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Abstract As we know that the Lovelock theory is an exten-
sion of the general relativity to the higher-dimensions, in
this theory the first- and the second-order terms correspond
to general relativity and the Einstein–Gauss–Bonnet gravity,
respectively. We obtain a 5D black hole solution in Einstein–
Gauss–Bonnet gravity surrounded by the quintessence mat-
ter, and we also analyze their thermodynamical properties.
Owing to the quintessence corrected black hole, the thermo-
dynamic quantities have also been corrected except for the
black hole entropy, and a phase transition is achievable. The
phase transition for the thermodynamic stability is charac-
terized by a discontinuity in the specific heat at r = rC , with
the stable (unstable) branch for r < (>)rC .

1 Introduction

The gravity theory with higher-curvature term, the so-called
Lovelock gravity, is one of the natural generalizations of Ein-
stein’s general relativity, introduced originally by Lanczos
[1], and rediscovered by Lovelock [2]. The action of it con-
tains higher-order curvature terms and that reduces to the
Einstein–Hilbert action in four-dimensions, and its second-
order term is the Gauss–Bonnet invariant. The Lovelock theo-
ries have some special characteristics, among the larger class
of general higher-curvature theories, in having field equations
involving not more than second derivatives of the metric. As
higher-dimensional members of Einstein’s general relativ-
ity family, the Lovelock theories allow us to explore sev-
eral conceptual issues of gravity in a broader setup. Hence,
these theories have received significant attention, especially
when finding black hole solutions. Besides, the theory is well
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known to be free of ghosts about other exact backgrounds
[3–5]. The theory represents a very interesting scenario to
study how higher-order curvature corrections to the black
hole physics substantially change the qualitative features, as
we know from our experience with black holes in general rel-
ativity. Since its inception, steadily attention has been given
to black hole solutions, including their formation, stability,
and thermodynamics. The spherically symmetric static black
hole solution for the Einstein–Gauss–Bonnet theory was first
obtained by Boulware and Deser [3–5], and later several
authors explored exact black hole solutions and their ther-
modynamical properties [6–23]. The generalization of the
Boulware-Desser solution has been obtained with a source as
a cloud of strings, in Einstein–Gauss–Bonnet gravity [24,25],
and also in Lovelock gravity [26–28].

The intense activity of studying black hole solutions in
Einstein–Gauss–Bonnet theory of gravity is due to the fact
that we have, besides theoretical results, cosmological evi-
dence, e.g., dark matter and dark energy. Quintessence is a
hypothetical form of dark energy postulated as an explanation
of the observation for an acceleration of the Universe, rather
than due to a true cosmological constant. If quintessence
exists all over in the Universe, it can also be around a black
hole. In this letter, we are interested in a solution to the Ein-
stein equations with the assumption of spherical symmetry,
with the quintessence matter obtained by Kiselev [29], and
it was also rigorously analyzed by himself and others [29–
34]. In particular, spherically symmetric quintessence black
hole solutions [29] have been extended to higher dimensions
[35], to include Narai solutions [36,37], and also charged
black holes [38]. The black hole thermodynamics for the
quintessence corrected solutions was obtained in [39–43]
and quasinormal modes of such solutions are also discussed
[44–47]. The generalization of the spherical quintessential
solution [29] to the axially symmetric case, Kerr-like black
hole, was also addressed, recently [48,49]. However, the
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solution of the Einstein–Gauss–Bonnet theory surrounded
by quintessence matter is still not explored, i.e., the black
holes surrounded by the quintessence matter in Einstein–
Gauss–Bonnet theory is still unknown. It is the purpose of this
letter to obtain an exact new five-dimensional (5D) spheri-
cally symmetric black holes solution for the Einstein–Gauss–
Bonnet gravity surrounded by quintessence matter. In par-
ticular, we explicitly show how the effect of a background
quintessence matter can alter black hole solutions and their
thermodynamics. In turn, we analyze their thermodynamical
properties and perform a thermodynamic stability analysis.

