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Abstract In the framework of the Einstein–Maxwell-axion
theory we consider static spherically symmetric solutions
which describe a magnetic monopole in the axionic environ-
ment. These solutions are interpreted as the solutions for an
axionic dyon, the electric charge of which is composite, i.e.
in addition to the standard central electric charge it includes
an effective electric charge induced by the axion–photon cou-
pling. We focus on the analysis of those solutions which are
characterized by the electric field regular at the center. Special
attention is paid to the solutions with the electric field that is
vanishing at the center, and that has the Coulombian asymp-
tote, and thus displays an extremum at some distant sphere.
Constraints on the electric and effective scalar charges of
such an object are discussed.

1 Introduction

In 1987 Wilczek has formulated the idea that for a distant
observer the magnetic monopole in an axionic environment
looks like a dyon with a magnetic and effective electric charge
[1]. This idea was based on the prediction of the axion electro-
dynamics where the interaction between the radial magnetic
field attributed to the monopole and the surrounding pseu-
doscalar (axion) field produces the radial electric field with-
out real electric charge at the center. That is why it is said that
Wilczek in 1987 presented the first example of the so-called
axionic dyon. The axion electrodynamics on which this result
was based have been established and developed in the decade
1977–1987, being inspired by the theoretical discovery of
Peccei and Quinn of the CP-invariance conservation [2] and
by discussions about a new light pseudo-Goldstone boson
introduced by Weinberg [3] and Wilczek [4]. The model of
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the coupling of the pseudoscalar and electromagnetic fields
was formulated in a covariant form by Ni in [5]; the axion
electrodynamics written in the 3-dimensional form was used
by many authors (see, e.g., the work of Sikivie [6]). Since
the axions are considered to be candidates to the dark mat-
ter particles [7–15] the physics of axions had become one of
the key elements of numerous applications to cosmology and
astrophysics. These applications take into consideration var-
ious models of interaction of gravitational, electromagnetic,
scalar and pseudoscalar fields which are nowadays called
the Einstein–Maxwell-axion and Einstein–Maxwell-axion–
dilaton models (see, e.g., [16–18]). Also, these applications
focus the attention on the models which belong to the class
of theories associated with extended axion electrodynamics
[19–26].

In 1991 Lee and Weinberg [27] studied spherically sym-
metric solutions for static black holes with a massless axion-
like scalar field; in fact it was a realization of the Wilczek
idea in the framework of the Einstein–Maxwell-axion the-
ory. Lee and Weinberg have obtained self-consistent master
equations for the axion field and metric coefficients, ana-
lyzed the asymptotic properties of the solutions and stud-
ied the analytic and numeric solutions for the cases of large
and small values of the constant of the axion–photon cou-
pling. If we omit the initial electric charge at the center of the
object described in [27] we find the solution for the axionic
dyon, which was obtained in the framework of the Einstein–
Maxwell-axion model and was predicted in [1] using the
simple Maxwell-axion model. In this sense it can be said
that in [1,27] the authors presented the first (static) exam-
ple of the so-called longitudinal magneto-electric cluster in
which the magnetic and axionically induced electric fields
are parallel to one another. Later the solutions describing the
Longitudinal Clusters were found in the systems with the
pp-wave symmetry [28] and in the context of the search for
fingerprints of relic axions in the terrestrial magnetosphere
[29].
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Now we are interested to find a regular solution for
the axionic dyon. What does this mean? In 1968 Bardeen
[30] attracted the attention to solutions of the field equa-
tions which are regular in the center. The first idea was to
modify the equations for the electric field so that it will
be finite at r = 0; for instance it might be the func-
tion E(r) = Q

r2+a2 with E(0) = Q
a2 and the Coulombian

asymptote E(r) → Q
r2 . In the framework of the Einstein–

Maxwell theory the regularity in the center assumes that
not only the electric field is finite but the metric coeffi-
cients and all curvature invariants are finite as well. The
story of the search for regular solutions is worthy to be
subject of special review; we would like to mention only
three details in this context. First, the nonminimal coupling
of electromagnetic and gauge fields can provide the grav-
itational field to be regular (see, e.g., [31–33]). Second,
the nonminimal coupling can provide the electric field to
be finite in the center (see, e.g., [34–36]). Third, for solu-
tions with a magnetic monopole field the situation is not
perfect; for the mentioned solutions the first invariant of
the electromagnetic (or gauge) field, B2 − E2 is not reg-
ular in the center since the magnetic field, B(r) = ν

r2 ,
in contrast to the electric one, cannot be finite there. As
for the second (pseudo)invariant (B · E) it is possible for
it to be finite in the center, when the electric field is
not only finite, but tends to zero not more slowly than
r2. On the other hand, if the electric field strength E is
finite at the origin but does not vanish, the vector field E
has a hedgehog-like singularity. Therefore if we expect to
find a solution which is characterized by the electric field
being regular in the center in the strict sense of the word,
we should require the condition E(0) = 0 to be satis-
fied.

Thus, searching for the regular axionic dyons we are
faced with the problem to find an exact solution for the field
equations for which the electric component vanishes both at
r → 0 and r → ∞. Below we intend to show that this is
possible for a magnetic monopole surrounded by the pseu-
doscalar (axion) field when the guiding parameters of the
model are specifically coupled.

The paper is organized as follows. In Sect. 2 basic details
of the Einstein–Maxwell-axion theory are revived and well-
known solutions with the vanishing constant of the axion–
photon coupling (γ = 0) are recovered, using the har-
monic spacetime coordinates. In Sect. 3 we analyze the
solutions with nonvanishing γ ; in Sect. 3.1 we discuss an
example of an exact solution for the axionic dyon singu-
lar at the center; in Sect. 3.2 we study (analytically) the
regular solutions of the axion electrostatics in the back-
ground of magnetic monopole; the results of the numer-
ical study are presented in Sect. 3.3. Section 4 contains
conclusions.

