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Abstract Inspired by thermodynamical dissipative phe-
nomena, we consider bulk viscosity for dark fluid in a
spatially flat two-component Universe. Our viscous dark
energy model represents phantom-crossing which avoids big-
rip singularity. We propose a non-minimal derivative cou-
pling scalar field with zero potential leading to acceler-
ated expansion of the Universe in the framework of bulk
viscous dark energy model. In this approach, the coupling
constant, κ , is related to viscosity coefficient, γ , and the
present dark energy density, Ω0

DE. This coupling is bounded
as κ ∈ [−1/9H2

0 (1 −Ω0
DE), 0]. We implement recent obser-

vational data sets including a joint light-curve analysis (JLA)
for SNIa, gamma ray bursts (GRBs) for most luminous astro-
physical objects at high redshifts, baryon acoustic oscilla-
tions (BAO) from different surveys, Hubble parameter from
HST project, Planck CMB power spectrum and lensing to
constrain model free parameters. The joint analysis of JLA
+ GRBs + BAO + HST shows that Ω0

DE = 0.696 ± 0.010,
γ = 0.1404 ± 0.0014 and H0 = 68.1 ± 1.3. Planck TT
observation provides γ = 0.32+0.31

−0.26 in the 68% confidence
limit for the viscosity coefficient. The cosmographic dis-
tance ratio indicates that current observed data prefer to
increase bulk viscosity. The competition between phantom
and quintessence behavior of the viscous dark energy model
can accommodate cosmological old objects reported as a sign
of age crisis in the ΛCDM model. Finally, tension in the Hub-
ble parameter is alleviated in this model.

a e-mail: b_mostaghel@sbu.ac.ir
b e-mail: hosseinmoshafi@iasbs.ac.ir
c e-mail: m.s.movahed@ipm.ir

1 Introduction

The accelerating expansion of the Universe has been con-
firmed by many observational data sets [1,2]. Various obser-
vations such as supernova type Ia, cosmic microwave back-
ground (CMB) and baryonic acoustic oscillations (BAO)
have indicated the break down of general relativity (GR)
at cosmic scale [3]. Many scenarios have been proposed to
produce a repulsive force in order to elucidate the current
accelerating epoch.

There are three approaches for going beyond the model
including cosmological constant: the first approach corre-
sponds to dynamical dark energy incorporating field theo-
retical orientation and phenomenological dark fluids. The
second category approach is by modified general relativity
including Horndeski’s types such as galileons, chameleons,
Brans–Dicke, symmetrons, and other possibilities. In the
third strategy, based on a thermodynamics point of view, phe-
nomenological exotic fluids are supposed for an alternative
dark energy model [4–8].

Generally, proposing exotic fluids for various applications
has historically been highlighted in the first order irreversible
processes and also in a second order correction to the dissi-
pative process proposed by Israel [9]. The dissipative process
is a generic property of any realistic phenomenon. Accord-
ingly, bulk and shear viscous terms are most relevant parts
which should be taken into account for a feasible relativis-
tic fluid [9–15]. In other words, to recognize the mechanism
of heat generation and characteristic of smallest fluctuations
one possibility is revealing the presence of dissipative pro-
cesses. In classical fluid dynamics, the viscosity is a trivial
consequence of the internal degree of freedom of the associ-
ated particles. The existence of any dissipative process for
an isotropic and homogeneous Universe should undoubt-
edly be scalar, consequently, at the background level, we
deal with a bulk viscous model. Some examples to describe
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the source of the viscosity are as follows: moving cosmic
strings through the cosmic magnetic fields and magnetic
monopoles in monopole interactions effectively experience
various viscous phenomena. Various mechanisms for primor-
dial quantum particle productions and their interactions were
also major arguments for viscous fluids [16–24].

In the context of exotic fluids, a possible approach to
explaining the late time accelerating expansion of the Uni-
verse is constructing an exotic fluid including a bulk vis-
cous term. A considerable part of previous studies have been
devoted to one component for the dark sector [25–27]. A
motivation behind the mentioned proposals is avoiding dark
degeneracy [28]. The bulk viscosity in cosmological mod-
els has also resolved the so-called big-rip problem [29,30].
Recently, Normann et al., tried to map the viscous radiation
or matter to a phantom dark energy model and they showed
that phantom dark energy can be misinterpreted due to the
existence of non-equilibrium pressure causing viscosity in
pressure of either in matter or radiation [25].

An a priori approach for bulk viscous cosmology encour-
aged some authors to build robust mechanisms to describe a
correspondence for the mentioned dissipative term. Indeed
without any reasonable model for underlying dissipative pro-
cesses, one cannot say anything about the presence of such
a fluid including exotic properties [31–34].

In cosmology, inspired by the inflationary paradigm,
canonical scalar fields with minimal coupling to gravity have
been introduced to explain the origin of extraordinary mat-
ters; see [4] and the references therein.

Models with non-canonical scalar fields with minimal
coupling or non-minimal coupling are other phenomenolog-
ical descriptions to construct a dark energy component [35,
36]. An alternative approach is non-minimal derivative cou-
pling, which appears in various approaches such as Jordan–
Brans–Dicke theory, quantum field theory and the low-
energy limit of the superstrings; see [37] and the references
therein. Following a research done by Amendola, many mod-
els for non-minimal derivative coupling (NMDC) have been
proposed to investigate the inflationary epoch and late time
accelerating expansion [38,39]. Concentrating on cosmolog-
ical applications of NMDC, Sushkhov et al. showed that, for
a specific value of the coupling constant, it is possible to con-
struct a new exact cosmological solution without considering
a certain form of scalar field potential [40,41]. It has been
demonstrated that a proper action containing a Lagrangian
with NMDC scalar field for dynamical dark energy model
enables one to solve phantom-crossing [42,43]. In a paper
by Granda et al., non-minimal kinetic coupling in the frame-
work of Chaplygin cosmology has been considered [44].

In the present paper, we try to propose a modified version
for dark energy model inspired by dissipative phenomena in
fluids with following advantages and novelties: We will con-
sider a special type of viscosity satisfying the isotropic prop-

erty of the cosmos at the background level. To make more
obvious concerning the knowledge of bulk viscosity, we will
rely on modified general relativity to obtain corresponding
scalar field giving rise to accelerated expansion of Universe
in the context of bulk viscous dark energy scenario. With this
mechanism, we will show the correspondence between our
viscous dark energy model and the scalar–tensor theories in a
two-component dark sectors model in contrast to that of done
in [29,30]. In addition we will demonstrate that our viscous
dark energy model without any interaction between dark sec-
tors, has phantom-crossing avoiding big-rip singularity. Con-
sidering two components for dark sides of Universe in our
approach leads to no bouncing behavior for consistent vis-
cosity coefficient. Generally there is no ambiguity in compu-
tation of the cosmos’ age. Observational consequences indi-
cates to resolve tension in the Hubble parameter.

From observational points of view, ongoing and upcoming
generation of ground-based and space-based surveys classi-
fied in various stages ranging from I to IV, one can refer to
background and perturbations of observables [5,45]. Sub-
sequently, we will rely on the state-of-the-art observational
data sets such as supernova type Ia (SNIa), gamma ray bursts
(GRBs), baryonic acoustic oscillation (BAO) and CMB evo-
lution based on background dynamics to examine the con-
sistency of our model. Here we have incorporated the contri-
bution of the viscous dark energy in the dynamics of back-
ground.

The rest of this paper is organized as follows: in Sect. 2 we
introduce our viscous dark energy model as a candidate of
dark energy. Background dynamics of the Universe will be
explained in this section. We use Lagrangian approach with a
non-minimal derivative coupling scalar field in order to pro-
vide a theoretical model for clarifying the correspondence of
the viscous dark energy, in Sect. 3. Effect of our model on
the geometrical parameters of the Universe, namely, comov-
ing distance, Alcock–Paczynski, comoving volume element,
the cosmographic parameters will be examined in Sect. 4. To
distinguish between viscous dark energy and cosmological
constant as a dark energy, we will use Om-diagnostic and
Sandage–Loeb tests in the mentioned section. Recent obser-
vational data and the posterior analysis will be explored in
Sect. 5. Section 6 is devoted to results and discussion con-
cerning the consistency of the viscous dark energy model
with the observations, the cosmographic distance ratio, Hub-
ble parameter and cosmic age crisis. Summary and conclud-
ing remarks are given in Sect. 7.

