presence of neutrinos, since such systems are important in
understanding various physical phenomena during the evo-
lution of the early Universe as well as the systems like core-
collapsing supernovae and magnetars (see e.g. [1] for a brief
overview). The presence of the cosmic neutrino background
can influence cosmic microwave anisotropy and matter clus-
tering [2,3] and it can also influence dynamics of the pri-
mordial magnetic field [4-6]. There exist several studies in
the literature where the neutrino plasma interaction has been
analysed in a variety of physical situations. Non-linear cou-
pling of intense neutrino flux with collective plasma oscil-
lations is studied in Ref. [7]. The authors have shown that a
neutrino flux as intense as that in supernovae core can cause
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parametric instabilities in the surrounding plasma. The effect
of a neutrino medium in the evolution of the lepton plasma
had been studied invoking a ponderomotive description [8,9].
In these cases it was shown that the ponderomotive force is
proportional to the gradient of neutrino density and the elec-
trons are repelled from the regions where neutrino density is
large. Interaction of very large number of neutrinos with col-
lective plasma and oscillation and the excitation of the plasma
turbulence is considered in Ref. [10]. Different kinds of the
plasma—neutrino interactions using the ponderomotive force
description and the effect on collective plasma properties can
be found in Refs. [11-17]. In the above-mentioned pondero-
motive force description, it was assumed that the neutrino
field satisfies the naive Klein—Gordon equation with appro-
priate interaction terms. Thus in this formalism the infor-
mation about the chiral structure of the weak interaction is
absent. Here we note that, by Silva et al. in Refs. [18,19],
the problem of neutrino driven streaming instability, which
in turn can cause significant energy transfer from neutrino to
the plasma, was considered in the kinetic theory formalism.
A formulation to study the plasma interaction with intense
neutrino beam using the field theory techniques is developed
in [20]. The photon polarisation tensor in a medium consis-
tent with gauge and Lorentz invariance can be found in [21].
In this work it is shown that, in the presence of a medium, the
photon polarisation tensor can have an anti-symmetric part,
indicating P and C P violations. Further studies of such effect
in the presence of neutrinos for different physical scenarios
are found in [22,23].

In the context of the early Universe, it has been shown
by Shukla et al. [8] that the ponderomotive force of a non-
uniform intense neutrino beam can be responsible for a large-
scale quasi-stationary magnetic field. In fact, this was first
to suggest the magnetic field generation in the plasma due
to plasma—neutrino interactions. Further, large-scale mag-
netic field generation at the time of neutrino decoupling due
to the evolution of the plasma in the presence of an asym-
metric neutrino background is studied in [24,25]. This field
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can act as a seed for generation of the galactic magnetic
field via the galactic dynamo mechanism (see e.g [26] for
the galactic dynamo mechanism). It is to be noted that at
finite lepton/baryon density the loop corrections to the photon
polarisation tensor are non-vanishing. With these corrections
the photon polarisation tensor acquires a non-zero parity-odd
contribution IT; (k) where k is the wave vector. A finite and
non-zero value of I (k) in the photon polarisation tensor
means that there can be single field derivative terms in the
effective Lagrangian and free energy, which dominates the
kinetic energy part of the free energy which is having a double
derivative term. For e.g. the free energy for a static gauge field
can be written as F[A] = fd3pAi(k)H,-j (k)A;(—k) and
with parity violating interactions IT;; (k) can have a contri-
bution i Hz(pz)e,-jlkl. Thus a non-zero value of I, (0) means
aterm [15(0)A - V x A in the expression for the free energy.
This in turn means that there can be a generation of a large-
scale (k — 0) magnetic field by an instability arising due
to non-zero values of parity-odd contributions I (0) to the
polarisation tensor [24]. In Ref. [27], thermal field theory
calculations were carried out to study the corrections to the
photon polarisation in the presence of a background neu-
trino which is asymmetric in left-right number densities. The
authors have shown that the axial part I, is proportional to
the neutrino asymmetry parameter and argued that the con-
tribution to I, due to the plasma which is interacting with
the neutrino gas is ~10! times larger than the contribution
to IT, through the correction due to the virtual process. In
Ref. [28] using a kinetic theory approach it was shown that
the photon polarisation tensor can have a parity-odd contri-
bution IT, (k) due to the asymmetric neutrino background in
both the collision-less and the collision dominated regime.
In the collision dominated regime the result for 1, (k) using
the kinetic approach agrees with that in Ref. [27]. In a recent
work [29] the authors have calculated the effective poten-
tial or refractive index for the cosmic neutrino background
(CNB) and future experimental implications have been dis-
cussed.