The letter is organized as follows. In Sect. 2, we derive
a Einstein–Gauss–Bonnet solution to the 5D spherically
symmetric static Einstein equations surrounded by the
quintessence matter. In Sect. 3, we discuss the thermodynam-
ics of the 5D Einstein–Gauss–Bonnet black holes surrounded
by the quintessence matter. The letter ends with concluding
remarks in Sect. 4.

We use units which fix the speed of light and the gravita-
tional constant via G = c = 1, and use the metric signature
(−,+,+,+,+).

2 Quintessence matter surrounding black hole

Lovelock theory is an extension of the general relativity to
higher-dimensions. In this theory the first- and second-order
terms correspond to general relativity and Einstein–Gauss–
Bonnet gravity, respectively. The action for 5D Einstein–
Gauss–Bonnet gravity with a matter field reads

IG = 1

2

∫
M

d5x
√−g [L1 + αLGB] + IS, (1)

with κ5 = 1. IS denotes the action associated with matter
and α is coupling constant that we assume to be non-negative.
The Einstein term is L1 = R, and the second-order Gauss–
Bonnet term LGB is

LGB = Rμνγ δR
μνγ δ − 4RμνR

μν + R2. (2)

Here, Rμν , Rμνγ δ , and R are the Ricci tensor, Riemann ten-
sor, and Ricci scalar, respectively. The variation of the action
with respect to the metric gμν gives the Einstein–Gauss–
Bonnet equations

GE
μν + αGGB

μν = T S
μν, (3)

where GE
μν is the Einstein tensor, while GGB

μν is given explic-
itly by [50]

GGB
μν = 2

[
− Rμσκτ R

κτσ
ν − 2Rμρνσ R

ρσ

− 2Rμσ R
σ
ν + RRμν

]
− 1

2
LGBgμν, (4)

and T S
μν is the energy-momentum tensor of the matter that

we consider as a quintessence matter. We note that the diver-
gence of the Einstein–Gauss–Bonnet tensor GGB

μν vanishes.
Here, we want to obtain 5D static spherically symmetric solu-
tions of Eq. (3) surrounded by the quintessence matter and
investigate its properties. We assume that the metric has the
form [18,19,28]

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2γ̃i j dxi dx j , (5)

where γ̃i j is the metric of a 3D constant curvature space
k = −1, 0, or 1. In this letter, we shall restrict ourselves to
k = 1. Using this metric ansatz, the Einstein–Gauss–Bonnet
equation (3) reduces to

T t
t = T r

r = 3

2r2 [r f ′ + 3( f − 1)] − 6α

r3 [( f − 1) f ′],

T θ
θ = T φ

φ = Tψ
ψ = 1

2r2

[
r2 f ′′ + 4r f ′ + 2( f − 1)

]

− α

r2

[
2( f − 1) f ′′ + 2 f ′2] . (6)

The energy-momentum tensor of the quintessence matter
(see Ref. [29] for further details) gets modified to

T t
t = ρ(r),

T b
a = ρ(r)β

[
−(1 + 4B(r))

rarb

rnrn
+ B(r)δba

]
, (7)

where B(r) is a quintessential parameter; we have

〈T b
a 〉 = ρ(r)

β

4
δba = −p(r)δba (8)

and〈
rar

b = 1

4
rnr

n
〉
.

Thus, we have the equation of state of the form

p = ωρ, ω = 1

4
β, (9)

where for the quintessential matter −1 < ω < 0, which
implies −4 < β < 0 within this set up, the parameter B of
the energy-momentum tensor reads [35]

B = −4ω + 1

ω
. (10)

Hence, the energy-momentum tensor for a quintessence mat-
ter takes the form

T t
t = T r

r = ρ,

T θ
θ = T φ

φ = Tψ
ψ = −1

3
ρ(4ω + 1), (11)
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where ρ is the proper density of the quintessence matter.
The range of the parameters ω and β gets modified in 5
dimensions.