2 Einstein–Maxwell-axion model

2.1 Basic formalism

The action functional of the Einstein–Maxwell-axion model
takes the form

SEMa =
∫

L√−g d4x,

L = R

2κ
+ 1

4
Fik Fik + 1

4
γ Fik

∗
Fikφ

− 1

2
∇iφ∇ iφ + 1

2
m2

aφ
2. (1)

Here R is the Ricci scalar; g is the determinant of the metric
tensor gik ; κ is the Einstein constant, Fik is the Maxwell ten-

sor,
∗
Fik denotes its dual tensor, φ stands for the pseudoscalar

(axion) field; γ is the constant of the axion–photon coupling;
and ma is the axion mass.

The variation of the action (1) with respect to potentials of
the electromagnetic field Ai , to the axion field φ, to the space-
time metric gik gives, respectively, the equations of axion
electrodynamics

∇i Fik + γ
∗
Fik∇iφ = 0, (2)

the equation for the axion field φ

∇i∇ iφ + m2
aφ + γ

4
Fik

∗
Fik = 0, (3)

and the equations for the gravitational field

Rik − 1

2
Rgik = κ(T (M)

ik + T (a)
ik ). (4)

Here T (M)
ik and T (a)

ik are the energy-momentum tensors for
the electromagnetic and axion fields, respectively, which are
defined as follows:

T (M)
ik = 1

4
gik Fmn Fmn − Fin Fk

n, (5)

T (a)
ik = ∇iφ∇kφ − 1

2
gik∇nφ∇nφ + 1

2
m2

aφ
2gik . (6)

The dual Maxwell tensor satisfies the equation ∇k
∗
Fik = 0

which is free from information on the axion field.

2.2 Static spherically symmetric spacetime

Let us consider a static spherically symmetric spacetime with
the metric

ds2 = e−2β(u)dt2 − e2β(u)[e−4ρ(u)du2 + e−2ρ(u)d�2].
(7)
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We use the harmonic coordinate system [37] in which the
variable u plays the role of a radial coordinate; the spatial
infinity corresponds to u = 0. We assume that the axion field
depends on the radial coordinate only, i.e. φ = φ(u). This
system is more convenient to analyze scalar field models.
However, when we will need to revive the usual spherical
coordinate notation we put

r = eβ(u)−ρ(u). (8)

At the spatial infinity, i.e at u = 0, asymptotic behavior of the
spacetime metric is supposed to be Minkowskian. It means
that

β(0) = 0, ρ(u)|u→0 ∼ ln u. (9)

In this paper we focus on the study of configurations with a
magnetic monopole located at the center; the Maxwell tensor
components are chosen to be equal to

Fut = q(u)e−2β(u), Fθϕ = μ sin θ, (10)

where the constant μ relates to the magnetic charge, q(u) is
a function to be found. To characterize the electric field it is
convenient to introduce also the scalar quantity E defined as
follows:

E ≡ q

r2 = q e2ρ−2β. (11)

In fact, the scalar E is the tetrad component of the Maxwell
tensor E = √−Fut Fut . In these terms the equations of axion
electrodynamics (2) reduce to one equation

(q − γμφ)′u = 0, (12)

yielding the solution

q = Q + γμ (φ − φ0) . (13)

The constant of integration φ0 is the value of the axion field
at the infinity, i.e. φ(u = 0) = φ0; similarly we define Q =
q(0).

The axion field equation (3) takes now the form

φ′′
uu − γμq e−2β − m2

aφ e2β−4ρ = 0. (14)

Using (13) this equation can be rewritten as follows:

q ′′
uu −γ 2μ2q e−2β −m2

a (q + γμφ0 − Q) e2β−4ρ = 0. (15)

There are four nontrivial equations of the gravitational
field. For the metric (7) four nonvanishing components of

the Einstein tensor Gk
i = Rk

i − 1
2δk

i R are

Gu
u = e−2β+4ρ(β ′

u
2 − ρ′

u
2 + e−2ρ), (16)

Gθ
θ = Gϕ

ϕ = e−2β+4ρ(−β ′
u

2 + ρ′
u

2 + ρ′′
uu), (17)

Gt
t = e−2β+4ρ(−β ′

u
2 + ρ′

u
2 − 2β ′′

uu + 2ρ′′
uu + e−2ρ). (18)

The corresponding four nonvanishing components of the
energy-momentum tensor T k

i = T k(M)
i +T k(a)

i take the form
(see (5) and (6))

T u
u = 1

2
e−2β+4ρ[(μ2 + q2)e−2β − φ′

u
2] + 1

2
m2

aφ
2, (19)

T θ
θ = T ϕ

ϕ = 1

2
e−2β+4ρ[−(μ2 + q2)e−2β+φ′

u
2]+1

2
m2

aφ
2,

(20)

T t
t = 1

2
e−2β+4ρ[(μ2 + q2)e−2β + φ′

u
2] + 1

2
m2

aφ
2. (21)

If we assume (as in [27]) that the axion field is massless,
ma = 0, three independent equations for gravity field can be
rewritten

ρ′′
uu + e−2ρ = 0, (22)

β ′′
uu + κ

2
(μ2 + q2)e−2β = 0, (23)

ρ′
u

2 − e−2ρ = β ′
u

2 + κ

2
φ′

u
2 − κ

2
(μ2 + q2)e−2β. (24)

Clearly the first equation is decoupled from other ones and
can be immediately resolved. Indeed, the first integral of (22)
is

ρ′
u

2 − e−2ρ = C, (25)

and the solution satisfying the condition (9) takes the form

ρ = ln �(C, u),

�(C, u) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sinh νu

ν
, when C = ν2 > 0,

u, when C = 0,
sin νu

ν
, when C = −ν2 < 0.

