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Abstract Within the effective QCD action for the Regge
kinematics, the amplitudes for virtual gluon emission are
studied in collision of a projectile with two and three targets.
It is demonstrated that all non-Feynman singularities can-
cel between induced vertices and rescattering contributions.
Formulas simplify considerably in a special gauge, which is
a straightforward generalization of the light-cone gauge for
emission of real gluons.

1 Introduction

In the framework of the perturbative QCD at high ener-
gies and in Regge kinematics strong interactions can be
described in terms of reggeized gluons (“reggeons”), which
combine into colorless pomerons exchanged between col-
liding hadrons. Reggeons and their interactions were first
introduced in the dispersion approach, using multiple uni-
tarity cuts [1–4]. Later, mostly to describe next order con-
tributions, a convenient and powerful method of effective
action was proposed in which the reggeons figure as inde-
pendent dynamical fields interacting with the standard glu-
ons [5,6]. The effective action allows one to present scatter-
ing amplitudes in the Regge kinematics as a sum of diagrams,
similar to the Feynman ones with certain rules for propaga-
tors and interaction vertices [7]. The latter, apart from the
standard QCD vertices, include the so-called induced ver-
tices in which the reggeons interact with two or more glu-
ons. In the effective action approach the scattering ampli-
tudes depend not only on the transversal variables but also
on the longitudinal ones. So one has to perform the longi-
tudinal integrations to reduce the result to the purely trans-
verse form, as in the dispersion approach mentioned above. In
applications to the amplitudes with many in-coming or out-
going reggeons these integrations are not trivial, since the
induced vertices contain singularities in longitudinal vari-
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ables different from the standard Feynman ones. In earlier
papers [8,9] it was shown, however, that the amplitudes for
emission of a real gluon in transition of a reggeon into two
or three reggeons in fact can be rewritten in the purely trans-
verse form with the standard transversal vertices connected
with Feynman propagators. The contribution from induced
vertices becomes substituted by the one from the Feynman
propagators of the rescattering projectile. This result greatly
simplifies application of the approach to real processes, as
was illustrated in [10] where scattering off the deuteron
projectile was studied. Note that this result heavily rested
on the use of a specific gauge, in which the gluon polar-
ization vectors were chosen to be orthogonal to the target
momentum and in which the relevant vertices radically sim-
plify.

However, in applications (say for the total cross-sections)
also vertices for production of a virtual gluon appear. So
the question arises whether the same conclusion holds also
in this case. Concretely if also for the virtual gluon pro-
duction the contribution from the induced vertices can be
traded for the contribution from the projectile rescatter-
ing, thereby liquidating non-Feynman singularities intro-
duced by induced vertices and reducing longitudinal inte-
gration to the standard Feynman ones. To address this
problem is the aim of the present study. We shall find
that the answer is positive in the sense that the non-
Feynman poles are canceled between the contributions from
the vertex and rescattering. There also exists a special
gauge in which the bulk of the result is reduced to essen-
tially transverse vertices connected by Feynman propaga-
tors. However, this also requires a certain small change in
the transverse vertices and taking a new polarization into
account.

These conclusions are rather straightforward in the tran-
sition into two out-going reggeons, considered in Sects. 2
and 3. The considerably more complicated case of three out-
going reggeons is studied in Sects. 4 and 5. Our conclusions
are presented in Sect. 6.
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Note that in [11,12] some simple processes initiated by
virtual gluons and essentially mediated by a single reggeon
exchange were studied. Validity of the effective action tech-
nique was confirmed. However reggeon splitting was not con-
sidered, so that the problems treated in our paper were not
encountered.

2 Emission of a virtual gluon in interaction with two
targets

The amplitude for production of a gluon with momentum
p, polarization vector eμ and color c in the transition of a
reggeon into two reggeons with momenta q1 and q2 and col-
ors b1 and b2 is represented by three diagrams shown on Fig.
1. The left diagram corresponds to emission from the effec-
tive vertex V for transition of a reggeon to two reggeons plus
the virtual gluon (R→RRP vertex). The other two correspond
to rescattering of the projectile.

2.1 Emission from the vertex V

The amplitude corresponding to the left diagram in Fig. 1 is
given by

AV = AV
μe

μ, AV
μ = g3ū(k′)γ +u(k) f ab1d f db2cT a 1

q2⊥
Vμ.