The Gauss–Bonnet term is the only possibility for the lead-
ing correction to Einstein general relativity. The static spher-
ically symmetric black hole solution of Einstein action, mod-
ified by the Einstein–Gauss–Bonnet term, was first obtained
by Boulware and Deser [3–5] and demonstrated that the
only spherically symmetric solution to the Einstein–Gauss–
Bonnet theory is a Schwarzschild type solution. Later, Wilt-
shire [51] included the Maxwell field into the Einstein–
Gauss–Bonnet action and found the charged black hole in
this theory, which was a generalization of the Reissner–
Nordström black hole. In general, it is difficult to find a solu-
tion of Einstein–Gauss–Bonnet field equations (3) with an
equation of state. Here, we shall find a black hole solution
surrounded by the quintessence matter with the equation of
state (9). Making use of Eqs. (6) and (11), we deduce the
master equation for the Einstein–Gauss–Bonnet gravity as

[r2 f ′′(r) + (5 + 4ω)r f ′(r) + 2(2 + 4ω)( f (r) − 1)]r
−α[4r f ′′(r)( f (r) − 1)

+ 4[r f ′(r) + (1 + 4ω)( f (r) − 1) f ′(r)]] = 0. (12)

In general, Eq. (12) has one real and two complex solu-
tions. It may have three real solutions as well under some
conditions. Here, we consider only the real solution. Interest-
ingly, Eq. (12), for the Einstein–Gauss–Bonnet case, admits
a general solution

f±(r) = 1 + r2

4α

(
1 ±

√
1 + 8αM

r4 + 8αq

r4ω+4

)
, (13)

by appropriately relating M and q with integrating constants
c1 and c2 [25]. Equation (13) is an exact solution of the field
equation (12) for an equation of state (9), which in the case
of there being no quintessence, ω = 0; it reduces to the Boul-
ware and Deser [3–5] Gauss–Bonnet black hole solution, and
for ω = 1/2 and q = −4Q2/3 to a solution mathematically
similar to the charged Gauss–Bonnet black hole due to Wilt-
shire [51]. When ω = −1, q = �/3, Eq. (13) corresponds
to a Gauss–Bonnet de Sitter solution. In the limit α → 0,
the negative branch of the solution (13) reduces to the gen-
eral relativity solution. To study the general structure of the
solution (13), we take the limit r → ∞ or M = q = 0 in the
solution (13) to obtain

lim
r→∞ f+(r) = 1 + r2

2α
, lim

r→∞ f−(r) = 1; (14)

this means the plus (+) branch of the solution (13) is asymp-
totically de Sitter (anti-de Sitter) depending on the sign of
α (±), whereas the minus branch of the solution (13) is

asymptotically flat. In the large r limit (or α → 0), Eq. (13)
reduces to the 5D Schwarzschild solution surrounded by the
quintessence matter. Thus, the negative branch solution (13)
is well behaved and it represents a short distance correction
to the 5D black hole solution of general relativity. In a similar
way, when M = 0, the solution (13) takes the form

f±(r) = 1 + r2

4α

(
1 ±

√
1 + 8αq

r4ω+4

)
. (15)

Obviously, by a proper choice of the constants M , q, and
the parameter ω, one can generate many other known solu-
tions. The above solutions include most of the known spher-
ically symmetric solutions of the Einstein–Gauss–Bonnet
field equations (3).

3 Thermodynamics

In this section, we shall discuss the thermodynamical prop-
erties of 5D quintessential black hole within the Einstein–
Gauss–Bonnet framework. Henceforth, we shall restrict our-
selves to the negative branch of the solution (13). By defi-
nition of a horizon, the value of r = r+ is an event horizon
when f (r+) = 0. This is shown in Fig. 1, by plotting f (r)
as a function of r . It is interesting to note that the black
holes admit only one horizon and the radius of the horizon
increases with the value of the quintessence matter parameter
ω. Next, we explore the thermodynamics of the black hole
solution (13) surrounded by the quintessence matter in the
Einstein–Gauss–Bonnet framework. The Einstein–Gauss–
Bonnet black holes surrounded by the quintessence matter
are characterized by their mass (M) and a quintessence mat-
ter parameter (ω). From Eq. (13), the mass of the black hole
is obtained in terms of the horizon radius (r+):

MEGB+ = r2+

(
1 − q

r4ω+2+
+ 2α

r2+

)
. (16)