(26)

Also one can check directly that, with (26), Eq. (23) is a dif-
ferential consequence of (24) with (13). Thus, the key sub-
system of master equations consists of the following pair of
equations:

β ′
u

2 + κ

2γ 2μ2 q ′
u

2 − κ

2
(μ2 + q2)e−2β = C,

q ′′
uu − γ 2μ2q e−2β = 0. (27)

When the quantities β(u) and q(u) are found the axion field
and the electric field can be reconstructed,

φ = φ0 + q − Q

γμ
, E(u) = q(u) e−2β�2(C, u). (28)
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In other words, we have to find two functions β and q which
satisfy the key system of equations (27). Since we use the
nonstandard coordinate u instead of the radial variable r we
would like to comment how the known solutions can be dis-
played in these terms.

2.3 Known solutions in the u-representation with vanishing
constant of axion–photon coupling

In order to illustrate a behavior of the metric functions β,
ρ and the function q, some examples of well-known space-
times will be given, for which the axion–photon coupling is
supposed to be absent, γ = 0.

2.3.1 Schwarzschild solution

When μ = 0 and q = 0 the first equation from Eq. (27)
reduces to the following form:

β ′
u

2 = C > 0 (29)

and the solution to it with the condition (9) can be found
immediately

β = Mu, (30)

where C = M2. Equation (26) gives

ρ = ln

(
sinh Mu

M

)
. (31)

Thus, the Schwarzschild metric is obtained in the harmonic
coordinates

ds2 = e−2Mudt2 − M4 e2Mu

sinh4 Mu
du2 − M2 e2Mu

sinh2 Mu
d�2. (32)

After transformation of the radial coordinate (see (8))

r = M eMu

sinh Mu
, ⇔ u = − 1

2M
ln

(
1 − 2M

r

)

this metric returns to its standard form

ds2 =
(

1 − 2M

r

)
dt2 −

(
1 − 2M

r

)−1

dr2 − r2d�2.

The constant M plays here the role of the mass. It should
be mentioned that the u-coordinate system covers the
Schwarzschild spacetime from the spatial infinity (u = 0)
till the horizon (u → ∞) only. When u → ∞ the metric
component gtt = e−2Mu tends to zero, i.e., r → 2M .

2.3.2 Reissner–Nordström solution

Let the axion field and the function q be constant, φ = φ0,
γ = 0 and q = Q. Then the second equation from Eq. (27)

is an identity and the first one is simplified as

β ′
u

2 − κ

2
(μ2 + Q2)e−2β = C. (33)

The solution to this equation, which satisfies the condition
β(0) = 0, is

β = ln

[
�(C, u + u∗)

�(C, u∗)

]
, (34)

where the value u∗ can be obtained from the condition

�(C, u∗) =
[
κ(μ2 + Q2)

2

]−1/2

. (35)

In order to clarify the sense of the constant C for the Reissner–
Nordström solution, we consider the case u → 0. At the
origin the metric function β behaves as

β|u→0 ∼
[

C + 1

�(C, u∗)2

]1/2

· u, (36)

and keeping in mind the Schwarzschild solution it is possible
to identify the factor in front of u with the mass M , i.e.,

C = M2 − κ(μ2 + Q2)

2
. (37)

Thus, the Reissner–Nordström solution in the harmonic coor-
dinate system takes the form

ds2 = �(C, u∗)2

�(C, u + u∗)2 dt2

− �(C, u + u∗)2

�(C, u)2 �(C, u∗)2

(
du2

�(C, u)2 + d�2
)

. (38)

We have to compare this solution with the well-known one

ds2 = A(r)dt2 − dr2

A(r)
− r2d�2,

A(r) =
(

1 − M

r

)2

+ 1

2r2 (Q2 + μ2 − 2M2). (39)

The solutions (38) can be identified with (39) keeping in mind
the number of horizons.

(i) One horizon.
When M2 > κ(Q2 + μ2)/2, i.e., when C = ν2 > 0,
there is one horizon at u = ∞ and r(u → ∞) =
M + √

C .
(ii) Naked singularity.

When C = −ν2 < 0, one obtains
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eρ = sin νu

ν
, eβ = sin ν(u + u∗)

sin νu∗
,

u∗ = 1

ν
arcsin

ν√
ν2 + M2

,

r = eβ−ρ =
√

ν2 + M2 · sin ν(u + u∗)
sin νu

. (40)

If u+u∗ = π/ν then r → 0, therefore this point u = u∗
corresponds to the central naked singularity.

(iii) Double horizon. When M2 = κ(Q2 +μ2)/2, i.e., when
C = 0, we obtain

eρ = u, u∗ = 1

M
, e−2β =

(
1 − M

r

)2

, (41)

After transformation of the radial coordinate

r = (1 + Mu)

u
⇔ u = 1

r − M
(42)

one can derive the standard form of the metric

ds2 =
(

1 − M

r

)2

dt2 −
(

1 − M

r

)−2

dr2 − r2d�2.

(43)

2.3.3 Penney and Fisher solutions

When the axion–photon coupling constant γ is equal to zero
and ma = 0, the Eq. (14) reduces to φ′′

uu = 0, thus the axion
field is linear in the variable u

φ = φ0 + Pu. (44)

The integration constant P can be indicated as a scalar (axion)
“charge”. The constant C is now a combination of the charges
P , Q and μ

C = M2 − κ

2
(μ2 + Q2 − P2). (45)

Equation (24) gives now

β2
u = M2 + κ

2
(μ2 + Q2)[e−2β − 1], (46)

and the solution to this equation takes the form

β = ln
�(C̃, u + u∗)

�(C̃, u∗)
. (47)

Here the modified constant C̃ is of the form

C̃ = M2 − κ

2
(μ2 + Q2), (48)

�(C̃, u∗) =
(

κ(μ2 + Q2)

2

)−1/2

. (49)

For the metric functions β and ρ given by (26) the linear
element (7) covers the Penney solution [38]

ds2 = �(C̃, u∗)2

�(C̃, u + u∗)2
dt2

− �(C̃, u + u∗)2

�(C, u)2 �(C̃, u∗)2

(
du2

�(C, u)2 + d�2
)

. (50)

Clearly, when P = 0 the constants C and C̃ coincide and the
Penney solution reduces to the Reissner–Nordström one.