Here k and k′ are the initial and final 4-momenta of the pro-
jectile; q = p+q1+q2, q− = 0. We suppress factors coming
from the targets, which have their initial 4-momenta l. In the
c.m. system both k and l have zero transverse components
and k− = l+ = 0. T is the quark color matrix. The R→RRP
vertex is V = V1 + (1 ↔ 2). In the general gauge and for
arbitrary p part V1 is given by

V1μ = i

4

{
aμ

d1
+ bμ

q1−d1
+ cμ

q1−

}
, (1)

where d1 is the Feynman denominator d1 = (q − q1)
2 + i0,

a(p, q2, q1) = p+(3p + 4q1 + 4q2)μ − 2p2+n−
μ

+n+
μ(−(p + 2q1 + q2, p − q2) + q2

1 + q2
2

−(p + q1 + q2)
2 − (p + q2)

2 + 2p+ p−),

(2)

b(p, q2, q1) = −2(p + q1 + q2)
2⊥

×
[
(p + 2q2)μ − p+n−

μ + n+
μ

(
q2

2

p+
+ p−

)]
, (3)

and

c = 2n−
μ

(p + q1 + q2)
2⊥

p−
. (4)

Here n± = (1, 0, 0,∓1). Note that V p = 0 for arbitrary p.
Terms in (1) contain poles of the Feynman type at (q−q1)

2 =
0 and non-Feynman type atq1− = 0 coming from the induced
vertices. To separate the latter we use

1

q1−d1
= q+

(q − q1)
2⊥d1

+ 1

q1−(q − q1)
2⊥

. (5)

Then V1 is transformed into two parts

V1 = i

4

{
1

d1

(
a+ p+b

(q − q1)
2⊥

)
+ 1

q1−

(
b

(q − q1)
2⊥

+c

)}
.

(6)

We introduce the generalized off-mass-shell Lipatov vertex

2Lμ(p, q2) = − 1

(p+q2)
2⊥

{
(p+2q2)μ+

(
q2

2

p+
+ p−

)
n+

μ

−
(

(p + q2)
2⊥

p−
+ p+

)
n−

μ

}
. (7)

It goes into the standard Lipatov vertex when p− +q2− = 0,
so that p− = −q2−. However, we preserve this definition also
for p− + q2− �= 0, as in our case when p− + q2− = −q1−.
With this definition we find

b

(q − q1)
2⊥

+ c = 4(p + q1 + q2)
2L(p, q2). (8)

The first term in (6) may be used as the definition of the
off-mass-shell Bartels vertex

a + p+b
(q − q1)

2⊥
= −4p+(p + q1 + q2)

2B(p, q2, q1), (9)

so that the vertex V as a whole can be rewritten in the same
form as on the mass shell in the gauge (el) = 0 [8]

V1 = i(p + q1 + q2)
2
{
− p+B(p, q2, q1)

(p + q2)2 + i0
+ L(p, q2)

q1−

}
.

(10)

as well as the amplitude corresponding to emission from the
vertex

AV = ig3ū(k′)γ +u(k) f ab1d f db2cta

×
[
− p+B(p, q2, q1)

(p + q2)2 + i0
+ L(p, q2)

q1−

]
+ (1 ↔ 2).

(11)

Here the unwanted non-Feynman pole at q1− = 0 is sepa-
rated in the second term.

For a real emitted gluon the non-Feynman poles in V were
canceled by the contribution from the rescattering diagrams
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Fig. 1 Production amplitude: vertex and rescattering contributions

on the right in Fig. 1. Presently we study if this also happens
with the virtual emitted gluon.

2.2 Emission from rescattering

The two diagrams in Fig. 1 on the right describe emission of
a gluon during rescattering of the projectile. If one takes into
account the full Feynman projectile propagator they give in
the sum

ARF = g3ū(k′)γ +u(k)

q2− + i0
L(p, q1) f

b1cd tb2 td

+g3ū(k′)γ +u(k)

−q1− + i0
L(p, q2) f

b2cd td tb1 + (1 ↔ 2).

(12)

The emission vertex L(p, q1) is the Lipatov vertex (7) for
of-mass-shell gluon. Note that in contrast to (7) here the sum
of the − components of the two arguments is equal to zero.
However, with our definition in which only p− is used, these
Lipatov vertices coincide with those in (11).

The propagators can be split into the principal value and
delta function terms,

1

±q1,2− + i0
= P 1

±q1,2−
− iπδ(q1,2−).