2 Bulk viscous cosmology

In this section, we explain a model for dark energy to produce
accelerating expansion in the history of the cosmos evolution.
To this end, we consider a bulk viscous model, correspond-
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ingly, energy-momentum tensor will be modified. We also
propose a new solution for mentioned model to construct
so-called dynamical dark energy model.

2.1 Background dynamics in the presence of bulk viscosity

Dynamics of the Universe is determined by the Einstein field
equations:

Gμν = 8πGNTμν, (1)

where Gμν = Rμν − 1
2 Rgμν is Einstein’s tensor and GN

is Newton’s gravitational constant. Tμν is energy-momentum
tensor given by

Tμν = Tm
μν + T rad

μν + Tμν. (2)

where Tm
μν and T rad

μν are the energy-momentum tensor of

the matter and radiation, respectively. Generally, tensor Tμν

includes other sources of gravity, such as scalar fields. For
cosmological constant, Λ, we define the energy-momentum
tensor in the form of Tμν = − Λ

8πGN
gμν . Here we consider

the following form for Tμν :

Tμν = (ρ + p)uμuν + pgμν + 2q(μuν) + πμν, (3)

in this equation, ρ is energy density and p is the pressure of
the fluid, qμ = −(δν

μ+uμuν)Tναuα is the energy flux vector,
and πμν is the symmetric and traceless anisotropic stress
tensor [46]. For barotropic fluid, namely p = p(ρ) case, qμ

and πμν are identically zero and one can define equation of
state (EoS) in the form of w(ρ) = p(ρ)/ρ. Applying the
FLRW metric to the Einstein equations with a given Tμν ,
gives Friedmann equations as follows:

H2 + k

a2 = 8πGN

3
ρ,

ä

a
= −4πGN

3
(ρ + 3p), (4)

where ρ = ∑i ρi , p = ∑i pi and H = ȧ
a are total energy

density, total pressure and Hubble parameter, respectively.
Also k indicates the geometry of the Universe. The continuity
equation for all components reads

dρ

dt
+ 3H(ρ + p) = 0. (5)

It turns out that, if there is no interaction between different
components of the Universe, consequently, continuity equa-
tion for each component becomes

dρi

dt
+ 3H(ρi + pi ) = 0. (6)

Now, it is possible to derive EoS in general case, by solving
the following equation:

wi ≡ pi
ρi

= −1 − 1

3

d ln ρi

d ln a
. (7)

In the next subsection, we will build a dark energy model,
according to viscosity assumption.

2.2 Viscous dark energy model

In this subsection, we consider a bulk viscous fluid as a repre-
sentative of so-called dark energy which is responsible of late
time acceleration. For a typical dissipative fluid, according
to Ekart’s theory as a first order limit of the Israel–Stewart
model with zero relation time, one can rewrite effective pres-
sure, peff , in the following form [10]:

peq → peff = peq − ζΘ(t)

= w(ρ)ρ − ζΘ(t), (8)

where peq is pressure at thermodynamical equilibrium. ζ and
Θ (t) are viscosity and expansion scalar, respectively. In gen-
eral case, ζ is not constant and there are many approaches
to determining the functionality form of viscosity. In general
case viscosity is a function for thermodynamical state, i.e.,
energy density of the fluid, ζ(ρ) [47,48]. According to men-
tioned dissipative approach, we propose the following model
for the pressure of the viscous dark energy:

peff
DE = −ρDE − ζΘ(t), (9)

for FLRW cosmology, we have Θ(t) = 3H(t). In the model
that we consider throughout this paper, ρDE is dynamical
variable due to its viscosity. In principle, higher order cor-
rections can be implemented in modified energy-momentum
tensor, but it was demonstrated that mentioned terms have
no considerable influence on the cosmic acceleration [48].
Therefore those relevant terms having dominant contribu-
tion for isotropic and homogeneous Universe at large scale
are survived. One can expect that the viscosity is affected
by individual nature of corresponding energy density and
implicitly is generally manipulated by expansion rate of the
Universe, accordingly, our ansatz about the dark energy vis-
cosity is:

ζ(ρDE, H) = ξ

√
ρDE

H
, (10)

where coefficient ξ is a positive constant and H = ȧ/a is
Hubble parameter. According to this choice, in the early Uni-
verse when the dark matter has dominant contribution, vis-
cosity of dark energy becomes negligible. On the other hand,
at late time, this term increases and in dark energy dominated
Universe leads to ξ .

Inserting Eq. (9) in Eq. (6) and using Eq. (10) in the flat
Universe results in the evolution of the bulk viscous model
for dark energy in terms of scale factor:

ρDE (a) = ρ0
DE

⎛

⎝1 + 9ξ

2
√

ρ0
DE

ln a

⎞

⎠

2

. (11)

123



541 Page 4 of 22 Eur. Phys. J. C (2017) 77 :541

Dimensionless dark energy density can be written as

ΩDE(a) = H2
0 Ω0

DE

H2

⎛

⎝1 + 9γ

2
√

Ω0
DE

ln a

⎞

⎠

2

. (12)

where Ω0
DE = 8πGNρ0

DE/3H2
0 and γ is the dimensionless

viscosity coefficient defined by

γ ≡
√

8πGN

3H2
0

ξ. (13)

Therefore the evolution of background in the presense of the
viscous dark energy model reads
(
ȧ

a

)2

= H2
0

×
⎡

⎢
⎣Ω

0
r a

−4 + Ω0
ma

−3 + Ω0
DE

⎛

⎝1 + 9γ

2
√

Ω0
DE

ln a

⎞

⎠

2
⎤

⎥
⎦

+H2
0 (1 − Ω0

tot)a
−2, (14)

here Ω0
tot = Ω0

r + Ω0
m + Ω0

DE and throughout this paper
we consider a flat Universe. We consider two components
for the dark sector of the Universe. Also in this case there
is no bouncing behavior presenting in one-component phe-
nomenological fluid considered in Ref. [29].

According to Eq. (12), dark energy has a minimum at ã,
where

ã = exp

⎛

⎝
−2
√

Ω0
DE

9γ

⎞

⎠. (15)

and this minimum value is equal to zero. The value of ΩDE(a)

for a � ã and for a � ã is independent of the present value
of dark energy, Ω0

DE, and this value is a pure effect of bulk
viscosity. To examine the variation of pressure and energy
density of the viscous dark energy, we plot their behavior in
Fig. 1. The upper panel of Fig. 1 shows the effective pressure
in this model while lower panel corresponds to ΩDE(z). To
make more sense, we compare the behavior of this model with
ΛCDM. This figure demonstrates that at the late time, there
is a significant variation in the behavior of the viscous dark
energy model, consequently in order to distinguish between
cosmological constant and our model we should take into
account those indicators which are more sensitive around
late time. This kind of behavior probably may affect on the
structure formation of the Universe and has unique footprint
on large scale structures.

The ratio of the viscous dark energy to energy density of
dark matter as a function of scale factor indicates that the
modified version of dark energy has late time contribution in
the expansion rate of Universe (see Fig. 2). It is worth noting
that, for some values of the viscosity, the relative contribution

Fig. 1 Upper panel pressure of the viscous fluid as a function of scale
factor. Lower panel ΩDE(z) as a function of the redshift. In both cases
we changed the value of γ . The other free parameters have been fixed
by SNIa constraint. The ΛCDM best fit is given by Planck observation

at early epoch is higher than that of in ΛCDM while for the
late time this contribution is less than ΛCDM demonstrating
an almost oscillatory behavior.

Interestingly, according to Fig. 1, the viscous DE has non-
monotonic evolution. This behavior demonstrates a crossing
from quintessence phase to the phantom phase correspond-
ing to a phantom-crossing [50]. According to EoS, one can
compute the effective form of equation of state as

weff(a) ≡
∫ a

1 wDE(a′)d ln a′
∫ a

1 d ln a′ . (16)

By increasing γ , we get the so-called phantom-crossing
behavior for the viscous dark energy model at late time. For
positive (negative) value of the viscosity coefficient, Uni-
verse at late time is dominated by phantom (quintessence)
component. It has been shown that for wDE < −1 cosmo-
logical models have future singularity. According to previous
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Fig. 2 Ratio of ΩDE(a) to Ωm(a) as a function of scale factor. The
other free parameters have been fixed by SNIa observational constraint.
The ΛCDM best fit is given by Planck observation

studies, we summarize future singularities in cosmology in
Table 1. In mentioned table ts and as are respectively charac-
teristic time and scale factor, where divergence happens. For
a → ∞, the EoS of the viscous dark energy goes asymptoti-
cally to −1 and consequently this model belongs toLittle-Rip
category [29]. In addition, by using Eq. (14), we can write
the age of the cosmos at a given scale factor as

t0 − t (a) =
∫ 1

a

da

H0a
√(

1 − Ω0
DE

)
a−3 + Ω0

DE

(
1 − ln a

ln ã

)2
.