The mass of the black hole is plotted in Fig. 2 for various
values of the parameters ω and α, which shows an increase
in the black hole mass with horizon radius r+. To discuss the
thermodynamics of the metric (5) with the function (13), we
start with the Hawking temperature. The Hawking tempera-
ture associated with the black hole is defined by T = κ/2π ,
where κ is the surface gravity defined by [23,28],

κ2 = −1

4
gtt gi j gtt,i gtt, j . (17)

Hence, the Hawking temperature for the Einstein–Gauss–
Bonnet black hole surrounded by the quintessence matter can
be calculated as
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Fig. 1 Plot of metric function f (r) vs. r for the 5D Einstein–Gauss–Bonnet black hole surrounded by the quintessence matter

0.0 0.1 0.2 0.3 0.4 0.5
0.35

0.40

0.45

0.50

0.55

0.60

r

M

q 0.1

0.75
0.65
0.55
0.45
0.35
0.25

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.5

1.0

1.5

2.0

2.5

r

M

q 0.1

0.6
0.5
0.4
0.3
0.2
0.1

Fig. 2 Plot showing the behavior of mass MEGB+ vs. horizon radius r+ for 5D Einstein–Gauss–Bonnet black hole surrounded by the quintessence
matter

TEGB+ = 1

2πr+

⎡
⎣1 + 2qω

r4ω+2+
1 + 4α

r2+

⎤
⎦ . (18)

Note that the factor in the numerator of Eq. (18) modifies
the Gauss–Bonnet black hole temperature [23,28], and taking
the limit q → 0, we recover the Gauss–Bonnet black hole
temperature as

TEGB+ = 1

2πr+

[
r2+

r2+ + 4α

]
; (19)

and when α → 0, it becomes the temperature given by
T+ = 1

2πr+ . It is interesting to note that, for a particular
radius of the horizon, the Hawking temperature vanishes.

The Hawking temperature diverges in general relativity as
r+ → 0. However, in the Einstein–Gauss–Bonnet case it
remains finite, as shown in Fig. 3. Also, when q �= 0 and
α �= 0, the Hawking temperature has a peak, which decreases
and shifts as α increases or q increases (cf. Fig. 3).

A black hole behaves as a thermodynamical system; quan-
tities associated with it must obey the first law of thermody-
namics [21]:

dM = T+dS+. (20)

Hence, the entropy [52] can be obtained from the integra-
tion

S+ =
∫

T−1+ dM =
∫

T−1+
∂M

∂r+
dr+. (21)
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Fig. 3 The Hawking temperature (T EGB+ ) vs. horizon radius r+ for different values of α ω with fixed q = 0.1 for the 5D Einstein–Gauss–Bonnet
black hole surrounded by the quintessence matter

Now, the entropy of Einstein–Gauss–Bonnet gravity black
holes surrounded by quintessence matter reads

SEGB+ = 4πr3+
3

+ 16παr+. (22)

However, it is interesting to note that the entropy of the black
hole has no effect of the quintessence matter parameter.

Next, let us calculate the Wald entropy for the 5D black
hole (5) with f (r) is given by Eq. (13). Wald [53] showed
that the black hole entropy can be calculated by

SW = −
∫

�

(
∂L

∂Rabcd

)
εabεcddV 2

3 , (23)

where dV3 is the volume element on � and the integral is
performed on 3D space-like surface �. εab is the binormal
vector to the surface � normalized as εabε

ab = −2, and L is
Lagrangian density as in (1). We note that the integrand can
be calculated as

∂L
∂Rabcd

εabεcd = −2 − 24α[1 − f−(r+)]
r2+

. (24)

On substituting Eq. (24) into Eq. (23), one obtains the Wald
entropy of the 5D black hole (5) as

SW =
[

1 + 12α[1 − f−(r+)]
r2+

] ∫
�

dV 2
3 ,

= 4πr3+
3

[
1 + 12α[1 − f−(r+)]

r2+

]
,

= 4πr3+
3

+ 16παr+, (25)

as f−(r+) = 0 and hence the Wald entropy equation (25) has
exactly the same expression as obtained in Eq. (22). Further-
more, we verify that the 5D black hole (5) satisfies the first
law of thermodynamics. The variation of the Wald entropy
(25) with respect to the radius r+ gives

dSW = 4π(r2+ + 4α), (26)

and the variation of the mass (16) leads to

dMEGB+ = 2r+

(
1 + 2qω

r4ω+2+

)
. (27)