When C̃ = 0, i.e.,

M2 = κ

2
(Q2 + μ2), C = κ P2/2 > 0, u∗ = 1

M
, (51)

we recover the “extremal” Penney solution

ds2 = dt2

(1 + Mu)2 − C(1 + Mu)2

sinh2
√

Cu

(
C du2

sinh2
√

Cu
+ d�2

)
.

(52)

In the particular case that both electric and magnetic charges,
Q and μ, vanish, the metric (50) turns into the Fisher metric
[39]

ds2 = e−2Mudt2 − e2Mu

�(C, u)4 du2 − e2Mu

�(C, u)2 d�2, (53)

where the constant

C = M2 − κ P2

2
(54)

can be positive, vanishing or negative depending on the rela-
tion between the mass M and the scalar (axion) charge P .

3 Solutions with nonvanishing constant of the
axion–photon coupling, γ �= 0

Let us consider the general case for which the axion–photon
coupling constant γ does not vanish. We deal now with the
key system of equations

β ′
u

2 + κ

2γ 2μ2 q ′
u

2 − κ

2
(μ2 + q2)e−2β = C,

q ′′
uu − γ 2μ2q e−2β = 0, (55)
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with the boundary conditions

β(0) = 0, β ′
u(0) = M, q(0) = Q, q ′

u(0) = γμP. (56)

The first condition for β is the requirement that the spacetime
is asymptotically Minkowskian; the second one introduces
the asymptotic Schwarzschild mass M . The first condition
for q means that Q is the asymptotic electric charge. As
for the last condition, this appears from the relationship φ =
φ0 + q−Q

γμ
and the definition for the axion charge φ′

u(0) = P .
As usual we denote the asymptotic value of the pseudoscalar
(axion) field as φ(0) = φ0. For this version of the key system
of equations the constant C is not arbitrary, it satisfies the
condition (45) C = M2 − κ

2 (μ2 + Q2 − P2).
Clearly, the key system of Eq. (55) does not depend on u

explicitly, we see u only as the argument of β(u) and q(u).
This means that particular solutions of the form β = β(q(u))

can be searched and replace the derivative β ′
u by dβ

dq q ′
u in the

key system yielding the following equation:

β ′′
qq = −

1
2κ(μ2 + q2) + γ 2μ2qβ ′

q

Ce2β + 1
2κ(μ2 + q2)

(
β ′

q
2 + κ

2γ 2μ2

)
.

(57)

We will use this consequence in the next subsection to obtain
a particular exact solution to the key system.

3.1 Exact solution with the singularity at the center

In general the key system of equations admits the numerical
study only, which is why we would like to start our discussion
with a particular but explicit example of a solution when the
constant C is vanishing, C = 0. Then the first equation (55)
admits the solution quadratic in q:

β(q) = Q2 − q2

2μ2 , (58)

when the five parameters M , Q, γ , κ , μ satisfy the following
three relationships:

M = γ |Q|, κ = 2γ 2, P = −μsgnQ. (59)

Since C = 0, the second metric coefficient is of the form
ρ(u) = ln u. In order to find the function q(u) we focus
on the second equation (55). With the parameters given by
(59) and boundary conditions (56) the first integral of that
equation is

q ′
u

2 − γ 2μ4e
q2−Q2

μ2 = const = 0, (60)

so that its implicit solution

u = 1

γ P

√
π

2
e

Q2

2μ2

[
erf

(
q

μ
√

2

)
− erf

(
Q

μ
√

2

)]
(61)

is expressed in terms of the Gauss error function erf(x),
defined as

erf(x) = 2√
π

x∫

0

dt e−t2
, erf(−x) = −erf(x). (62)

When |q| = ∞, the first Gauss error function in (61) takes
finite value; this means that there exists a finite value u∞,
for which |q(u∞)| = ∞. For instance, when Q is positive,
q(u∞) = −∞ and u∞ can be found as follows:

u∞ = 1

γ |μ|
√

π

2
e

Q2

2μ2

[
1 + erf

( |Q|
|μ|√2

)]
> 0. (63)

The radial function r (8) also can be presented in terms of
Gauss error functions:

r = eβ−ρ =
√

2

π
γ Pe

− q2

2μ2

×
[

erf

(
q

μ
√

2

)
− erf

(
Q

μ
√

2

)]−1

. (64)

According to this formula, r(u∞) = 0, we obtain E(u∞) =
∞ and φ(u∞) = ∞. In other words, we deal with central
singularity at u = u∞. On the other hand, q = 0 when
u = u0, where

u0 = 1

γ |μ|
√

π

2
e

Q2

2μ2 erf

( |Q|
|μ|√2

)
, (65)

which is valid for arbitrary signs of Q and μ. Similarly, we
obtain

r(u0) =
√

2

π
γ |μ|

[
erf

( |Q|
|μ|√2

)]−1

> 0. (66)

Thus the electric field takes zero value, when u = u0 and r =
r(u0). Since E(u = u0) = E(u = 0) = 0, the function E(u)

reaches its extremum at the finite value of the variable u (the
type of extremum, minimum or maximum, is predetermined
by the sign of the electric charge Q). Typical plots of E(r)

and φ(r) are presented in Fig. 1.
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E/E0

r/

( )Q

Fig. 1 Behavior of the electric and axion fields described by exact
solutions (61), (64). The upper curve is the plot of the normalized electric
field E

E0
, where E0 = Q

γ 2μ2 , as the function of the normalized radial

variable r
γ |μ| . The lower curve relates to the normalized axion field

γμ
Q (φ − φ0). For the presented plots we have chosen |Q| = |μ|

3.2 Axion electrostatics in the background field of the
magnetic monopole

3.2.1 Preamble: the regular solution to the equation of
axion electrostatics in the flat spacetime

In order to simplify further interpretation of solutions, let us
first assume that the background spacetime is flat, i.e., β = 0
and ρ = ln u. Then the last equation in (55) reduces to the
form

q ′′
uu − γ 2μ2q = 0, (67)

and the solution can be obtained that is discovered by Camp-
bell et al. [40] which is regular at the center u = ∞ and
satisfies the condition q(u = 0) = Q

q(u) = Qe−γ |μ|u . (68)

Another boundary condition q ′(0) = γμP gives the con-
straint on the axion charge

P = −Qsgnμ, (69)

for which this regular solution exists.