(17)

Solving the scale factor as a function of time for the dark
energy dominated era leads to

lim
t→∞ a (t) 
 exp

(
e

9γ H0
2 (t−t0)

)
. (18)

Therefore, the energy density reads

lim
t→∞ ρDE (t) 
 ρ0

DEe9γ H0(t−t0). (19)

According to the above equation, at infinite time, the energy
density of the dark energy reaches to infinity when t →
∞, demonstrating our model has a little-rip singularity. In

a one-component Universe, the age of the Universe can be
determined via

∫

dt =
∫

da

H0Ω
0
DEa
(
1 − ln a

ln ã

)

= 1

H0Ω
0
DE

ln ln a
ln ã

ln (1/ã)
. (20)

Subsequently, for a = ã, time is undefined which is a prop-
erty of a bouncing model [51]. In order to avoid mentioned
case, we consider a two-component Universe in spite of the
considerations in Ref. [29].

In Fig. 3 we computed the scale factor as a function of
t − t0 for various values of the viscosity for the viscous dark
energy model. Increasing the value of γ increases the age of
Universe, but when γ is greater than a typical value (γ×), the
dominant contribution of the viscous dark energy is similar
to a quintessence model (see Fig. 3).

In the next section, we propose an action in the scalar–
tensor theories which its equation of motions has the same
behavior in our viscous dark energy model.

Fig. 3 Scale factor as a function of (t − t0)H0 for various values of
the viscous coefficient. Other free parameters have been fixed by SNIa
observational constraint. The ΛCDM best fit is given by the Planck
observation

Table 1 Various type of
singularities in energy density
and pressure given from [29,49]

Type Time Scale factor Energy density Pressure EoS

I (big-rip) t → ts a → ∞ ρ → ∞ |p| → ∞ Undefined

II (sudden) t → ts a → as ρ → ρs |p| → ∞ Undefined

III t → ts a → as ρ → ∞ |p| → ∞ Undefined

IV t → ts a → as ρ → 0 |p| → 0 Undefined

V (little-rip) t → ∞ a → ∞ ρ → ∞ |p| → ∞ w = p/ρ → −1

123



541 Page 6 of 22 Eur. Phys. J. C (2017) 77 :541

3 Corresponding action of model

As mentioned in introduction, to explain the late time accel-
erating expansion of the Universe, dynamical dark energy
including field theoretical orientation and phenomenologi-
cal dark fluids, modified general relativity [52,53] and ther-
modynamics motivated frameworks have been considered
in [8,54]. There is no consensus on where to draw the line
between mentioned categories [5]. According to scalar field
point of view, one can assume that the cosmos has been filled
by a phenomenological scalar field generating an accelerated
phase of expansion without the need of a specific equation of
state for an exotic matter. In the previous section, we intro-
duced a bulk viscous fluid model for dynamical dark energy
and calculated some cosmological consequences. There are
several proposals to describe the bulk viscosity in the Uni-
verse. As an example superconducting string can create the
viscosity effect for dark fluid [19]. Particle creation in the
Universe may cause to an effective viscosity for vacuum
[20]. Here based on a theoretical Lagrangian orientation, we
will apply a robust method to determine evolution equation
of scalar field, to make a possible correspondence between
scalar field and viscosity of the dynamical dark energy.

Following the research done by Amendola [38], many
models for NMDC have been proposed to investigate the
inflationary epoch and late time accelerating expansion of
the Universe [38,39,55]. Sushkhov showed that, for a specific
value of the coupling constants, one can construct new exact
cosmological solution without considering a certain form for
the scalar field potential [40,41]. In this section we shall
propose a non-minimal derivative coupling scalar field as a
correspondence to our dynamical dark energy model. In our
viscous dark energy model, it is possible to have phantom-
crossing, therefore one of a proper action for describing this
dynamical dark energy is an action containing a Lagrangian
with NMDC scalar field [42,43].

3.1 Field equations

We consider the following action containing a Lagrangian
with NMDC scalar field [40,56]:

S =
∫

d4x
√−g

(
M2

Pl

2
R − 1

2
(εgμν + κGμν)∂μφ∂νφ

)

+Sm, (21)

where R, MPl and κ are Ricci scalar, reduced Planck mass and
coupling constant between scalar field and Einstein tensor,
respectively. In the mentioned action ε is +1 for quintessence
and −1 for phantom scalar fields and Sm is the pressure-less
dark matter action. This class of actions with different values
for the couplings to the curvature corresponds to the low-
energy limit of some higher dimensional theories such as

superstring [57–59] and quantum gravity [36]. We suppose a
zero potential for the scalar field to get rid of any fine-tuned
potentials [40]. Varying the action in Eq. (21) with respect to
the metric tensor and the scalar field, leads to field equations
[40]. The energy-momentum tensor of NMCD field, T φ

μν , is
obtained by variation of action (21) with respect to the metric
tensor, gμν , and it is:

T φ
μν = εΘμν + κΠμν, (22)

where we defined Θμν and Πμν according to:

Θμν ≡ −1

2
gμν(∇φ)2 + ∇μφ∇νφ, (23)

and

Πμν ≡ −1

2
Rμν (∇φ)2 + 1

2
gμν(�φ)2

−1

2
gμνGαβ∇αφ∇βφ − 1

2
gμνRαβ∇αφ∇βφ

+Rμανβ∇αφ∇βφ − 1

2
gμν∇β∇αφ∇β∇αφ

+Gνα∇αφ∇μφ + Gμα∇αφ∇νφ + 1

2
R∇μφ∇νφ

+∇μ∇αφ∇ν∇αφ − �φ∇ν∇μφ. (24)

As mentioned before, by taking the variation of action rep-
resented by Eq. (21), general expression for field equation is
retrieved. Now we can determine the 00 and 11 components
of this equation. The first and second Friedmann equations
for mentioned NMDC action with standard model for dark
matter read

H2 = 8πGN

3

[

ρm + φ̇2

2
(ε − 9κH2)

]

(25)

− 2Ḣ − 3H2 = 4πGN

[

ε + κ

(

2Ḣ + 3H2 + 4H
φ̈

φ̇

)]

(26)

To find differential equation for the scalar field, we should
take variation in Eq. (21) with respect to the scalar field con-
sidering FRW background metric, namely:

ε(φ̈ + 3H φ̇) − 3κ[H2φ̈ + 2H Ḣ φ̇ + 3H3φ̇] = 0. (27)

By combining the Eqs. (27) and (26) one can get Eq. (25).

3.2 Bulk viscous solution

Hereafter, we are looking for finding consistent solutions for
coupled differential equations (Eqs. (25), (27)) for a given
Hubble parameter. Since we have no scalar potential, it is
not necessary to impose additional constraint. The Hubble
parameter for the flat bulk viscous dark energy model is
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H2 = H2
0

⎡

⎢
⎣Ω

0
ma

−3 + Ω0
DE

⎛

⎝1 + 9γ

2
√

Ω0
DE

ln a

⎞

⎠

2
⎤

⎥
⎦ . (28)

Therefore, we try to find a special solution of Eq. (25) which
its Hubble parameter is represented by Eq. (28). It turns
out that coupling parameter between Einstein tensor and
the kinetic term is related to the viscosity of the dynami-
cal dark energy. In the absence of the viscosity coefficient,
the coupling parameter would vanish and the standard min-
imal action would be retrieved. According to the mentioned
explanation, Eq. (25) takes the following form:

(
dφ̃

da

)2

= − Ω0
DE

(
1 − ln a

ln ã

)2

a2
(
Ω0

ma
−3 + Ω0

DE

(
1 − ln a

ln ã

)2) {
ε − 9κH2

0

[
Ω0

ma
−3 + Ω0

DE

(
1 − ln a

ln ã

)2]} , (29)

where we define φ̃ ≡
√

4πGN

3
φ. To avoid possible singu-

larity in the above equation and construct a ghost free action,
one can find the following relation between ε and κ:

κ = ε

9H2
0 (1 − Ω0

DE)
exp

⎛

⎝−
2
√

Ω0
DE

3γ

⎞

⎠ . (30)

In the upper panel of Fig. 4, we plot φ̇2 as a function of scale
factor for ε = ±1. Due to the functional form of the dynam-
ical dark energy model and to ensure that the scalar field is
a real quantity, therefore, we should take ε = −1, causing
the coupling coefficient to become negative. The lower panel
of Fig. 4 indicates φ̃ versus scale factor for best fit values of
parameters based on the JLA catalog (see Sect. 5). At the
early epoch the contribution of this scalar field as a model of
the dynamical dark energy is ignorable; on the contrary at the
late time, it affects the background evolution considerably.