Hence, with the help of Eqs. (18), (26) and (27), one can
conclude that

dMEGB+ = T EGB+ dSW . (28)

Hence the first law of the black hole thermodynamics holds
for a 5D black hole (5) with f (r) is given by Eq. (13).
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Fig. 4 The specific heat (CEGB+ ) vs. horizon radius r+ for the 5D Einstein–Gauss–Bonnet black hole surrounded by the quintessence matter for
different values of ω and α

Finally, we analyze how the quintessence matter influ-
ences the thermodynamic stability of the Einstein–Gauss–
Bonnet black holes. The heat capacity of the black hole is
defined as [21]

C+ = ∂M

∂T+
= ∂M

∂r+
∂r+
∂T+

. (29)

The heat capacity of Einstein–Gauss–Bonnet black hole sur-
rounded by quintessence matter, using Eqs. (16), (18), and
(29), is given by

CEGB+ =
−4πr3+

[
1 + 2qω

r4ω+2

]
(r2+ + 4α)2

−4αr2+
[

1 − 2qω(1+4ω)

r4ω+2+

]
+ r4+

[
1 + 2qω(3+4ω)

r4ω+2

] .

(30)

It is clear that the heat capacity depends on both the Gauss–
Bonnet coefficient α and the quintessence matter parameter
ω. When α → 0, it reduces to the general relativity case. If
in addition q = 0, it becomes

C+ = 4πr3+(r2+ + 4α)2

4αr2+ − r4+
, (31)

which is exactly same as the Einstein–Gauss–Bonnet case
[23,28]. We again recall that, for C > 0 (C < 0), the black
hole is thermodynamically stable (unstable). It is difficult to
analyze the heat capacity analytically hence, we plotted it in

Fig. 4, for different values of α and ω. Again, we note that
there is a change of sign in the heat capacity around rC , andC
is discontinuous at r+ = rC . The heat capacity is positive for
r+ < rC and thereby suggests the thermodynamical stability
of a black hole. On the other hand, the black hole is unstable
for r+ > rC . Thus, the heat capacity of an Einstein–Gauss–
Bonnet black hole, for different values of ω and α, is positive
for r+ < rC , while for r+ > rC it is negative. The phase
transition occurs from a lower mass black hole with negative
heat capacity to a higher mass black hole with positive heat
capacity.

It may be noted that the critical radius rC changes dras-
tically in the presence of the quintessence matter, thereby
affecting the thermodynamical stability. Indeed, the value
of the critical radius rC increases with the increase in the
quintessence matter parameter ω for a given value of the
Gauss–Bonnet coupling constant α. Further, rC is also sen-
sitive to the Gauss–Bonnet parameter α (cf. Fig. 4), and the
critical parameter rC also increases with α.

4 Conclusion

The Einstein–Gauss–Bonnet theory has a number of addi-
tional nice properties in addition to Einstein’s general rela-
tivity that are not enjoyed by other higher-curvature theories.
Hence, Einstein–Gauss–Bonnet theory has received signifi-
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cant attention, especially when finding black hole solutions.
We have obtained an exact 5D static spherically symmet-
ric black hole solutions to Einstein–Gauss–Bonnet gravity
surrounded by the quintessence matter. We then proceeded
to find exact expressions, in Einstein–Gauss–Bonnet grav-
ity, for the thermodynamical quantities like the black hole
mass, Hawking temperature, entropy, specific heat and in
turn also analyzed the thermodynamical stability of black
holes. It turns out that due to the quintessence correction to
the black hole solution, the thermodynamical quantities are
also getting corrected except for the entropy, which does not
depend on the background quintessence. The entropy of a
black hole in Einstein–Gauss–Bonnet gravity does not obey
the area law.