3.2.2 Exact solution to the equation of axion electrostatics

We assume now that the background gravitational field is
formed by the magnetic monopole without horizons and with
the naked singularity at the center. In fact, the background
metric relates to the Reissner–Nordström solution with a
magnetic charge. This means that C = −ν2 < 0 and

eρ = �(C, u) = sin νu

ν
, ν =

√
R2

μ − M2, (70)

eβ = Rμ

sin ν(u + u∗)
ν

, sin νu∗ = ν

Rμ

. (71)

r = eβ−ρ = Rμ

sin ν(u + u∗)
sin νu

, (72)

where Rμ =
√

κμ2

2 is the Reissner–Nordström radius. When

u + u∗ → π
ν

we obtain eβ → 0 and r → 0.
In this spacetime background the function q(u) which

determines the electric field induced by the axion–photon
coupling satisfies the equation

sin2 ν(u + u∗) quu = γ 2μ2ν2

(ν2 + M2)
q. (73)

The replacement z = i cot ν(u+u∗) transforms this equation
into the Legendre equation,

d

dz

[
(1 − z2)

dq

dz

]
+ α(α + 1)q = 0. (74)

where the parameter α is introduced as follows:

α(α + 1) = γ 2μ2

(ν2 + M2)
= 2γ 2

κ
,

α = 1

2

⎛
⎝±

√
1 + 8γ 2

κ
− 1

⎞
⎠ . (75)

The variable z is complex; the quantity |z| takes the value
|z| = M

ν
at u = 0 and becomes infinite |z| = ∞, when

u = π
ν

− u∗. We search for the solution q(z), which is regu-
lar for the interval M

ν
< |z| < ∞, and we especially require

that the solution is regular at u = π
ν

− u∗. As usual, q(z),
the solution of the Legendre equation (74) is the linear com-
bination of Pα(z) and Qα(z), the Legendre functions of the
first and second kinds, respectively (see, e.g., [41] for details).
Keeping in mind the analytic properties of the Legendre func-
tions, the regular solution for q(u) can be written, satisfying
the condition q(0) = Q, in the following form:

q(u)

Q
= Qα(z(u)) + π i Pα(z(u))�(cot ν(u + u∗))

Qα(i cot νu∗) + π i Pα(i cot νu∗)
,

z(u) = i cot ν(u + u∗). (76)
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Here �(cot ν(u + u∗)) is the Heaviside function; as was
shown in [23] such a structure guarantees the regularity of
the solution on the real axis of the complex plane z. Using
(76) and (72) the electric field E(r) can be presented as a
function of r as follows:

E(r) = Q

r2 · Qα

( i M
ν

�(r)
) + π i Pα

( i M
ν

�(r)
)
�(�(r))

Qα

( i M
ν

) + π i Pα

( i M
ν

) ,

�(r) = 1 − R2
μ

r M
. (77)

3.2.3 Integral representation of the solution

For the analysis of the regularity of the electric field one
can use also the convenient integral representations of the
Legendre functions (see [41])

Qα(i cot x) + π i Pα(i cot x)�(cot x)

= e
iπ(α+1)

2

(sin x)α

π∫

x

dξ (cos x − cos ξ)α

= e
iπ(α+1)

2

(sin x)α

1∫

− cos x

dz
(z + cos x)α√

1 − z2
, (78)

which yields in particular

Qα(i cot νu∗) + π i Pα(i cot νu∗)

= e
iπ(α+1)

2

(
1 + M2

ν2

) α
2

1∫

− M√
ν2+M2

dz

(
z + M√

ν2+M2

)α

√
1 − z2

.

(79)

Using these representations, it is shown that

q

Q
= Nα/2 ·

Zα

([
M
Rμ

− Rμ

r

]
N−1/2

)

Zα( M
Rμ

)
, (80)

where the function Zα(ξ) is defined as follows:

Zα(ξ) =
1∫

−ξ

dt (t + ξ)α√
1 − t2

, (81)

and N is the standard Reissner–Nordström metric coefficient

N = 1 − 2M

r
+ R2

μ

r2 . (82)

The function Zα(ξ) satisfies the following relations:

Zα(0) =
√

π

2
· �(α+1

2 )

�(α+2
2 )

, (83)

Zα(1) = 2α
√

π �(α + 1
2 )

�(α + 1)
, (84)

Zα(−1 + ξ) ∼
√

π

2
· �(α + 1)

�(α + 3
2 )

ξα+ 1
2 , (85)

Zα(ξ)|α→∞ ∼
√

π

2α
(1 + ξ)α+ 1

2 . (86)

Using Eq. (85), we obtain

q

Q

∣∣∣∣
r→0

∼ √
π · �(α + 1)

�(α + 3
2 )

(
1 − M2

R2
μ

)α+1/2

2α+1 Zα( M
Rμ

)

(
r

Rμ

)α+1

.

(87)

The electric field E(r) = q
r2 is regular at the center r = 0

when α ≥ 1. The value E(0) is finite when α = 1, and
E(0) = 0 when α > 1. The second invariant of the elec-

tromagnetic field I(2) ≡ 1
4 Fmn

∗
Fmn is regular at the center,

when α ≥ 3. Indeed,

1

4
Fmn

∗
Fmn = 1√−g

Eutθϕ Fut Fθϕ = μqe4ρ−4β = μq

r4 ,

(88)

thus, at r → 0 the invariant 1
4 Fmn

∗
Fmn ∝ rα−3. In Fig. 2 we

present typical plots of the function E(r) for three values of
the parameter α.