Further, recent theoretical calculations showed that the
asymmetry in the neutrino density can be transmuted to the
fluid helicity for sufficiently large electron neutrino inter-
action [30]. This neutrino induced vorticity can act as axial
chemical potential for the chiral electrons. This phenomenon
can induce the helical plasma instability, generating a strong
magnetic field [30]. In this work the plasma particles are con-
sidered to be massless and chirally polarised. Moreover, it
was assumed, in this work, that the neutrino mean free path
[, is much smaller than the system dynamics at the length
scale L i.e. L > [,,. This allows one to write the equations
for the neutrino hydrodynamics [30]. Though this assump-
tion is justifiable for a core collapsing supernova, it is hard
to satisfy in other scenarios like the early Universe. Elec-
troweak plasma in a rotating matter is studied in [31]. In
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this work it is shown that the electric current can be induced
in the direction of the rotation axis due to the parity vio-
lating nature of the interaction. This phenomenon is called
the galvano-rotational effect (GRE). In a recent work [32],
a spin paramagnetic deformation of neutron star has been
studied and the authors have calculated the ellipticity of a
strongly magnetised neutron star using the spin magnetohy-
drodynamic equations developed in [33].

In the present work we are interested in developing a
magnetohydrodynamic description of the plasma in the pres-
ence of the left—right asymmetric neutrino background. The
expression of the interaction Lagrangian of a charged lepton
field and the asymmetric neutrinos suggests that the neu-
trino can couple with the spin of the electron [27,34]. It is
interesting to note here that there exists a lot of literature
in on the usual electron—ion plasmas where the dynamics
of spin degree can play a significant role. For example it
was suggested that a spin polarised plasma in a fusion reac-
tor can yield a higher nuclear reaction cross section [35]
and the spin depolarisation process in the plasma can remain
small [36]. The effect of spin dynamics using a single particle
description, valid for a dilute gas, is studied in the context of
laser plasma interaction in Ref. [37]. The collective effects
within the framework of spin-magnetohydrodynamics has
been studied in Refs. [33,38] (for a general discussion see
[39]). This work can have applications in studying envi-
ronments with a strong external magnetic field like pulsars
and magnetars. In the present work we generalise the spin-
magnetohydrodynamics considered in [33] to incorporate the
effect of the asymmetric neutrino background.

The report is organised in the following way. In Sect. 2 we
consider the low energy Lagrangian for our system and the
equations of motion and spin evolution equations are derived
invoking the non-relativistic approximations. MHD equa-
tions are considered in Sect.3. Velocity perturbations and
electromagnetic perturbations in a magnetised plasma inter-
acting with neutrino background are considered in Sect. 4. In
Sect.5 we apply our theory to a neutron star to calculate the
kick and Sect. 6 is for a summary and for our conclusions.
We provide a brief summary of a relativistic generalisation
of the theory in Appendix A.

2 The Lagrangian and non-relativistic approximation

The Lagrangian density for a lepton field interacting with
background neutrinos is given by

L=yYliy"d, ¥y — yu(f] PL+ fi Pr) —mly (1)

where m is the mass of the lepton, y* = (y°, y) are the Dirac

5 . . .
matricesand Py, g = HETV are the chiral projection operators

with 2 = iyOyly2y?. ' o = (ff g» f1.g) are the neu-
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trino currents and they are regarded as external macroscopic
quantities.

An explicit form of f f g can be calculated from the effec-
tive Lagrangian [27,34]

=y
Left = [—V2GF gjw“wa]

x[Yyu(al P + a% PRV, 2)

where the label o denotes a neutrino species « = e, i, T
and Gp = 1.17 x 10711 MeV~2 is the Fermi constant. The
coefficients af and af are given by

a¥ = 8.0 + sin’y — 1/2, a% = sin’6y, 3)

with Oy being the Weinberg angle. Next, we assume that vv
form an isotropic background gas. This in turn means that
in averaging over the neutrino ensemble, the only non-zero
quantity will be (i, (1 — y>)v) = 2(n,, — ny,). The num-
ber densities of neutrinos and anti-neutrinos can be calculated
using the corresponding Fermi—Dirac distribution function,

d3p 1

2m)3 ePre (PIFIv) 4 17 “)