In the next section we will use the most recent and precise
observational data sets to put constraints on free parameters
of our model and to evaluate the consistency of our dynamical
dark energy model. Also we will rely on a reliable geometri-
cal diagnostic which is the so-called Om and Sandage–Loeb
measures to do possible discrimination between our model
and ΛCDM. A new observable quantity is the so-called cos-
mographic distance ratio, which is free of the bias effect, and
is also considered for this purpose [60–62].

4 Effect on the geometrical parameters

In this section, the effect of the viscous dark energy model
on the geometrical parameters of the Universe will be exam-
ined. We consider comoving distance, apparent angular size
(Alcock–Paczynski test), comoving volume element, the age

of the Universe, the cosmographic parameters, Om diagnos-
tic and Sandage–Loeb test.

According to the theoretical setup mentioned in Sect. 2,
the list of free parameters underlying the theory is as follows:

{Θp} : {γ,Ω0
DE,Ωbh

2,Ωmh
2, H0, τopt,As, ns}

where As is the scalar power spectrum amplitude. Also ns
corresponds to an exponent of the mentioned power spec-
trum. Ωbh2 and Ωmh2 are dimensionless baryonic and cold
dark matter energy density, respectively. The optical depth is
indicated by τopt.

Fig. 4 Upper panel evolution of field φ̇2 as a function of scale factor
for different value of parameter ε. Lower panel evolution of field φ̃− φ̃0
as a function of scale factor. Here φ̃0 is the initial condition for the scalar
field. The other free parameters have been fixed by SNIa observational
constraint
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4.1 Comoving distance

The radial comoving distance for an object located at redshift
z in the FRW metric reads

r(z; {Θp}) =
∫ z

0

dz′

H(z′; {Θp}) , (31)

here H(z′; {Θp}) is given by Eq. (14). As indicated in Fig. 5,
by increasing the value of γ when other parameters are fixed,
the contribution of the viscous dark energy becomes lower
than the cosmological constant. Therefore, the comoving dis-
tance is longer than that in the ΛCDM or quintessence mod-
els. For γ > γ× 
 0.36, our result demonstrates a crossover
in behavior of comoving distance due to changing the role of
the viscous dark energy from phantom to quintessence class
(Fig. 5).

4.2 Alcock–Paczynski test

The so-called Alcock–Paczynski test is another interesting
probe for dynamics of a background based on anisotropic
clustering and it does not depend on the evolution of the
galaxies. By measuring the angular size in different redshifts
in isotropic rate of expansion case, one can write [63]

�z

�θ
= H(z; {Θp})r(z; {Θp}). (32)

We should point out that one of the advantages of the Alcock–
Paczynski test is that it is independent of standard candles as
well as evolution of galaxies. Considering the evolution of the
cosmological objects’ ratio of radius along the line of sight

Fig. 5 The effect of the viscosity on the radial comoving distance in
FRW metric. The other free parameters have been fixed by the SNIa
observational constraint. The ΛCDM best fit is given by the Planck
observation

to the same perpendicular to the line of sight, a complete
representation of the mentioned quantity reads

Y (z; {Θp}) = z + 1

z
H(z; {Θp})dA(z; {Θp}), (33)

here dA is the angular diameter distance. The observed value
for Y at three redshifts are Y (z = 0.38) = 1.079 ± 0.042,
Y (z = 0.61) = 1.248 ± 0.044 [64] and Y (z = 2.34) =
1.706 ± 0.083 [65]. The upper panel of Fig. 6 represents
�z/�θ as a function of the redshift. We normalized this value
to the ΛCDM model (H(z; γ = 0)r(z; γ = 0)) constraining
byPlanck observations. By increasing the contribution of the
viscosity when the other parameters are fixed, we find that
our model has up and down behavior at low redshift where
almost a transition from a dark matter to a dark energy era

Fig. 6 Upper panel Alcock–Paczynski test compares �z/�θ normal-
ized to the case of ΛCDM model (γ = 0) as a function of the redshift
for different viscosity coefficients. Lower panelY (z; {Θp}) for viscous
dark energy and ΛCDM models. In addition three observed points are
illustrated for better comparison. The other free parameters have been
fixed by SNIa observational constraint. The ΛCDM best fit is given by
Planck observation

123



Eur. Phys. J. C (2017) 77 :541 Page 9 of 22 541

occurs. The lower panel of Fig. 6 indicates observable values
of Alcock–Paczynski for various viscosity coefficients. As
illustrated by this figure, increasing the value of the viscosity
leads to better agreement with observed data for low redshift,
while there is a considerable deviation for high redshift.

4.3 Comoving volume element

Another geometrical parameter is the comoving volume ele-
ment used in number-count tests such as lensed quasars,
galaxies or clusters of galaxies. The mentioned quantity is
written in terms of comoving distance and Hubble parame-
ters as follows:

f (z; {Θp}) ≡ dV

dzdΩ
= r2(z; {Θp})

H(z; {Θp}) . (34)

Referring to Fig. 7, one can conclude that the comoving vol-
ume element becomes maximum around z 
 2.6 for ΛCDM.
In the bulk viscous model for γ = 0.14 the maximum occurs
at redshift around z 
 2.3. For larger value of the γ expo-
nent, the position of this maximum shifts to the lower red-
shifts corresponding to the case with lower contribution of
viscous dark energy, as indicated in Fig. 2.

4.4 Age of the Universe

Another interesting quantity is the age of the Universe com-
puted in a cosmological model. The age of the Universe at
given redshift can be computed by integrating from the big
bang indicated by infinite redshift up to z:

Fig. 7 The comoving volume element versus redshift for various val-
ues of the γ exponent. Increasing γ shifts the position of the maximum
value of the volume element to lower redshifts. The other free parame-
ters have been fixed by an SNIa observational constraint. The ΛCDM
best fit is given by Planck observation

t (z; {Θp}) =
∫ ∞

z

dz′

(1 + z′)H(z′; {Θp}) , (35)

To compare the age of the Universe we set the lower value of
integration to zero and we represent this quantity by t0. We
plotted H0t0 (Hubble parameters times the age of the Uni-
verse) as a function of γ for values of cosmological parame-
ters constrained by JLA observation in Fig. 8. The age of the
Universe has a maximum value for γ× 
 0.36. This behav-
ior is due to the dynamical nature of our viscous dark energy
model. Namely, for lower values of γ < γ×, viscous dark
energy model is almost categorized in phantom class during
the wide range of scale factor while underlying dark energy
model is devoted to quintessence class by increasing the value
of γ > γ×. The existence of dark energy component is also
advocated by “age crises” (for full review of the cosmic age
see [66]). In the next section, we will check the consistency
of our viscous dark energy model according to comparing
the age of the Universe computed in this model and with the
age of old high redshift galaxies located in various redshifts.

4.5 Cosmographic parameters

One of the most intriguing questions concerning the late
time accelerating expansion in the Universe is that, the pos-
sibility of distinguishing between cosmological constant and
dark energy models. There are many attempts in order to
answer mentioned question [67–69]. High sensitivity as well
as model independent properties should be considered for
introducing a reliable diagnostic measure. Using cosmogra-
phy parameters, we are able to study some kinematic proper-
ties of the viscous dark energy model. First and second cos-

Fig. 8 The quantity H0t0 (age of the Universe times the Hubble con-
stant at the present time) as a function of γ . In our dark energy model,
the age of the Universe has a maximum at γ× 
 0.36 with maximum
value equates to (H0t0)max = 1.052. We chose other cosmological
parameters in a flat Universe with observational constraint using the
JLA catalog
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mography parameters are Hubble and deceleration parame-
ters. Other kinematical parameters defined by

j ≡ 1

a H3

d3a

dt3 , s ≡ 1

a H4

d4a

dt4 ,

l ≡ 1

a H5

d5a

dt5
, m ≡ 1

a H6

d6a

dt6 . (36)

these parameters are called jerk, snap, lerk and maxout,
respectively. It is worth noting that these parameters are not
independent together and they are related to each other by
simple equations. If we denote the derivative with respect to
the cosmic time by dot, we can write:

Ḣ = −H2(1 + q),

Ḧ = H3( j + 3q + 2),
...
H = H4[s − 4 j − 3q(q + 4) − 6],
....
H = H5[l − 5s + 10(q + 2) j + 30(q + 2)q + 24],
H (5) = H6{m − 10 j2 − 120 j (q + 1)

−3[2l + 5(24q + 18q2 + 2q3 − 2s − qs + 8)]}.
(37)

In Fig. 9 we show ȧ, q(z), lerk, snap, lerk andmaxout the cos-
mographic parameters of our model in comparison to ΛCDM
model. As indicated in the mentioned figures at low redshift
there is a meaningful difference between the bulk viscous
model and ΛCDM model [69]. Comparison between our
plots with that of computed for ΛCDM reveals the consistent
results for low viscous coefficient [69].