The phase transition is characterized by the divergence
of the specific heat at a critical radius rC , which is chang-
ing with Gauss–Bonnet parameter α as well as with w. In
particular, the black hole is thermodynamically stable with a
positive heat capacity for the range 0 < r < rC and unstable
for r > rC . It would be important to understand how these
black holes with positive specific heat (C > 0) would emerge
from thermal radiation through a phase transition. We also
discuss the phase transition of the black holes. The results
presented here are a generalization of the previous discus-
sions, on the Einstein–Gauss–Bonnet black hole, in a more
general setting, and the possibility of a further generalization
of these results to Lovelock gravity is an interesting problem
for future research.
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Appendix A: Exact solutions for general relativity

Making use of Eqs. (6) and (12), for α = 0, we obtain

r2 f ′′(r) + (5 + 4ω)r f ′(r) + 2(2 + 4ω)( f (r) − 1) = 0,

(A1)

in which a prime denotes a derivative with respect to r . Equa-
tion (A1) admits a general solution which describes a 5D
black hole surrounded by the quintessence matter, and the
corresponding metric for the spherically symmetric takes the
form

ds2 = −
[

1 − M

r2 − q

r4ω+2

]
dt2 + 1[

1 − M
r2 − q

r4ω+2

]dr2

+ r2dω2
3, (A2)

with dω2
3 the metric on the 3-sphere. This solution for the

d-dimensional case was found in Ref. [35]. In order to study
the general structure of the solution (A2), we look for the
essential singularity by calculating the Kretschmann scalar
(K = Rμνγ δRμνγ δ), which for the metric (5) after inserting
Eq. (A2) reads

K = 18M

r8 + 12(1 + ω)(4ω + 3)qM

r4(ω+2)
+ Bq2

r8(ω+1)
, (A3)

with B = 6
(
32ω4 + 80ω3 + 86ω2 + 42ω + 9

)
. The Krets-

chmann scalar diverges as r → 0, indicating a scalar poly-
nomial or essential singularity at r = 0 [54]. The energy
density (ρ) and the pressure (P) for the quintessence matter
can be expressed as

ρ = − 6qω

r4(ω+1)
, P = 2qω(1 + 4ω)

r4(ω+1)
, (A4)

and

ρ + P = 4qω(2ω − 1)

r4(ω+1)
. (A5)

The weak energy condition is satisfied since ρq ≥ 0 and
ρq + Pq ≥ 0, for −1 < ω < 0. When ω = −1, the
metric (A2) takes the form of a 5D Schwarzschild–de Sitter
black hole. The metric (A2) also reduces to a 5D Reissner–
Nordström black hole when ω = 1/2. The solution (A2)
represents a general class of static, spherically symmetric
solutions to the Einstein equations describing black holes
with the energy-momentum tensor of the quintessence mat-
ter. The solution (A2) includes several well-known spheri-
cally symmetric solutions of the Einstein field equations, for
instance, the 5D Schwarzschild solution for q = 0, includ-
ing its generalization to the asymptotically de Sitter/Anti-de
Sitter (dS/AdS) case for q(v) �= 0, ω = −1 [55]. Obviously,
by a proper choice of the functions M and q, and of the ω

parameter, one can generate many other solutions [55].
Next, we analyze the thermodynamics of the quintessence

corrected black hole given by the metric (A2). The event
horizon r+ of the black hole, satisfy grr (r+) = 0, i.e.,

r4ω+2 − Mr4ω − q = 0. (A6)
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Fig. 5 The specific heat (C+) vs. horizon radius r+ for the 5D general relativity black hole surrounded by the quintessence matter. The black hole
thermodynamically unstable when C+ < 0, and stable when C+ > 0

On the other hand, the quintessence matter alone (M = 0)
has a horizon placed at r+ = (q)1/4ω+2. Obviously, in the
limit q → 0, the above solution will reduce to a 5D gen-
eral relativity black hole, in which case R = R = 0. Next,
we shall discuss the thermodynamics of the 5D black hole
surrounded by the quintessence matter. We note that the grav-
itational mass of a black hole is determined by grr (r+) = 0,
which, from Eq. (A2), reads

M+ = r2+

[
1 − q

r4ω+2+

]
. (A7)

Equation (A7) takes the form of the 5D Schwarzschild black
hole mass M = r2+, when q → 0 [18,19]. Accordingly, the
Hawking temperature of the black hole at outer horizon, r+,
reads