Nyg, vy =

where g is the inverse temperature. Using Eqs. (1-4) one
obtains

[P = 2V2GE[Any, + (sin*0w — 1/2) Y Any)]. (5)

IR = 23/2Ggsin’6y Z An,,. (6)

Thus the equation of motion obtained from Eq. (1) can be
written as

i = [@- Py + pm — (fLPL + fRPR)IV. (7

¢

Writing ¥ = (X ) in Eq. (7) and following the standard

procedure [40], the Hamiltonian for the large component of
the spinor can be obtained:

B AfO f°
H——(o p)(o - p)+—(<r p)+ &= 3 +O(fEp)

where 0 = fL + fR and Af0 = fL flg. In the above
equation, we have neglected terms proportional to GI%. In the
presence of an external electromagnetic field, the momentum
p has to be replaced by p — eA. Thus the Hamiltonian for a
charged fermion in interacting with an external electromag-
netic field and background neutrino is given by

- 2 0 0
=LA pren A —eA)+f— ®)
2m 2m

where p = %o is the electron magnetic moment and g is

the Lande g-factor. The first three terms on the right hand side
are well known and very well studied in the literature. The
fourth and fifth terms are due to the neutrino background.
The last term might contribute to the energy of the system,
but it will not enter into the equations of motion as the neu-
trino background is considered to be constant. If the neutrino
background varies with space and time, this term would mod-
ify the force equation as F o V f = Vi y,. This force is
called the ponderomotive force. Such a scenario was studied
in Ref. [9]; however, in the formalism in this reference the
fourth term was not considered.

In order to find the equation of motion for a charged
particle in an electromagnetic field and the neutrino back-
ground, one can use Eq. (8) and the Heisenberg equation

0= i[’lfl, (3] and write
AfO

p—e
i 9
A "o C ©)

V=

where we wrote X = v. We have

p=S(p—eAnVAar+ V(s B)—evA® (10)
m m

where we have defined s = /2 and

§ = up(s x B) — Af%(s x v). (11)

From Egs. (9-11) we get

. e eAfO
F=[E+vx B+ (sx B)+—V( B) (12)
m 2m

3 The hydrodynamic equations

In this section we follow the methods developed in Ref.
[33] to derive the hydrodynamic equations from the quan-
tum Lagrangian for spin half particles. We consider a system
of electrons and ions in the presence of a homogeneous neu-
trino background. The neutrino background is assumed to
have a left-right asymmetry. Furthermore we treat electrons
as quantum particles and ions as classical particles so that we
can neglect the spin dynamics and other quantum effects for
ions.

For simplicity, first let us consider Eq. (8) without the
neutrino interaction term. We can decompose the wave func-
tion as Y, = Nge'Se Xa» Where ng, is the density, Sy is the
phase and x, is a two component spinor in which the spin-
1/2 information is contained. Inserting this decomposition
and considering the real and imaginary parts of the resulting
equation we get the continuity and momentum conservation

@ Springer
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equation for the “species o”:

3
T LV (gvy) =0, (13)
ot
3
My <E+UQ~V)va=qa(E+va X B)

+2M(V®B)'sa_an_

V.- (ngXq). (14)

Mgy

The velocity is defined viamq vy = j, /¢ T4, from which
we obtain

MoV = (VS — i xiVxa) — quA (15)
and

[
Sa = 5 Xa0 Xa (16)

The quantity Q,, is known as the quantum potential (Bohm
potential) defined as

1

I v 22
TR (17)

Q(x =
and X, is the symmetric spin gradient tensor.
Yo = VS(a)a X VS?O[) (18)

where a = 1, 2, 3. By contracting the Pauli equation with
¥ 7o, one can obtain the spin evolution equation as

3 3 (119
vy Vyse=2u(s, x By S 10aedsl )
ot MuNy

In the presence of a neutrino background, the continuity
equation remains unchanged. But momentum conservation
and the spin evolution equations are modified in the following
way:

d
ma(a + vy - VIVy = qo(E + vy X B)

+ 2M(V®B)'sa_an_

V- (ngXq)
Moy

AfO
+ —su X B, (20)
2m

9 AfO
5+UQ-V sa=2u(saxB)—Tsaxva

+sot X [04(ng0s¢)] .