3.2.4 Behavior of the axion field

When the function q(u) is found, the axion field φ = φ0 +
q−Q
γμ

can easily be reconstructed. In particular one sees that
the axion field is regular at the center when the function q(u)

takes finite value at r = 0. We focus now on the following
detail: when u → 0 the quantity q−Q

γμ
tends to uq ′(0)

γμ
. Thus

in fact we have to analyze the value of the quantity P
Q . This

ratio can be calculated as

P

Q
= −

√
α + 1

α
sgnμ

×
(

ν

i Rμ

· Qα+1
( i M

ν

) + π i Pα+1
( i M

ν

)
Qα

( i M
ν

) + π i Pα

( i M
ν

) − M

Rμ

)
. (89)
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E/E0

r/R

Fig. 2 Plots of the function E(r)/E0 where E0 = Q
R2

μ
, for cases where

the electric field is regular at the center. The upper curve relates to the
critical value of the parameter α, α = 1; the electric field at the center
is finite but nonvanishing for α = 1. Two other plots relate to the values
α = 2 and α = 3 (bottom curve); In these cases the electric field takes
the zero value at the center. For presented plots the mass value is chosen
to be equal to M = 0.5Rμ

The integral representation (78) of this quantity gives

P

Q
= −

√
α + 1

α
sgnμ ·

(
Zα+1(

M
Rμ

)

Zα( M
Rμ

)
− M

Rμ

)
. (90)

For two limiting cases, M → 0 and M → Rμ, this expres-
sion takes the form

P

Q

∣∣∣∣
M→0

= − 2sgnμ√
α(α + 1)

·
[

�
(

α
2 + 1

)
�

(
α+1

2

)
]2

, (91)

P

Q

∣∣∣∣
M→Rμ

= −
√

α

α + 1
sgnμ. (92)

Using Eq. (86) the following detail is demonstrated: if α →
∞, i.e., if the axion–photon coupling constant γ is much
greater than

√
κ , the ratio P/Q tends to a constant for any

values of M ∈ [0, Rμ):

P

Q

∣∣∣∣
α→∞

→ −sgnμ. (93)

Thus, in this limit, α → ∞, we obtain the result coinciding
with the flat spacetime case (see (69)).

3.2.5 Limiting case M → Rμ

Let us consider the extremal Reissner–Nordström case with
M → Rμ. For this limit, we have

ν =
√

R2
μ − M2 = 0, u∗ = 1

Rμ

, u = 1

r − Rμ

.

The metric function β takes the form

β = − ln

(
1 − Rμ

r

)
, (94)

while the electric field function q according the Eq. (80) can
be written as follows:

q = Q

(
1 − Rμ

r

)α

, (95)

or, excluding the variable r ,

β = − 1

α
ln

q

Q
. (96)

In contrast to the case M < Rμ, the function q vanishes at
the double horizon r = Rμ �= 0 and eβ |q=0 → ∞.

3.3 Qualitative and numerical studies of the regular
solutions

When the spacetime background is not fixed, i.e. the model is
self-consistent, we have to solve the general system of the key
equations (55) and (57). In contrast to the explicit example
demonstrated in Sect. 3.1 regular solutions to this system can
be presented in a numerical form only.

In this subsection we will study solutions with the electric
field, regular at the center, when the function q vanishes at
r = 0. The metric function β has to tend to −∞, because
the naked singularity associated with the magnetic monopole
cannot be removed. Using Eq. (57), we see that β behaves as

β|q→0 ∼ 1

α + 1
ln

q

Q
, (97)

where the parameter α > −1 has to satisfy the condition

α(α + 1) = 2γ 2

κ
,

α = 1

2

⎛
⎝

√
1 + 8γ 2

κ
− 1

⎞
⎠ .

Obviously, this relation does not differ from the correspond-
ing expression (75) for the background solution. Equation
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|P/Q|

M/R

|P/Q|

M/R

|P/Q|

M/R

Q 0→
|Q|=| |
|Q|= | |
|Q|= | |
|Q|= | |
|Q|= | |

Legend:

Fig. 3 Dependence between the ratio P/Q and the dimensionless mass
M/Rμ, where Rμ = κμ2/2, for the solution with the regular electric
field. The panels relate to specific values of the coupling parameter
α = 1, . . . , 3. The first (left) line corresponds to the limiting case

Q � μ. Other lines correspond to |Q| = n|μ|, where n = 1, . . . , 5.
The gray line defines the relationship between the mass and the charges
P and Q for the spacetime metric with double (extremal) horizon

(97) relates to the following asymptotic behavior of the func-
tions q(u) and β(u):

β(u) ∝ ln(u0 − u), q(u) ∝ (u0 − u)α+1, (98)

where the value u0 corresponds to the value r = 0 at the
center. For instance, for the background solution considered
above u0 = π

ν
− u∗. When eρ does not vanish at u = u0, the

standard radial coordinate r = eβ−ρ behaves as follows:

r ∝ u0 − u,

and we have

q ∝ rα+1, β ∝ ln r. (99)

The first formula coincides qualitatively with the correspond-
ing expression for the background solution (see (87) and the
electric field E(r) = q

r2 vanishes at the center when α > 1
as well.

When u = 0 the boundary conditions (56) give

β|q=Q = 0, β ′
q

∣∣∣
q=Q

= M

γμP
. (100)

If we fix the electric and magnetic charges, Q and μ, the
coupling constant γ and the mass M , the desired solution
to Eq. (57) with conditions (97) and (100) exists only for
a specific value of the axion charge P and the inequality
μP/Q < 0 has to be valid. The latter constraint arises from
the second equation of (55), because
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M/R

|Q/ |

M/R

|Q/ |

M/R

|Q/ |

|P|=0.5| |
|P|=| |

|P|=1.5| |
|P|=2| |
|P|=2. | |

Legend:

Fig. 4 Dependence between the ratio Q/μ and the dimensionless mass
M/Rμ, where Rμ = κμ2/2, for the solution with the regular elec-
tric field. Panels relate to specific values of the coupling parameter
α = 1, . . . , 3. The range M/Rμ ∈ [0, 1) on the horizontal axis corre-

sponds to the limiting case P � μ. Lines on the panel correspond to
|P| = 0.5n|μ|, where n = 1, . . . , 5. The gray line defines the mass–
charge relation for the spacetime metric with double (extremal) horizon

q(0)

Q
= 1,

q(u0)

Q
= 0,

q ′′
uu

Q
= γ 2μ2q e−2β

Q
> 0.