4.6 Om diagnostic

The Om diagnostic method is indeed a geometrical diagnos-
tic which combines Hubble parameter and redshift. It can
differentiate dark energy model from ΛCDM. Sahni and his
collaborators demonstrated that, irrespective to matter den-
sity content of Universe, acceleration probe can discriminate
various dark energy models [67]. Om(z) diagnostic for our
spatially flat Universe reads

Om(z; {ΘP }) ≡ H 2(z; {ΘP }) − 1

(1 + z)3 − 1
. (38)

where H ≡ H
H0

and H is given by Eq. (14). For ΛCDM

model Om(z) = Ω0
m while for other dark energy models,

Om(z) depends on redshift [68]. Phantom like dark energy
corresponds to the positive slope ofOm(z) whereas the nega-
tive slope means dark energy behaves like quintessence [70].
In addition, Om(z) depends upon no higher derivative of the
luminosity distance in comparison for w(z) and the deceler-
ation parameter q(z), therefore, it is less sensitive to observa-
tional errors [67]. Another feature ofOm(z) is that the growth

ofOm(z) at late time favors the decaying dark energy models
[71].

Figure 10 indicates acceleration probe measure for the
cosmological constant with different values of equation of
states and the viscous dark energy model. The viscous dark
energy model with γ < γ× belongs to phantom like dark
energy. In mentioned figure, solid lines represents Om(z) for
cosmological constant. Dashed and dashed-dot lines repre-
sents Om(z) for ΛCDM with w = −0.90 and w = −1.20,
respectively. Think solid line with corresponding 1σ con-
fidence interval determined by JLA observation represents
Om(z) for the viscous dark energy model for γ = 0.14.
A long-dashed line corresponds to γ = 0.60 demonstrating
that dynamical dark energy model has almost quintessence
behavior during the evolution of the Universe.

4.7 Sandage–Loeb test

Another interesting measure is Sandage–Loeb test [72]. This
criterion assesses the redshift drift of the Lyman-α spectra
forest observed for distant quasars in the range of 2 ≤ z ≤ 5
[73–75]. This quantity is defined by

�v ≡ c�z

1 + z
= cH0�t0

(

1 − H (z)

1 + z

)

, (39)

where c is the speed of light. Expansion history of our cosmos
can be examined by Sandage–Loeb test corresponding to its
direct geometric measurement. �t0 is observation time inter-
val in Eq. (39). Figure 11 indicates dimensionless quantity,
�v/cH0�t0, versus redshift. Higher value of the viscosity
leads to more deviation from ΛCDM model.

5 Consistency with recent observations

In this section, we consider most recent observational data
sets to constrain free parameters of our model. Accordingly,
we are able to check the consistency of the viscous dark
energy model. In principle one can refer to the following
observables to examine the nature of dark energy:

(I) Expansion rate of the Universe.
(II) Variation of gravitational potential, producing ISW

effect.
(III) Cross-correlation of CMB and large scale structures.
(IV) Growth of structures.
(V) Weak lensing.

Throughout this paper, we concentrate on almost evolution
expansion such as distance modulus of supernova type Ia
and the gamma ray bursts (GRBs), baryon acoustic oscilla-
tions (BAO) and Hubble space telescope (HST). The CMB
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Fig. 9 Upper panel the H(z)
(1+z)

as a function of the redshift.
Middle panel deceleration probe
diagnostic. Lower panel jerk,
snap, lerk and maxout
parameters for the bulk viscous
model with respect to ΛCDM
model. Solid lines represents
corresponding quantity for
ΛCDM. Other lines are
associated with different values
for viscosity. The rest of free
parameters have been fixed
according to JLA observation at
1σ confidence level
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Fig. 10 Om(z) diagnostic: solid lines represents Om(z) for the cos-
mological constant. Dashed and dot-dashed lines represents Om(z) for
ΛCDM with w = −0.90 and w = −1.20, respectively. Thick solid
line with corresponding 1σ confidence interval determined by JLA
observation represents Om(z) for the viscous dark energy model for
γ = 0.14. A long-dashed line corresponds to γ = 0.60 demonstrating
that dynamical dark energy model has almost quintessence behavior
during the evolution of the Universe

Fig. 11 The dimensionless redshift drift for various values of the vis-
cosity of the viscous dark energy model. At the early time, the value of
this parameter is more than the standard model due to contribution of
the viscosity. In this plot we assume that c = 1

power spectrum which is mainly affected by background evo-
lution is also considered. The new cosmographic data sets,
namely the cosmographic distance ratio and age test, will
be used for further consistency considerations. We assume
a flat background, so Ω0

tot = Ω0
m + Ω0

b + Ω0
r + Ω0

DE = 1.
We fixed energy density of radiation by other relevant obser-
vations [76]. The priors considered for the parameter space
have been reported in Table 2.

5.1 Luminosity distance implication

The supernova type Ia (SNIa) is supposed to be a standard
candle in cosmology, therefore we are able to use observed

Table 2 Priors on parameter space, used in the posterior analysis in
this paper

Parameter Prior Shape of PDF

Ω0
tot 1.000 Fixed

Ωbh2 [0.005–0.100] Top-Hat

Ωmh2 [0.001–0.990] Top-Hat

γ [0.000–0.200] Top-Hat

H0 [40.0–100.0] Top-Hat

τopt [0.01–0.80] Top-Hat

ns [0.800–1.200] Top-Hat

ln(1010As) [2.000–4.000] Top-Hat

SNIa to determine the cosmological distance. SNIa is the
main evidence for late time accelerating expansion [1,2].
Direct observations of SNIa do not provide a standard ruler
but rather gives a distance modulus defined by

μ(z; {Θp}) ≡ m − M

= 5 log10

(
dL(z; {Θp})

Mpc

)

+ 25, (40)

where m and M are apparent and absolute magnitudes,
respectively. For a spatially flat Universe, the luminosity dis-
tance defined in the above equation reads

dL(z; {Θp}) = c

H0
(1 + z)

∫ z

0

dz′

H (z′; {Θp}) . (41)

In order to compare the observational data set with that of
predicted by our model, we utilize likelihood function with
the following χ2:

χ2
SNIa ≡ �μ† · C−1

SNIa · �μ, (42)

where �μ ≡ μobs(z) − μ(z; {Θp}) and CSNIa is the covari-
ance matrix of SNIa data sets. μobs(z) is observed distance
modulus for a SNIa located at redshift z (relevant data sets
and corresponding covariance is available on website [77]).
Marginalizing over H0 as a nuisance parameter yields [76]

χ2
SNIa = M † · C−1

SNIa · M + ASNIa + BSNIa, (43)

where M ≡ μobs(z) − 25 − 5 log10[H0dL(z; {Θp})/c], and

A ≡ −
[∑

i, j M (zi ; {Θp})C−1
SNIa(zi , z j ) − ln 10/5

]2

∑
i, j C

−1
SNIa(zi , z j )

,

(44)

B ≡ −2 ln

(
ln 10

5

√
2π

∑
i, j C

−1
SNIa(zi , z j )

)

. (45)

We also take into account gamma ray bursts (GRBs) proposed
as most luminous astrophysical objects at high redshift as
the complementary standard candles. For GRBs, the χ2

GRBs
is given by
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χ2
GRBs =

∑

i

M 2(zi ; {Θp})
σ 2
i

+ AGRBs + BGRBs, (46)

where

AGRBs ≡ −

[
∑

i
M (zi ;{Θp})

σ 2
i

− ln 10/5

]2

∑
i

1
σ 2
i

, (47)

BGRBs ≡ −2 ln

⎛

⎜
⎝

ln 10

5

√
√
√
√

2π
∑

i
1
σ 2
i

⎞

⎟
⎠ . (48)

Finally for SNIa and GRBs observations, we construct
χ2
SG ≡ χ2

SNIa+χ2
GRBs. In this paper we used recent joint light-

curve analysis (JLA) sample constructed from the SNLS
and SDSS SNIa data, together with several samples of low
redshift SNIa [76]. We also utilize the “Hymnium” sample
including 59 samples for GRBs data set. These data sets have
been extracted out of 109 long GRBs [78].