Mgy

21
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Now, in order to define hydrodynamic quantities, we need
to specify how to calculate the expectation values. Suppose
that we have N wave functions with the same kind of parti-
cles with magnetic moment u charge ¢ and mass m, so that
the wave function for the entire system can be factorised as
Y = Y1)¥(2) - - ¥vy. Then we can define the total parti-
cle density for charge g as n, = ), nq and the expectation
value of any quantity f as (f) = >, =« f.

Using these arguments we define the total fluid velocity
V, = (vg) and §; = (sq). In order to simplify further
calculations, we redefine these quantities such that wy, =
vy — Vg4 and S = sq — S, satisfying (wy) = 0 and
(S8y) = 0. Now taking the ensemble average of the Egs.
(13), (20) and (21) we get the following expressions:
on

8_;1 +V.-(ngVy) = 0, (22)

0
Mmgng (E +V,- V) \2
=qng(E+VyxB)—V-II —=VP+Cyi+Fq+ F,.,

(23)
and
0
nq E + Vq -V Sq
AfO
=2ungSy x B — qu xV,+8Q —V-K;+K,,,
(24)

where II is the traceless anisotropic part of the pressure tensor
and P is the homogeneous part. C,; represents the collision
between particle with charge g and ion denoted using the
letter i and the quantum force density F g and the force due to
the interaction with the neutrino back ground F,, are defined
by

1
Fq =2u5ng(V ® B) - Sy = 1(V Q) = —V - (1, %)

1 ~ 1
——V-(n,2) — =V -[(VS,) ® (VSY)
m m

+ 14 (V84 ® (VS4)] (25)
and

AfO
F,, = neegsq x B. (26)

The quantities 2, ¥ and > depend on the spin of the parti-
cles and their precise definitions can be found in Ref. [33].
K, = (Sq¢ ® wy) is the spin-thermal coupling and K, =
e,-jkA-TfO(Saj Wyi) is the spin-thermal coupling induced by
neutrino interactions.
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In the following sections, we will replace the subscript g
with e and i for electrons and ions, respectively. Since we
are considering ions as classical particles, we can neglect the
contributions from spin and other quantum effects for ions.
Thus, the fluid equations for ions read

Bn,-
W-I-V-(niVi) =0, (27)
d
min; (— +V;- V) Vi
ot
=gqini(E+V;xB)—V - -II; = VP +Cy. (28)

Note that there is no spin evolution equation for ions. There-
fore whatever the spin contributions, the dynamics of the
system is only due to the spin of the electrons. Now we can
construct the single fluid equations from the above equations
for electrons and ions. In order to do that we define the total
mass density, p = (men.+m;n;), the centre of mass velocity
of the fluid pV = (men,V,+ m;n;V;) and the current den-
sity j = (—en.V .+ Zen;V;) and assuming quasi-neutrality
ne = Zn;, one can immediately obtain the continuity equa-
tion,

ap

2 +V-(pV)=0 (29)

and the momentum conservation equation

a
p<E+V~V>V=jxB—V-H—VP—i—FQ—i-FW.
(30)

Note that, with the assumption of quasi-neutralit,y we can
write n, = p/(me, +mi)and V, =V —m; j/Zep. There-
fore we can express the quantum terms in terms of the total
density and the centre of mass velocity of the fluid and cur-
rent. Thus the spin evolution equation becomes

9
Ziv.v)s
p(ar+ >
— i VS +2upS x B — (m +mi/Z)V - K,
Zep
+ (me +m; [ Z)s

eAfOp mij\ eAf°
- - 5 - e e ; 1
. S x (V Zep . (we x S.); (31

in general, for a magnetised medium with magnetisation den-
sity M we can write the free current density j = VJOB —Jme
where j,; = V x M is the magnetisation current density.
Note that here we have discarded the displacement current
term 2E.

In order to simplify the further calculation, we consider

only the transverse waves, in which case the Bohm potential

i.e. (Qy) term in Eq. (25) can be dropped [39]. Furthermore,
all the other terms in Eq. (25) are second order in the spin
variable and of order /2. We neglect these terms. However,
the F',, term in Eq. (23) and the spin dynamic equation (24)
are of order /i. These terms are retained in the calculation. In
such a situation we can write the total force density exerted
on the fluid element as

. . { B2 . . o
F' = -9 (%—B-M)—l—B-VH’—B’P—BJH”. (32)

For an isotropic plasma, the trace-free part of the pressure
tensor IT¥ is zero. It is worth noting that the spatial part of
the stress tensor takes the form 7% = —H'BJ + (B%/2 —
B - M) [41], apart from the pressure terms. Thus the total
force density on a magnetised fluid element can be written
as F' = —3/T". Therefore the momentum conservation
equation takes the form

B
—+V.-V)V
p<ar+ >
B2
- _ <__B.M>+(B~V)H—VP—V-H.