To illustrate the dependence between Q, μ, P and α (or
γ ) we present Figs. 3 and 4. Each figure consists of three
panels, which correspond to specific values of the coupling
parameter α, namely α = 1, 2 and 3, respectively.

On the other hand, if C = 0, then Eq. (57) admits a solu-
tion which at q = 0 behaves as follows (cf. (96)):

β ∼ − 1

α
ln

q

Q
. (101)

As was mentioned above, such a solution corresponds to the
metric, which possesses a double horizon. Curves describing
in Figs. 3 and 4 the relationship between the charges P , Q

and μ, and the mass M for this limiting configuration are
drawn using gray color.

Figure 3 depicts dependence between the ratio P/Q and
the mass M for fixed values of the electric charge Q and the
coupling parameter α. The first (left) curve corresponds to
the limiting case Q � μ described in Sect. 3.2. Other curves
correspond to |Q| = n|μ|, where n = 1, . . . , 5.

Figure 4 illustrates dependence between the ratio Qμ and
the mass M for fixed values of the axion scalar charge P
and the coupling parameter α. The range M/Rμ ∈ [0, 1)

on the horizontal axis corresponds again to the limiting case
P � μ described in Sect. 3.2. Color curves correspond to
|P| = 0.5n|μ| where n = 1, . . . , 5. The gray line defines the
mass-charge relation for the spacetime metric with double
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(extremal) horizon. If the gravitational interaction is much
weaker than the axion–photon coupling, i.e. when γ 2 � κ ,
or, equivalently, α � 1, the color curves become horizontal,
|P| → |Q| (see (69)). The solution of Campbell, Kaloper
and Olive (68) can be considered as a non-gravitational
limit.

4 Conclusions

In the present paper we realize Wilczek’s idea about a mag-
netic monopole surrounded by an axion-induced radial elec-
tric field in the framework of the Einstein–Maxwell model
with the massless axion field. Since this electric field is
created by interaction between the magnetic field of the
monopole and the axion field and is not related to any real
electric charge, the electric field has to be regular in the center
in the strict sense, i.e. E(0) = 0. In this sense our solution is
a generalization of the result of Campbell et al. [40], taking
into account the gravitational field of the monopole.

In Sect. 3.2 we present the four-parameter family of solu-
tions (see Eqs. (77), (80)) in the framework of the axion elec-
trodynamics on the background of the magnetic monopole
gravitational field with the metric of the Reissner–Nordström
type. The fifth parameter, the axion field charge P , is deter-
mined by other parameters, namely the electric and magnetic
charges Q and μ, the mass M and the coupling parameter
α (see Eq. (89)). Besides this relation, the parameters are
bounded by two inequalities which correspond to the require-
ments of the absence of horizons (M2 < κμ2/2) and reg-
ularity at the origin (α > 1). In addition, when α ≥ 3 the

invariant scalar Fik
∗
Fik appears to be regular in the center

too.
In Sect. 3.3, using numerical methods, we solve the total

system of equations attributed to the Einstein–Maxwell-
axion model, in which the gravitational field is self-consistent,
not the background one. We demonstrate that the behavior
of the solutions to the self-consistent system qualitatively
coincides with the background solution. This background
solution can be extracted from the general solution as an
asymptotic case with Q, P � μ.

Acknowledgements The work was supported by Russian Science
Foundation (Project No. 16-12-10401) and, partially, by the Program
of Competitive Growth of Kazan Federal University.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

References

1. F. Wilczek, Two applications of axion electrodynamics. Phys. Rev.
Lett. 58, 1799 (1987)

2. R.D. Peccei, H.R. Quinn, CP conservation in the presence of instan-
tons. Phys. Rev. Lett. 38, 1440 (1977)

3. S. Weinberg, A new light boson? Phys. Rev. Lett. 40, 223 (1978)
4. F. Wilczek, Problem of strong P and T invariance in the presence

of instantons. Phys. Rev. Lett. 40, 279 (1978)
5. W.-T. Ni, Equivalence principles and electromagnetism. Phys. Rev.

Lett. 38, 301 (1977)
6. P. Sikivie, Experimental tests of the “invisible” axion. Phys. Rev.

Lett. 51, 1415 (1983)
7. G.G. Raffelt, Astrophysical methods to constrain axions and other

novel particle phenomena. Phys. Rept. 198, 1 (1990)
8. M.S. Turner, Windows on the axion. Phys. Rept. 197, 67 (1990)
9. E.P.S. Shellard, R.A. Battye, On the origin of dark matter axions.

Phys. Rept. 307, 227 (1998)
10. B.A. Bassett, M. Kunz, Cosmic acceleration vs axion–photon mix-

ing. Astrophys. J. 607, 661 (2004)
11. R. Battesti et al., Axion searches in the past, at present, and in the

near future. Lect. Notes Phys. 741, 199 (2008)
12. F.D. Steffen, Dark-matter candidates—axions, neutralinos, grav-

itinos, and axinos. Eur. Phys. J. C 59, 557 (2009)
13. L.D. Duffy, K. van Bibber, Axions as dark matter particles. N. J.