5.2 Baryon acoustic oscillations

Baryon acoustic oscillations or in brief BAO at recombina-
tion era are the footprint of oscillations in the baryon-photon
plasma on the matter power spectrum. It can be utilized as a
typical standard ruler, calibrated to the sound horizon at the
end of the drag epoch. Since the acoustic scale is so large,
BAO are largely unaffected by nonlinear evolution. The BAO
data can be applied to measure both the angular diameter dis-
tance, DA(z; {Θp}), and the expansion rate of the Universe
H(z; {Θp}) either separately or through their combination
as [76]:

DV (z; {Θp}) =
[

(1 + z)2D2
A(z; {Θp}) cz

H(z; {Θp})
]1/3

,

(49)

where DV (z; {Θp}) is volume-distance. The distance ratio
used as BAO criterion is defined by

dBAO(z; {Θp}) ≡ rs(z; {Θp})
DV (z; {Θp}) , (50)

here rs(z; {Θp}) is the comoving sound horizon. In this paper
to take into account different aspects of BAO observations
and improving our constraints, we use 6 reliable measure-
ments of BAO indicators including Sloan Digital Sky Survey
(SDSS) data release 7 (DR7) [80], SDSS-III Baryon Oscilla-
tion Spectroscopic Survey (BOSS) [81], WiggleZ survey [82]
and 6dFGS survey [79]. BAO observations contain 6 mea-
surements from redshift interval, z ∈ [0.1, 0.7] (for observed
values at higher redshift one can refer to [84]). The observed
values for mentioned redshift interval have been reported in
Table 3. Also the inverse of covariance matrix is given by

C−1
BAO =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

4444.4 0 0 0 0 0
0 34.602 0 0 0 0
0 0 20.661157 0 0 0
0 0 0 24532.1 −25137.7 12099.1
0 0 0 −25137.7 134598.4 −64783.9
0 0 0 12099.1 −64783.9 128837.6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (51)

Therefore χ2
BAO is written by

χ2
BAO ≡ �d† · C−1

BAO · �d. (52)

In the above equation �d(z; {Θp}) ≡ dobs(z) − dBAO

(z; {Θp}) and C−1
BAO is given by Eq. (51). The dobs(z) is

reported in Table 3.

5.3 CMB observations

Another part of data to put observational constraints on free
parameter of the viscous dark energy model is devoted to
CMB observations. Here we use the following likelihood
function for CMB power spectrum observations:

χ2
CMB−power = �C† · M−1

CMB · �C, (53)

where �C� ≡ Cobs
� − C�({Θp}) and MCMB is the covari-

ance matrix for the CMB power spectrum. As a comple-
mentary part for the CMB observational constraints, we also

Table 3 Observed data for BAO [83]

Redshift Data set rs/DV (z; {Θp}) References

0.10 6dFGS 0.336 ± 0.015 [79]

0.35 SDSS-DR7-rec 0.113 ± 0.002 [80]

0.57 SDSS-DR9-rec 0.073 ± 0.001 [81]

0.44 WiggleZ 0.0916 ± 0.0071 [82]

0.60 WiggleZ 0.0726 ± 0.0034 [82]

0.73 WiggleZ 0.0592 ± 0.0032 [82]
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used CMB lensing from SMICA pipeline of Planck 2015.
To compute CMB power spectrum for our model, we used
Boltzmann code CAMB [85]. Here, we do not consider dark
energy clustering, consequently, at the first step, perturba-
tions in radiation, baryonic and cold dark matters are mainly
affected by background evolution which is modified due to
presence of the viscous dark energy. However, the precise
computation of perturbations should be taken into account
perturbation in the viscous dark energy, but since DE in our
model at the early Universe is almost similar to cosmolog-
ical constant, consequently mentioned terms at this level of
perturbation can be negligible. This case is out of the scope
of the current paper and we postpone such accurate consid-
erations for another study. We made a careful modification
to the CAMB code and combined with publicly available
cosmological Markov Chain Monte Carlo code CosmoMC
[86].

5.4 HST-key project

In order to adjust better constraint on the local expansion
rate of Universe, we use the Hubble constant measurement
from Hubble space telescope (HST). Therefore additional
observational point for analysis is [87]:

H0 = 73.8 ± 2.4 km s−1 Mpc−1.

In the next section, we will show the results of our analysis
for best fit values for the free parameters and their confidence
intervals for one and two dimensions.

6 Results and discussion

As discussed in previous section, to examine the consistency
of our viscous dark energy model with most recent observa-
tions, we use the following tests:

1. SNIa luminosity distance from joint light-curve analysis
(JLA) which made from SNLS and SDSS SNIa compi-
lation.

2. GRBs data sets for large interval of redshift as a comple-
mentary part for luminosity distance constraints.

3. BAO data from galaxy surveys SDSS DR11, SDSS DR11
CMASS, 6dF.

4. CMB temperature fluctuations angular power spectrum
from Planck 2015 results.

5. CMB lensing from SMICA pipeline of Planck 2015.
6. Hubble constant measurement from Hubble space tele-

scope (HST) (H0 = 73.8 ± 2.4km s−1 Mpc−1) with a
flat prior.

7. Cosmographic distance ratio test.
8. Hubble parameter for different redshifts.
9. Cosmic age test.

In the upper panel of Fig. 12, we plot the luminosity dis-
tance for the ΛCDM best fit (solid line) and the viscous
dark energy model for different values of γ . In our viscous
dark energy model, the EoS at late time belongs to phan-
tom type, therefore by increasing the value of γ when the
other parameters are fixed, the contribution of the viscous
dark energy becomes lower than the cosmological constant.
Subsequently, the distance modulus is longer than that for
the cosmological constant. For complementary analysis, we
also added GRBs results for the observational constraint.
The lower panel indicates the BAO observable quantity. The
higher value of viscosity for the dark energy model causes
good agreement between model and observations. In such
a case, the consistency with early observations decreases,
therefore, there is a trade off in determining γ with respect to
late and early time observational data sets. A marginalized
posterior probability function for various free parameters of
the viscous dark energy model have been indicated in Fig. 13.

Fig. 12 Upper panel distance modulus of bulk viscous model com-
pared with JLA and GRBs data. Lower panel BAO observables for the
viscous dark energy and ΛCDM models. The observed data sets are
reported in Table 3
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Fig. 13 Marginalized posterior function for various free parameters of
the dynamical dark energy model. The dashed line represents observa-
tional constraint by joint analysis JLA + GRBs. The solid line corre-
sponds to BAO analysis while long-dashed line indicates observational
consistency for HST project

In this figure we find that different observations to confine γ ,
Ω0

DE and H0 are almost consistent. The results of a Bayesian
analysis to find best fit values for the free parameters of vis-

Table 4 Best fit values for the viscous dark energy using JLA and
combination with GRBs at 68% confidence interval

Parameter JLA JLA + GRBs

Ωbh2 0.0232+0.0019
−0.0027 0.026 ± 0.012

Ωmh2 0.1175+0.0073
−0.0089 0.1202+0.0062

−0.011

γ 0.1386+0.0034
−0.0024 0.137+0.032

−0.021

Ω0
DE 0.701 ± 0.025 0.705+0.030

−0.035

H0 68.8+2.1
−2.8 70.6+2.2

−6.4

Age/Gyr 13.73+0.75
−0.86 13.5+1.5

−2.0

cous dark energy model (Table 2) at 1σ confidence interval
have been reported in Table 4. In Table 5 the best fit values
for the parameters using BAO, HST and the combination of
observations, JLA + GRBs + BAO + HST (JGBH), have
been reported at 68% confidence interval.

The contour plots for various pairs of free parameters
are indicated in Fig. 14. Our results demonstrate that there
exists acceptable consistency between different observations
in determining best fit values for the free parameters of the
viscous dark energy model. Figure 15 illustrates the contour
plot in the Ω0

DE–γ plane. The effect of changing the Hubble
constant at the present time on the degeneracy of the men-
tioned parameters represents that by increasing the value of
H0, the best fit value for the viscous dark energy density at
present time increases while the viscosity parameter is almost
not sensitive.