2
(33)

Following the procedure in Ref. [42] we can write

. om; om; ., om;
j~—VP+o(E+VXB)+—jxB+—Fq
pe pe pe

i (Af°
—noﬂ< f )SxB. (34)
P 2m,

Taking p ~ nom; the expression for the total current can
be written as

. AfO
j~c(E+V xB)—o >

Ne

For the above expression for the hydrodynamic current,
the time evolution for the magnetic field B is given by

oB
Jt

AfO
:—;7V><(VxB)—l—Vx(VxB)—(2 )V

Me
X (SxB)+nV xjyu (36)
where n = 1 /0 is the resistivity.
4 Neutrino induced vorticity, Alfvén wave and normal
modes
In this section, we consider a very simple scenario. A back-

ground magnetic field Bg = Boz is applied to the plasma.
As a result, there is a non-zero constant magnetisation in

@ Springer
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the system even in the absence of any perturbations, which
also implies that § x B = 0 for the plasma at equilibrium.
In this case the spin of the electrons align anti-parallel to
the magnetic field to reduce the energy and therefore we can

assume the equilibrium magnetisation density M to take the
#BBo

form Mo = —upn.So = upne E( )z, where £(x) =

tanh(x) is the Brillouin function. For the following discus-
pwBBo) . (mBBo
sions we make the approximation & ( ) ( T ) SO
1 uBBo Bo

that Sy ~ =5 z. Furthermore we assume that there are
no electromagnetlc perturbatlons in the system and the fluid
velocity enters into the governing equations as perturbation.
Thatis, E =0, B = Bpz, V =3V and S = Sp + §S. With
these assumptions, up to linear order in the perturbations, we
use the hydrodynamic equations in the following form:

3558 AfO
5 o uss x Bo— (2 50 % sV, (37)
ot 2m,
a8V
= —m;neAf V(By- 3V)+“BT KBt \ $0(Bo-V)SV .

(38)
From Eq. (37) we get "'SS BO = 0. In order to satisfy these
conditions, we choose § S By = 0. We also take the space-
time dependence of the perturbations to be of the following
form:

SV(t, x) :(va’ke—i(wt—k-x) , (SS(I, x) zaswﬁke—i(wt—kor).

(39)
With these assumptions we get
fO
SSw,k=—<29 )|S0|8Vwk (40)

where Q, = emﬂ. To obtain the above expression we have
.

assumed that g—i &« 1. Thus, from Egs. (38) and (40), we get

—iw8V ok = (“B HBTe A f0 ) wk X Bo (41)

where 2, = ik x §V,  is the vorticity in the Fourier
space. Note that, in the above expressions, we have kept only
terms up to linear order in A f°. From the above expression
we can see that the vorticity term will not contribute to the
fluid dynamics if AfY = 0. Therefore we conclude that € is
induced via the electron neutrino interaction. From Eq. (41)
we can obtain the dispersion relations. For the case k|| By,

0
e (M) <£> I (42)
£0 T

@ Springer

The group velocity of this new mode is given by

_ |dw| _|( mBneBo AfO
vg_‘dk_< 00 )(T>‘ @9
~2V2 <—“B”"BO) <@> oo — Mol - (44)
0 T

Equation (42) corresponds to a new type of transverse mode
propagating in the direction parallel to the background mag-
netic field, induced by the asymmetry in the neutrino back-
ground. The wave velocity not just depends on the strength
of magnetic field but also on the neutrino asymmetry. This
new mode is similar to the one found in the very high energy
plasma with the chiral-anomaly [30]. In contrast to Ref. [30],
in our work the electrons are not considered to be chirally
polarised. However, the parity violating interaction in our
work arises due to a neutrino—electron interaction. Further-
more, the effect of dissipation can easily be introduced by
incorporating the contribution of the finite shear viscosity
—ik? 1vis and the resistivity —io Bg into the dispersion rela-
tion (42), where 1, is the kinematic viscosity and o1 = o/ pg
with o being the resistivity.