Phys. 11, 105008 (2009)
14. P. Sikivie, Q. Yang, Bose–Einstein condensation of dark matter

axions. Phys. Rev. Lett. 103, 111301 (2009)
15. M. Khlopov, Fundamentals of Cosmic Particle Physics (Springer,

Berlin, 2012)
16. K. Flathmann, S. Grunau, Analytic solutions of the geodesic equa-

tion for Einstein–Maxwell-dilaton–axion black holes. Phys. Rev.
D 92, 104027 (2015)

17. M. Azreg-Aïnou, G. Clément, D.V. Gal’tsov, All extremal instan-
tons in Einstein–Maxwell-dilaton–axion theory. Phys. Rev. D 84,
104042 (2011)

18. T. Matos, G. Miranda, R. Sanchez-Sanchez, P. Wiederhold, Class
of Einstein–Maxwell-dilaton–axion space-times. Phys. Rev. D 79,
124016 (2009)

19. A.B. Balakin, W.-T. Ni, Non-minimal coupling of photons and
axions. Class. Quantum Grav. 27, 055003 (2010)

20. A.B. Balakin, R.K. Muharlyamov, A.E. Zayats, Non-minimal
Einstein–Maxwell–Vlasov-axion model. Class. Quantum Grav. 31,
025005 (2014)

21. A.B. Balakin, N.O. Tarasova, Extended axion electrodynamics:
optical activity induced by nonstationary dark matter. Gravit. Cos-
mol. 18, 54 (2012)

22. A.B. Balakin, V.V. Bochkarev, N.O. Tarasova, Gradient models of
the axion–photon coupling. Eur. Phys. J. C 72, 1895 (2012)

23. A.B. Balakin, R.K. Muharlyamov, A.E. Zayats, Electromagnetic
waves in an axion-active relativistic plasma non-minimally coupled
to gravity. Eur. Phys. J. C 73, 2647 (2013)

24. A.B. Balakin, R.K. Muharlyamov, A.E. Zayats, Axion-induced
oscillations of cooperative electric field in a cosmic magneto-active
plasma. Eur. Phys. J. D 68, 159 (2014)

25. A.B. Balakin, T.Y. Alpin, Extended axion electrodynamics: anoma-
lous dynamo-optical response induced by gravitational pp-waves.
Gravit. Cosmol. 20, 152 (2014)

26. TYu. Alpin, A.B. Balakin, The Einstein–Maxwell–Aether-axion
theory: dynamo-optical anomaly in the electromagnetic response.
Int. J. Mod. Phys. D 25, 1650048 (2016)

27. K. Lee, E.J. Weinberg, Charged black holes with scalar hairs. Phys.
Rev. D 44, 3159 (1991)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2017) 77 :519 Page 13 of 13 519

28. A.B. Balakin, W.-T. Ni, Anomalous character of the axion–photon
coupling in a magnetic field distorted by a pp-wave gravitational
background. Class. Quantum Grav. 31, 105002 (2014)

29. A.B. Balakin, L.V. Grunskaya, Axion electrodynamics and dark
matter fingerprints in the terrestrial magnetic and electric fields.
Rep. Math. Phys. 71, 45 (2013)

30. J.M. Bardeen, Non-singular general-relativistic gravitational col-
lapse, in Abstracts of the 5th International Conference on Gravi-
tation and the Theory of Relativity, ed. by V.A. Fock, et al. (Tbilisi
University Press, Tbilisi, 1968), p. 174

31. A.B. Balakin, A.E. Zayats, Non-minimal Wu–Yang monopole.
Phys. Lett. B 644, 294 (2007)

32. A.B. Balakin, H. Dehnen, A.E. Zayats, Non-minimal Einstein–
Yang–Mills–Higgs theory: associated, color and color-acoustic
metrics for the Wu–Yang monopole model. Phys. Rev. D 76,
124011 (2007)

33. A.B. Balakin, J.P.S. Lemos, A.E. Zayats, Regular nonminimal mag-
netic black holes in spacetimes with a cosmological constant. Phys.
Rev. D 93, 024008 (2016)

34. A.B. Balakin, V.V. Bochkarev, J.P.S. Lemos, Non-minimal cou-
pling for the gravitational and electromagnetic fields: black hole
solutions and solitons. Phys. Rev. D 77, 084013 (2008)

35. A.B. Balakin, J.P.S. Lemos, A.E. Zayats, Nonminimal coupling
for the gravitational and electromagnetic fields: traversable electric
wormholes. Phys. Rev. D 81, 084015 (2010)

36. A.B. Balakin, A.E. Zayats, Nonminimal black holes with regular
electric field. Int. J. Mod. Phys. D 24, 1542009 (2015)

37. K.A. Bronnikov, Scalar tensor theory and scalar charge. Acta Phys.
Pol. B 4, 251 (1973)

38. R. Penney, Generalization of the Reissner–Nordström solution to
the Einstein field equations. Phys. Rev. 182, 1383 (1969)

39. I.Z. Fisher, Scalar mesostatic field with regard for gravitational
effects. Zh. Eksp. Teor. Fiz. 18, 636 (1948). arXiv:gr-qc/9911008

40. B.A. Campbell, N. Kaloper, K.A. Olive, Axion hair for dyon black
holes. Phys. Lett. B 263, 364 (1991)

41. H. Bateman, A. Erdelyi, Higher Transcendental Functions, vol. 1
(McGraw-Hill, New York, 1953)

123

http://arxiv.org/abs/gr-qc/9911008

	Einstein–Maxwell-axion theory: dyon solution with regular electric field
	Abstract 
	1 Introduction
	2 Einstein–Maxwell-axion model
	2.1 Basic formalism
	2.2 Static spherically symmetric spacetime
	2.3 Known solutions in the u-representation with vanishing constant of axion–photon coupling
	2.3.1 Schwarzschild solution
	2.3.2 Reissner–Nordström solution
	2.3.3 Penney and Fisher solutions


	3 Solutions with nonvanishing constant of the axion–photon coupling, γneq0 
	3.1 Exact solution with the singularity at the center
	3.2 Axion electrostatics in the background field of the magnetic monopole
	3.2.1 Preamble: the regular solution to the equation of axion electrostatics in the flat spacetime
	3.2.2 Exact solution to the equation of axion electrostatics
	3.2.3 Integral representation of the solution
	3.2.4 Behavior of the axion field
	3.2.5 Limiting case MtoRµ

	3.3 Qualitative and numerical studies of the regular solutions

	4 Conclusions
	Acknowledgements
	References