T+ = κ

2π
= 1

2πr+

[
1 + 2qω

r4ω+2+

]
. (A8)

Then we can easily see that the temperature is positive. Tak-
ing the limit q → 0, we recover the temperature for 5D
general relativity T+ = 1

2πr+ [23,28], which shows that the
Hawking temperature diverges as r+ → 0. Next, we turn to
a calculation of the entropy associated with the black hole
horizon from Eq. (25), and we arrive at

S = 4πr3+
3

. (A9)

Thus, we note that the quantity 4πr3+/3 of Eq. (A9) is just
the area of the black hole horizon. In proper units Eq. (A9)
may be written as S+ = A/4G (see Appendix B). Thus,
we conclude that the entropy of the 5D black hole obeys the
area law, and the entropy of a black hole has no influence of
the quintessence matter. Next, we turn our attention to the
stability of the black holes by calculating the specific heat
of the black hole solution (A2) and to discuss the effect of
the quintessence matter. The Schwarzschild black hole and
higher-dimensional Schwarzschild–Tangherlini case always

have negative heat capacity, indicating thermodynamic insta-
bility of these black holes [20]. Inserting Eqs. (A7) and (A8)
in (29), we obtain

C+ =
−4πr3+

[
1 + 2qω

r4ω+2+

]
[

1 + 2qω(3+4ω)

r4ω+2+

] . (A10)

It is well known that the thermodynamic stability of the sys-
tem is related to the sign of the heat capacity (C). If the heat
capacity is positive (C > 0), then the black hole is stable;
when it is negative (C < 0), the black hole is said to be
unstable. It is clear from Eq. (A10) that the heat capacity
depends on the quintessence matter. When q → 0, one gets
C = −4πr3+, which means 5D general relativity black holes
are thermodynamically unstable [21,28]. Next, we analyze
the effect of the quintessence matter on thermodynamical
stability of a black hole. We plot the specific heat (C) with
radius r in Fig. 5 for different values of the parameter ω and
q. It is seen that the heat capacity discontinuous at r = rC , for
each ω, and for a given q. We observe that the heat capacity is
C > 0 (C < 0) for r+ < rC (r+ > rC ). Thus, the 5D black
hole is thermodynamically stable for r < rC , as the black
hole has a positive heat capacity and is unstable for r > rC
(cf. Fig. 5). The black hole mass increases with increasing
r+. Hence, a phase transition occurs from a lower mass black
hole with negative heat capacity to a higher mass black hole
with positive heat capacity.

Appendix B: Thermodynamics of d-dimensional black
holes

The metric of d-dimensional spherically symmetric black
hole surrounded by quintessence reads [35]

123
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ds2 = −
[

1 − 16πG(d)M

(d − 2)�(d−2)c4r (d−3)
− q

r [(d−1)ω+(d−3)]

]
dt2

+
[

1 − 16πG(d)M

(d − 2)�(d−2)c4r (d−3)
− q

r [(d−1)ω+(d−3)]

]−1

dr2

+ r2d�(d−2),

where G(d) is the d-dimensional Newton constant, d�(d−2)

is the line element on a unit (d − 2) sphere, and �(d−2) is
the volume of the unit (d − 2) sphere. The black hole has a
horizon at r = r+, which is solution of f (r+) = 0,

r [(d−1)ω+d−3]
+ − 16πG(d)M

(d − 2)�(d−2)c4
r (d−1)ω
+ − q = 0.

The black hole mass in terms of horizon r+ reads

M = (d − 2)�(d−2)c4r (d−3)
+

16πG(d)

[
1 − q

r [(d−1)ω+(d−3)]
+

]
.

The Hawking temperature is

T+ = h̄c(d − 3)

4πr+

[
1 − (d − 1)

(d − 3)

qω

r [(d−1)ω+(d−3)]
+

]
.

By applying the entropy formula (25), one can deduce the
general expression for the entropy:

S = 1

4h̄G(d)
c3�(d−2)r (d−2)

+ = A
4G(d)

,

and it is seen to satisfy the area law.
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