Next, we consider the effect of electromagnetic pertur-
bations. That is, we take the perturbations in the following
form:

V =8V, B=By:+B, E=35E. (45)

For this case, the linearised hydrodynamic equations, Egs.
(29) and (33), take the form

ap
asVv
po== = =V (Bo-6B — Mo - 5B — SM - By)

+By-VSH — VP. 47)

The spin evolution equation becomes

BN AfO

— )| =2upS x B— ——S8 x 3§V 48
< o1 ) UBS X > (48)
where § = So + 8S. For a perfectly conducting medium

(n — 0), Eq. (36) becomes

98B Af
(5

7=VX(SV><BO)— )VX(BSXBO—I-SOX(SB).

e

(49)

Following the same procedure in the last section with the
same assumptions, we get the expression for S,

AfO

88wk = 3Bw K — —va k (50)



Eur. Phys. J. C (2017) 77:539

Page 7 of 10 539

where wi is the plasma frequency. Using Eqs. (46), (47)

and (50) and using the approximation My = —upn.So =
BN (“BTf") Z we get
2
. . wp
—iwpodV i =i [ ] By x (k x 8By )
meT
. [%Af"] Bo x Q. (51)

where R ,, = ik x 8V is the vorticity in the Fourier space.
We can see that the last term in Eq. (51 ) is proportional to
the neutrino asymmetry of the background expression for the
velocity in the Fourier space; thus,

2
k.o pow? | m,T o poT

X ((Bo -8V i)k — (Bo-k)8V k) . (52)

Note that we have neglected the contributions from the pres-
sure terms in the above expression. Taking k in the direction
of background magnetic field and assuming Bg -6V = 0, we
get the following dispersion relation:

VA BN

=— AfO% £ Dak 53

w s 2T f vA (53)
) = /2 - :

where « = (1 — m) and V4 = vaa is the spin-

modified Alfvén velocity [33]. Here we note that the quantity
a describes the spin corrections and in the absence of spin
dynamics o = 1. It is clear from Eq. (53) that the group
velocity vg can have the two values given by

1
Ui = l~}A 1+ —'uBne
Jpoa 2T

which is impossible in the absence of any neutrino asym-
metry (Af% = 0). Thus we can have two different group
velocities for the Alfvén waves propagating parallel or anti-
parallel to By.

For finite values of the conductivity, we have to take into
account of the first and last terms of Eq. (36) and the disper-
sion relation can be obtained from

Af°|, (54)

MBneAfO -

—
T ./poo

Solving for w we get

0+ [iankz + Ak} — 93k% = 0. (55)

I UBNUA 0
= —= K+ A%
0] 5 |:lOH] + T Jooa f
1 . MBneﬁA 2 ~
+- k2 + 2 A S0k 452 k2. 56
2\/[10“7 +Tx//)0_0‘f :|+UA (56)

We can see that in the absence of any neutrino asymmetry
and 1, Eq. (56) reduces to w? = ﬁ%kz, which is the same as
in magnetohydrodynamics with spin corrections as obtained
in [33].

5 Neutrino asymmetry and the pulsar kick

We use our formalism for a qualitative calculation of the
observed pulsar kick [43-45]. There have been several
attempts to explain the reason for the kick, see e.g. Refs.
[46—49]. Recently there have been attempts to explain the
pulsar kick using anomalous hydrodynamic theories (see e.g.
Ref. [50]), but the exact reason for the pulsar kick is not yet
resolved.

We note that the energy flux associated with the wave
is equal to the energy density in the wave times the group
velocity [51], which is the Poynting vector P = E x B in
our case [51,52]. The Poynting vector can be expressed in
the form

P = (wAd)k (57)

where A is the magnitude of the vector potential A, . Using
Eq. (53) we write

~ 1 upne
P| = k*A? 1+ N 58
|P| UA( Jpoa 2T f) (58)

= (k*A?)v,. (59)

From Eq. (59) we infer that the energy density associated
with the wave is k2AZ2. Further we note from Eq. (58) that
the energy transported in the direction of the background field
By and the energy going opposite to B are different due to
the parity violation within the system. An excess amount of
energy is transported in the direction of the magnetic field.
This excess amount of energy transported per unit area per
unit time is given by

0
AP = (K2A%,) (% “‘;Z;) (60)

This is essentially the momentum carried by the excess
photons leaving the pulsar per unit area per unit time. There-
fore the change in velocity experienced by the pulsar can be
expressed as

AP
AVNs = M_Ns X At x (area) (61)

where Mys ~ 103 kg is the mass of the neutron star and
At is the time span we assume for the kick to last, which

@ Springer
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is approximately 10 s. The radius of the neutron star Rng is
approximately 10 km. Taking k ~ A ~ T, An,, ~ 1.6 x
108 MeV)3, T ~ 102 K and By ~ (10'°—10'%) Gauss
[53], we get AVns ~ (102—10%) km/s, which is within the
order of magnitude of the observed pulsar kicks.