It turns out that at the early Universe the cosmological
constant has no role in evolution of the Universe; on the
contrary, it is an opportunity for a dynamical dark energy to

Fig. 14 Marginalized confidence regions at 68 and 95% confidence
levels

Table 5 Bayesian 68%
confidence limits for a model
based on JLA, BAO, HST and
JLA + GRBs + BAO + HST

Parameter BAO HST JGBH

Ωbh2 0.02277+0.00092
−0.0017 0.0222+0.0022

−0.0016 0.0223+0.0013
−0.0021

Ωmh2 0.1194+0.0031
−0.0044 0.111+0.011

−0.0088 0.1181+0.0018
−0.0022

γ 0.1406+0.0032
−0.0024 0.1403+0.0014

−0.0012 0.1404 ± 0.0014

Ω0
DE 0.692 ± 0.012 0.734+0.031

−0.048 0.696 ± 0.010

H0 68.07+0.85
−1.3 71.4+2.6

−3.6 68.1 ± 1.3

Age/Gyr 13.74+0.42
−0.48 13.70+0.58

−0.62 13.79+0.29
−0.32
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Fig. 15 The effect of varying H0 on the degeneracy between Ω0
DE–γ

in the contour enclosing 68 and 95% confidence intervals

contribute effectively on that epoch. However, according to
Fig. 2 the viscous dark energy to cold dark matter ratio at early
epoch asymptotically goes to zero, nevertheless, we use CMB
observation to examine the consistency of our viscous model.
In Fig. 16, we indicate the behavior of our dynamical dark
energy model on the power spectrum of CMB. The higher
the value of γ , the lower contribution of the dynamical dark
energy model at the late time (see Fig. 2), resulting in lower
value of ISW effect. Consequently, the value of �(�+1)C� for
small � decreases. For γ > γ× due to changing the nature of
the dark energy model, the mentioned behavior is no longer
valid and the Sachs–Wolfe plateau becomes larger (see the
lower panel of Fig. 16). Considering Planck TT data, the best
fit values are γ = 0.32+0.31

−0.26 and Ω0
DE = 0.684+0.026

−0.028 at 68%
confidence interval in a flat Universe. Planck TT observation
does not provide a strong constraint on viscous parameter,
γ . CMB lensing observational data put a strict constraint on
the γ coefficient as reported in Table 6.

Combining JLA + GRBs + BAO + HST with Planck
TT data leads to a tight constraint on both γ and Ω0

DE. On
the other hand, if we combine JLA, GRBs, BAO and HST
(JGBH), our results demonstrate that γ = 0.1404 ± 0.0014
and Ω0

DE = 0.696±0.010 consequently as regards accuracy
improves remarkably.

The tension in the value of H0 in this model disappears if
we compare the best fit value for H0 using local observations
and that of determined by CMB. This result is due to the early
behavior of our viscous dark energy model.

In what follows we deal with the cosmographic distance
ratio, the Hubble parameter and cosmic age to examine an
additional aspect of the viscous dark energy model. Recently
Miyatake et al. used the cross-correlation optical weak lens-
ing and CMB lensing and introduced a purely geometric
quantity. This quantity is the so-called cosmographic dis-
tance ratio defined by [60–62]

Fig. 16 Upper panel CMB power spectrum for bulk viscous and
ΛCDM model. Lower panel the viscous coefficient leads to ups and
downs in power spectrum for higher � while for small � due to ISW
contribution the plateau of power varies depending on value of γ

r ≡ DA(aL, ag)DA(ac)

DA(aL, ac)DA(ag)
, (54)

where DA is the angular diameter distance. aL, ag and ac are
scale factors for lensing structure, the background galaxy
source plane and CMB, respectively. Here we used three
observational values reported in [88] based on CMB and
Galaxy lensing. Figure 17 represents r as a function of the
redshift for the best values constrained by various observa-
tions in the viscous dark energy model. A higher value of
the viscosity leads to better coincidence with current obser-
vations. Since in our model the maximum best value for
viscosity is given by the Planck TT observation, which is
γ = 0.32+0.31

−0.26 at 1σ confidence interval, one can con-
clude that current observational data for r have been mostly
affected by CMB when we consider the viscous dark energy
model as a dynamical dark energy.

We inspect the Hubble parameter in our model. To this end,
by using Eq. (14) one can compute the rate of expansion as a
function if redshift and compare it with the observed Hubble
parameter listed in Table 7 for various redshift [89].
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Table 6 Bayesian 68%
confidence limits for a model
based on Planck TT, CMB
Lensing and Planck TT + JGBH

Parameter Planck TT CMB lensing Planck TT + JGBH

Ωbh2 0.02210+0.00037
−0.00036 0.0220+0.0031

−0.0069 0.02220 ± 0.00016

Ωmh2 0.1198+0.0045
−0.0044 0.118+0.012

−0.011 0.1182 ± 0.0013

γ 0.32+0.31
−0.26 0.14278+0.00053

−0.0086 0.26+0.22
−0.20

Ω0
DE 0.684+0.026

−0.028 0.693+0.038
−0.070 0.694+0.014

−0.015

H0 67.2+1.9
−1.9 68.7+1.4

−7.1 67.9 ± 1.1

Age/Gyr 13.826+0.067
−0.068 13.8+1.1

−1.7 13.802+0.050
−0.050

Fig. 17 Cosmographic distance ratio for the viscous dark energy
model. The solid line corresponds to γ = 0.14 according to best fit
by JLA observation, a dotted line indicates the case γ = 0.40 and a
dash-dot line is for γ = 0.80. Observed data are given from [88]

Figure 18 shows Hubble expansion rate for viscous dark
energy model. There is good agreement between this model
and observed values for small γ . In Table 7 we summarize
all H(z) measurements used in upper panel of Fig. 18.

One can rewrite H (z; {Θp}) ≡ H(z; {Θp})/H0 and we
introduce the relative difference �H (z; {Θp}) as follows:

�H (z; {Θp}) = 100 ×
[
H (z; {Θp})
HΛCDM (z)

− 1

]

. (55)

The above quantity has been illustrated in the lower panel
of Fig. 18 as a function of the redshift. For higher value of
γ at small redshift, we get a pronounced difference between
viscous dark energy and cosmological constant.

The cosmic age crisis is long standing subject in the cos-
mology and is a proper litmus test to examine dynamical dark
energy model. Due to many objects observed at intermediate
and high redshifts, there exist some challenges to accommo-
date some of old high redshift galaxies (OHRG) in ΛCDM
model [90]. There are many suggestion to resolve mentioned
cosmic age crisis [91–93], however, this discrepancy has not
completely removed yet and it becomes as smoking gun of

Table 7 H(z) measurements
(in unit [km s−1 Mpc−1]) and
their errors [89]

z H(z) σH

0.070 69 19.6

0.100 69 12

0.120 68.6 26.2

0.170 83 8

0.179 75 4

0.199 75 5

0.200 72.9 29.6

0.270 77 14

0.280 88.8 36.6

0.350 76.3 5.6

0.352 83 14

0.400 95 17

0.440 82.6 7.8

0.480 97 62

0.593 104 13

0.600 87.9 6.1

0.680 92 8

0.730 97.3 7.0

0.781 105 12

0.875 125 17

0.880 90 40

0.900 117 23

1.037 154 20

1.300 168 17

1.430 177 18

1.530 140 14

1.750 202 40

2.300 224 8

evidence for the advocating dark energy component. As an
illustration, Simon et al. demonstrated the lookback time red-
shift data by computing the age of some old passive galaxies
at the redshift interval 0.11 ≤ z ≤ 1.84 with 2 high redshift
radio galaxies at z = 1.55, which is named LBDS 53W091
with age equates to 3.5-Gyr [94,95] and the LBDS 53W069
a 4.0-Gyr at z = 1.43 [96], totally they used 32 objects [97].
In addition, nine extremely old globular clusters older than
the present cosmic age based on 7-year WMAP observations
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Fig. 18 Upper panel Hubble parameter in comparison with various
observational values for H(z). Lower panel relative difference of
dimensionless Hubble parameter as a function of the redshift for various
values of the viscosity

have been found in [98]. Beside the mentioned objects to
check the smoking gun of dark energy models, a quasar APM
08279 + 5255 at z = 3.91, with an age equal to t = 2.1+0.9

−0.1
Gyr, is considered [99]. To check the age-consistency, we
introduce the quantity

τ(zi ; {Θp}) = t (zi ; {Θp})
tobs(zi )

, i = 1 · · · 42, (56)

where t (zi ; {Θp}) is the age of the Universe computed by
Eq. (35) and tobs(zi ) is an estimation for the age of the i th
old cosmological object. In the above equation τ ≥ 1 corre-
sponds to compatibility of the model based on the observed
objects. Nine extremely old globular clusters are located in
M31 and we report their τ values in Table 8. As indicated
in the mentioned table, only B050 is in tension over 4σ with
current observations. In addition in Fig. 19, we illustrate the
value of τ for the rest of the data for various observational
constraints. At 2σ confidence interval, there is no tension

with cosmic age in the viscous dark energy model even for
a very old high redshift quasar, 08279 + 5255, at z = 3.91.
Therefore, all old objects used in the age crisis analysis can
be accommodated by considering the viscous dark energy
model.