As was discussed in [8], in the contribution from rescattering
one has to keep only the part of the projectile propagator con-
taining the δ-function. The part containing the principal value
should be dropped. So the final rescattering contribution is

AR = g3ū(k′)γ +u(k)[−iπδ(q2−)L(p, q1) f
b1cd{tb2 , td}

−iπδ(q1−)L(p, q2) f
b2cd{td , tb1}]. (13)

Equation (12) with Feynman propagators is given by the sum

ARF = AR + ARP , (14)

where ARP contains contributions from the principal value
parts of the propagators. One finds

ARP = ig3ū(k′)γ +u(k) f ab1d f db2ctaP
× 1

q1−
L(p, q1) + (1 ↔ 2). (15)

It coincides with the second part of (11) containing the Lipa-
tov vertices, provided the singularities at q1.2− = 0 are taken
in the principal value sense. In the sum of the vertex and
rescattering contributions according to (14) this second part
restores the Feynman propagators in the latter thereby can-
celing all non-Feynman singularities in the total amplitude,
which becomes

Atot = −ig3ū(k′)γ +u(k) f ab1d f db2cT a

× p+B(p, q2, q1)

(p + q2)2 + i0
+ ARF . (16)

So in the end the amplitude does not contain any singulari-
ties different from those provided by the standard Feynman
propagators either for the intermediate gluon or for the rescat-
tering quark.

The final expression for the amplitude is rather compli-
cated. However, as for the real emitted gluon, it drastically
simplifies by the choice of a suitable gauge.

3 Quasi-light-cone gauge

Off-mass-shell gluons have three instead of two polariza-
tions. It is possible to choose polarization vectors with a min-
imal difference as compared to real gluons. One can choose
two of them (transversal) in the same manner as on the mass
shell imposing condition (eT l) = 0 where l is the target
momentum. Then

eT+ = 0, eT− = − (eT p)⊥
p+

, (eT )2 = −1. (17)
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The third, longitudinal in the 4-dimensional sense, can be
chosen as

eLμ =
√
p2

p+
n+

μ − 1√
p2

pμ (18)

with the properties

(eL p) = (eT eL) = 0, (eL)2 = −1. (19)

Vectors eT , eL together with vector e(0)
μ = pμ/

√
p2 form

a set of four independent orthonormalized vectors in the
Lopenz space in which any polarization vector can be
expanded. Excluding e(0) for spin 1 particle one can use eT

and eL as polarization vectors. We call this gauge quasi-light-
cone, having in mind that the purely transverse polarizations
are the same as for the real gluon.

In addition to our previous products with transverse polar-
izations we have then to add products with e(L). Due to
orthogonality of vertices to p this is equivalent to additional
products with n+. Since (eT n+) = (n+)2 = 0 all terms in
the amplitude proportional to n+ vanish in this gauge. So
in the end we can drop all terms in the vertex containing
pμ or n+

μ . This drastically simplifies the resulting expres-
sions.

Effectively this means that in this gauge we can take

aμ = 4p+(q1+q2)μ−2p2+n−
μ, bμ = −2q2(2q2μ− p+n−

μ).

(20)

First we study contribution from polarization eT . One finds

(aeT ) = 4p+(qeT )⊥, (beT ) = −4q2(p + q2, e
T )⊥,

(ceT ) = −4q2 (peT )⊥
p+ p−

.

As a result we get from (9)

(BeT ) = (p + q2, eT )⊥
(p + q2)

2⊥
− (p + q1 + q2, eT )⊥

(p + q1 + q2)
2⊥

. (21)

This is the same expression which one had for the on-mass-
shell gluon. So in this quasi-light-cone gauge, the contri-
bution from the transverse polarizations does not feel the
off-mass-shellness of the gluon. On the other hand we get

(LeT ) = (peT )⊥
p2⊥ − p2

− (q − q1, eT )⊥
(q − q1)

2⊥
. (22)

Comparing with the real gluon we find a change p2⊥ → p2⊥−
p2 in the denominator.

So for polarizations eT the changes in the amplitude (16)
are minimal: part from the vertex V does not change at all and

in the rescattering part the Lipatov vertex contains p2⊥ − p2

instead of simply p2⊥.
The new parts come from polarization eL . One finds

(an+) = −4p2+, (bn+) = 4q2 p+, (cn+) = 4
q2

p−
.

This gives

(BeL) =
√
p2

(
1

q2 − 1

(p + q2)
2⊥

)
(23)

and for the rescattering

(LeL) =
√
p2

(
1

(p + q2)
2⊥

− 1

p2⊥ − p2

)
. (24)

This ends the study of the scattering on two centers. We have
found that, first, as for the real emitted gluon all non-Feynman
singularities at q1,2 = 0 actually go when one uses full Feyn-
man propagators for rescattering. Second, in the specially
chosen gauge results for the purely transversal polarizations
are nearly identical to the real gluon case (except for the
addition of −p2 to p2⊥ in the denominators of the Lipatov
emission vertices for rescattering). New contributions from
polarization eL are proportional to

√
p2 and also contain the

additional −p2 in the Lipatov vertices. Apart from this they
do not depend on longitudinal variables.