6 Discussion and conclusion

In conclusion we have developed spin magnetohydrody-
namic equations in the presence of asymmetric background
neutrinos and analysed the normal modes of the plasma in
the presence of a constant magnetic field. We have shown
that a new kind of wave (Alfvén) is generated as described
by Eq. (42) and speed of this wave depends on the neutrino
asymmetry. Such a wave can be generated in a dense astro-
physical plasma such as a magnetar. For example for Bés
Gauss, T ~ 10MeV and An,, ~ 1.6 x 10® (MeV)>, one
can estimate the velocity of the wave (in units of speed of
light) around 10~>. We have shown that the background neu-
trino asymmetry can modify the wave velocity in directions
parallel and anti-parallel to the external magnetic field (as
shown in Eq. (54)). We have used our formalism to cal-
culate the kick received by a pulsar during its birth. An
order of magnitude calculation matches with the observa-
tions AVns ~ (10>—10%) km/s. In the appendix we have
derived the relativistic hydrodynamical equation for the elec-
trons using the Dirac equation. For the case when the elec-
trons are relativistic the estimate given here for the Alfvén
velocity can be suppressed by a factor 1/+/2.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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Appendix A

In many astrophysical situations it is necessary to consider
the system temperature to be greater than its rest-mass and
therefore we discuss a relativistic generalisation of the elec-
tron fluid. For such a generalisation in the context of a quan-
tum plasma one needs to start with the Dirac equation. Work
by Pauli [54], Harish Chandra [55] and Takabayasi [56] has
shown that the Dirac equation can be cast into hydrodynam-
ical form. Here we use the methodology similar to that given
in [56] (see also [57]) to describe the fluid equations for
relativistic electrons in the presence of the asymmetric neu-
trino background. In the standard MHD approximation the

@ Springer

electron contributes in defining the current whereas the ion
provides the inertia and therefore significantly contributes to
the fluid velocity [33,42]. In this appendix we first derive
electron fluid equations from the Dirac equation and then
carry out the MHD approximations with the non-relativistic
ion fluid and obtain an expression for the relativistic cor-
rections to the MHD current; and finally we discuss the
changes this bring about our (non-relativistic) results on the
Alfvén waves. The subsequent derivation is rather lengthy
and involved; we would like to refer the reader to Ref. [56]
for further details.

Following [56] we start with the bilinear covariants with
hydrodynamic variables and establish the relations among
them using the properties of the gamma matrices. Also we
establish their evolution equations from the moments of
the corresponding Dirac equation. We choose the following
bilinear covariants:

Q=vyy (A1)
Q=ivySy (A2)
St =gyt (A3)
SE =9y yty, (A4)
M™ = o™y, (AS)
M"Y =iyydctiy, (A6)

where o#*¥ = (i/2)[y*, y"]. One can obtain the equations
of motion for v and v from Eq. (1) and using these equations
of motion one can write the following two generic equations
involving the dynamics of the above bilinear forms:

iy ",y + 3,0y y )

_ A _
—eA ¥y, v Iy — %ww, Yy Y =0, (A7)
iy Ay o,y — 3.0y v ) — eA Uiy vy iy
Af, - _
—~ %vf{y*‘, Yy W = 2myy iy = 0. (A8)

Using the definition for the covariant differential operator
LIy AY) = i@y 8, — 90y ) — 2e Ay Y we
define

Ju = (1/2m)8%Q, (A9)
Ju = 1/2m)8"Q, (A10)
T) = (1/2m)5S", (A11)
T) = (1/2m)8" 5", (A12)
NE = (1/2m)8%E MM, (A13)
NI = (1/2m)8EM™ . (Al4)
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The quantities M*” and M*” can be expressed as p? M’ =
—Q(SH8Y — SVSH) 4+ Qetver S S, and MM = (1/2)elVrr
My, where p = v/ Q2 + Q2 has the interpretation of a den-
sity. From Egs. (A8) and (A8) we obtain the evolution equa-
tion of the above defined quantities. We have