Finally, considering the bulk viscous model and by com-
bining different observations, one can improve the age crisis
in the framework of very old globular clusters and high red-
shift objects.

7 Summary and conclusions

In this paper, we examined a modified version for dark energy
model inspired by dissipative phenomena in fluids according
to Eckart theory as the zero-order level for the thermody-
namical dissipative process. In order to satisfy the statistical
isotropy, we assumed a special form for he dark energy bulk
viscosity. In this model, we have two components for the
energy contents without any interaction between them. Our
viscous dark energy model showed phantom-crossing which
avoids the big-rip singularity. Our results, however, indicated
that the energy density of the viscous dark energy becomes
zero at a typical scale factor, ã (Eq. (15)), depending on the
viscous coefficient, interestingly there is no ambiguity for
the time definition in the mentioned model (see Eq. (20) for
the one-component case).

We have also proposed a non-minimal derivative cou-
pling scalar field with zero potential to describe viscous
dark energy model for a two-component Universe. In this
approach, the coupling parameter is related to the viscous
coefficient and the present dark energy density. For zero
value of γ , the standard action for canonical scalar field to
be retrieved. To achieve real value for scalar field, ε should
be negative. According to Eq. (30), the coupling parameter is
bounded according to κ ∈ [−1/9H2

0 (1−Ω0
DE), 0]. Evolution

of φ̃ indicated that the scalar field has no monotonic behavior
as the scale factor increases. Subsequently, at ã the value of
ρφ becomes zero corresponding to the phantom-crossing era.

From observational consistency points of view, we exam-
ined the effect of the viscous dark energy model on the geo-
metrical parameters, namely, comoving distance, Alcock–
Paczynski test, comoving volume element and age of the
Universe. The comoving radius of the Universe for γ < γ×
shows growing behavior, indicating the phantom type of the
viscous dark energy. The Alcock–Paczynski test showed that
there is a sharp variation in the relative behavior of the vis-
cous dark energy model with respect to the cosmological
constant at low redshift. The redshift interval for the occur-
ring mentioned variation is almost independent from the vis-
cous coefficient. The comoving volume element increased by
increasing the viscous coefficient for γ < γ×, which results
in growing number-count of cosmological objects.

123



Eur. Phys. J. C (2017) 77 :541 Page 19 of 22 541

Table 8 The τ value for nine
old globular cluster located in
the M31 galaxy [98]

Name JLA + GRBs BAO JGBH TT + JGBH

B024 0.959+0.055
−0.053 0.951+0.049

−0.053 0.991+0.049
−0.049 0.960+0.048

−0.048

B050 0.914+0.032
−0.029 0.906+0.022

−0.030 0.944+0.019
−0.019 0.915+0.019

−0.019

B129 0.969+0.053
−0.051 0.960+0.047

−0.051 1.001+0.047
−0.047 0.969+0.045

−0.046

B144D 1.019+0.074
−0.072 1.010+0.068

−0.072 1.052+0.070
−0.070 1.019+0.068

−0.068

B239 1.009+0.146
−0.145 1.000+0.142

−0.144 1.042+0.147
−0.147 1.010+0.143

−0.143

B260 1.023+0.047
−0.044 1.014+0.039

−0.045 1.057+0.037
−0.038 1.024+0.037

−0.037

B297D 0.964+0.061
−0.059 0.955+0.055

−0.059 0.995+0.056
−0.056 0.964+0.054

−0.054

B383 1.046+0.084
−0.083 1.037+0.079

−0.082 1.080+0.081
−0.081 1.046+0.079

−0.079

B495 1.006+0.049
−0.046 0.997+0.041

−0.046 1.039+0.040
−0.040 1.007+0.039

−0.039

Fig. 19 τ as a function of the redshift for 32 old objects. Data have been given from [96,97,99]

To discriminate between different candidates for dark
energy, there are some useful criteria. In this paper, the
cosmographic parameters have been examined and relevant
results showed that at the late time it is possible to distin-
guish viscous dark energy from cosmological constant. As
indicated in Fig. 9 at low redshift there is a meaningful dif-
ferences between the bulk viscous model and ΛCDM model.
For completeness, we also used the Om-diagnostic method

and Sandage–Loeb test to evaluate the behavior of the viscous
dark energy model. Mentioned measures are very sensitive
to classifying our model depending on the γ parameter. For
small γ , Om(z) represents the phantom type and it is possible
to distinguish this model from ΛCDM.

To perform a systematic analysis and to put observational
constraints on model free parameters reported in Table 2, we
considered supernovae, gamma ray bursts, baryonic acoustic
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oscillation, Hubble Space Telescope, Planck data for CMB
observations. To compare theoretical distance modulus with
observations, we used recent SNIa catalogs and gamma ray
bursts including higher redshift objects. The best fit param-
eters according to SNIa by the JLA catalog are Ωbh2 =
0.0232+0.0019

−0.0027, Ω0
DE = 0.701 ± 0.025, γ = 0.1386+0.0034

−0.0024

and H0 = 68.8+2.1
−2.8 in the 68% confidence limit. Including

GRBs data increased the viscous dark energy content at the
present time. The best fit values from the joint analysis of JLA
+ GRBs + BAO + HST results in Ω0

DE = 0.696 ± 0.010,
γ = 0.1404 ± 0.0014 and H0 = 68.1 ± 1.3 at 1σ con-
fidence interval (see Tables 4, 5). According to Planck TT
observation, the value of the viscosity coefficient increases
considerably and grows to γ = 0.32+0.31

−0.26. The tension in the
Hubble parameter is almost resolved in the presence of the
viscous dark energy component. A joint analysis of JGBH
+ Planck TT causes H0 = 67.9 ± 1.1 at 68% level of con-
fidence. It is worth noting that using the late time observa-
tions confirmed that the viscous dark energy model is at a
reliable level (see Fig. 13), while according to our results
reported in Table 6, taking into account early observations
such as the CMB power spectrum removes the mentioned
tight constraint. Marginalized contours have been illustrated
in Fig. 14. The power spectrum of TT represented that the vis-
cous dark energy model has small amplitude ups and downs
for large �, which describes observational data better than
ΛCDM.

As a complementary approach in our investigation, we
have also examined the cosmographic distance ratio and age
crisis revisited by very old cosmological objects at differ-
ent redshifts. According to the cosmographic distance ratio
we found that a higher value of the viscosity leads to bet-
ter agreement with current observational data. Therefore, the
viscous dark energy model constrained by Planck TT obser-
vation (γ = 0.32+0.31

−0.26) is more compatible with data given in
[88]. In the context of the viscous dark energy model, current
data for r are mostly affected by CMB used in determining
gravitational lensing shear (see Fig. 17).

Since there is competition between phantom and
quintessence behavior of the viscous dark energy model, it is
believed that the challenge of accommodation of a cosmolog-
ical old object can be revisited. We used 32 objects located in
0.11 ≤ z ≤ 1.84 accompanying nine extremely old globular
clusters hosted by M31 galaxy. As reported in Table 8, almost
all tensions in the age of all old globular clusters in our model
have been resolved at 2σ confidence interval. However, the
value of τ for quasar APM 08279 + 5255 at z = 3.91, with
t = 2.1+0.9

−0.1 Gyr is less than unity, but in the 68% confidence
limit it is accommodated by the viscous dark energy model
for all observational catalogs (see Fig. 19).

As a concluding remark we must point out that theoretical
and phenomenological modeling of dark energy in order to

diminish the ambiguity about this kind of energy content have
been considerably of particular interest. In principle, to give
a robust approach to examining dark energy models beyond
cosmological constant, background dynamics and perturba-
tions should be considered. The main part of the present study
was devoted to background evolution. Taking into account
higher order perturbations to constitute a robust approach in
the context of large scale structure resulting in more clear
view about the nature of dark energy. The contribution of
coupling between dark sectors in the presence of the vis-
cosity for dark energy according to our approach is another
useful aspect. Indeed considering the dynamical nature for
dark energy constituent of our Universe potentially enables
us to resolve tensions in observations [100]. These parts of
our research are in progress and we will be addressing them
later.
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