38" =0, (A15)
38" = —2mQ (A16)
. Afy =y
(1/2m)d, M™ + j* — S* + 2—M“ =0, (A17)
m
- - Afy
(1/2m)d, M* + j* — 2—M“ =0. (A18)
m

Next, one defines [57] the four-velocity v, = S, /p and four-
spinw,, = S’M /p in such a way that they satisfy the following
constraints: v*v, = 1, w*w, = —1 and v*W, = 0. From
the last constraint, it is clear that wg = v - w/ u° and thus in
the rest-frame the zeroth component of the four-spin wy = 0.
By taking the divergence of 7% one obtains the following
equation:

_ e -
TH = —w, F* — jI + §f,[—psind (v*w" — v’ wH)
m

+ pcosh €My ew; ], (A19)
where we have used M*’ = [—psinf (vFw' — v’wh) +
pcosh €V y, w; ] following [56]; and J_s’f has the same stan-
dard expression as given in Refs. [56,57]. Besides we have
used the new definitions cosd = Q/p and sinf = Q/p. Here
we note that the f# term for the neutrino current does not
appear in the above equation. Equation (A19) is at the sin-
gle body particle—antiparticle state level and one is required
to take the fluid average for a collection of N such states.
This N particle spinor must be written as a 4" x 4V Slater
determinant of N one-particle states; this procedure had been
developed in Ref. [57] and we follow it for our calculation.
We find the following equation, in thermal equilibrium, for
the spatial part of the spin dynamics:

e/m

Y@ +v-V)S= ——WE/24+S xB) —yAf'S x v
(cosf)
inf
T yapd (A20)
(cosf)
_ 1 0 _ Q.
where y = N and W* = S - v. Here we note that as

we have assumedv before we have dropped the spin-thermal
coupling and the non-linear spin terms. The last two terms
on the right hand side give an additional contribution to the
spin dynamics of the electron fluid dynamics given in Ref.
[57]. This additional term solely depends on the neutrino
background, as it should. Following the electron relativistic
hydrodynamical model in Ref. [57], we regard 6 as a constant
parameter which is zero for the non-relativistic quantum case;

and for an extreme relativistic quantum case 0 = /4. For the
non-relativistic spin dynamics (Eq. (24)) earlier results can
be reproduced when we take 6 = 0. When the electrons are
at a relativistic temperature one can replace mn by (¢ + p),
i.e. by the enthalpy density [58].

Now one can define the total mass density p = (€ + p) +
m;in; where (€ 4+ p) represents the enthalpy density of the
electrons. Since in the magnetohydrodynamic equations the
inertia of the fluid is dominated by ions, the momentum of the
fluid is dominated by the ion momenta [42] (see also [33]).
This remains true for the relativistic electron case also pro-
vided p ~ m;n; and Eq. (33) remains valid for us. Next we
derive the analog of Eq. (42) when the electrons are relativis-
tic. For this purpose, consider an external magnetic field By
in the z-direction, there being no streaming of fluid vo = 0.
Also there is no electromagnetic perturbations i.e. E, §B=0.
The background spin vector is anti-parallel to the external
magnetic field and given by So = —up Bo/2T as considered
before. Next one can eliminate the electron velocity in the
spin equation v, = v —m;j/(Zep). Since there is no electro-
magnetic perturbation for this case j = 0 and one can use Egs.
(33) and (A20) one obtains the following dispersion relation:

(A21)

where vy = %. Here we note that the last term in Eq. (A20)

does not contribute significantly to the dispersion relation.

Similarly for the electromagnetic perturbation for the stan-
dard Alfvén waves one obtains the following dispersion rela-
tion:

VA EBRe A £0(cosh)k + kg

B Jpoa 2T

Here we note that both the new Alfvén waves (Eq. (A21))
and the regular Alfvén waves (Eq. (A22)), in the ideal MHD
limit, gets a correction due to the relativistic effect which is
characterised by the (cosf) factors. Now for the ultrarela-
tivistic limit if one takes 8 = m /4 following Ref. [57], one
gets a 1/+/2 factor suppression in the speed of the new Alfvén
wave compared to the non-relativistic case (with & = 0) case.

w =

(A22)
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