4 Interaction with three targets: the R→RRRP vertex

In addition to d1 = (q − q1)
2 + i0 we introduce d2 = (q −

q1 − q2)
2 + i0. Here q = p+ q1 + q2 + q3. We shall use (5)

and

1

d2(q1− + q2−)
= q+

(q − q1 − q2)
2⊥d2

+ 1

(q − q1 − q2)
2⊥

1

q1− + q2−
. (25)

The amplitude for the gluon emission from the R→RRRP
in interaction of the projectile with three targets is illustrated
in Fig. 2. The vertex is composed of various contributions
diagrammatically shown in Fig. 3. The numbers of diagrams
in the following refer to this figure. Black disks refer to effec-
tive vertices in Lipatov’s effective action. Discs with crosses
indicate the so-called induced vertices. The dot in diagram 2
corresponds to the QCD 4-gluon coupling.
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4.1 Diagram 1

We separate the common factor

F1 = 1

8

g4

q2 ū(k′)γ+u(k) f b3ad f b2dc f bb1ctb (26)

The expression for the diagram can then be written as

D1 = − A1

d1d2
− B1

q1−d1d2
. (27)

Fig. 2 The amplitude with the R→RRRP vertex

Here

A1 = p2+(8q − p)μ − 4p3+n−
μ + p+n+

μ

×[(q2+q3−3p)(q+q1)+q2
2 +2q2

3 +q2
1 +q2

−p2 − (p − q3, p + 2q2 + q3) + 4p+ p−] (28)

and

B1 = q2{2p+(−2r − 4q2 − p − 2q3)μ + 4p2+n−
μ

+n+
μ [−4p+4p−+6p2

−2(p − q2 − q3)
2 − 2(q − q1 − q2)

2]}.
(29)

Using (5) we get

D1 = − 1

d1d2

(
A1 + q+B1

(q − q1)
2⊥

)
− B1

q1−(q − q1)
2⊥d2

(30)

Note that both A1 and B1 contain terms proportional to (q −
q1 − q2)

2 which cancel one of the denominators.

Fig. 3 Diagrams for the R→RRRP vertex
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4.2 Diagrams 2 and 3

For diagrams 2 and 3 we have

D2+3 = 1

d2

(
4p+q2⊥n−

μ

(q1 + q2)−q1−
− 4q2⊥(p + 2q3)μ

(q1 + q2)−q1−

−2(p − q3)−q2⊥n+
μ

(q1 + q2)−q1−

− 4q2
3q

2⊥n+
μ

p+(q1 + q2)−q1−
+ 2p+n+

μ

)
. (31)

We use q3− = −(p + q1 + q2)−. Then we find three types
of terms:

D2+3 = A2

d2
+ B2

q1−d2
+ C2

q1−(q1− + q2−)d2
, (32)

where

A2 = 2p+n+
μ, B2 = −2q2n+

μ,

C2 =q2⊥

{
−4(p+2q3)μ+n+

μ

(
−4p−−4

q2
3

p+

)
+4p+n−

μ

}
.

(33)

Using (25) we get

D2+3 = A2

d2
+ 1

q1−d2

(
B2 + q+C2

(q − q1 − q2)
2⊥

)

+ C2

q1−(q1 + q2)−(q − q1 − q2)
2⊥

. (34)

4.3 Diagram 4

Diagram 4 is

D4 = 1

d1

(
p+n+

μ − 2q2⊥n+
μ

q1−
.

)
(35)

It contains two types of terms,

D4 = A4

d1
+ B4

q1−d1
, (36)

where

A4 = p+n+
μ, B4 = −2q2n+

μ . (37)

Applying (5) we get

D4 = 1

d1

(
A4 + q+B4

(q − q1)
2⊥

)
+ B4

q1−(q − q1)
2⊥

. (38)

4.4 Diagram 5

The diagram 5 is proportional to 1/[q1−(q1− + q2−)]

D5 = B5

q1−(q1 + q2)−
, B5 = 4n−

μ

q2

p−
. (39)

4.5 Total result

The total amplitude AV coming from the vertex splits into
three parts which we denote similarly to the on-mass shell
case

AV = g4ū(k′)γ+u(k) f b3ad f b2dc f bb1ctb(WI + QI + RI )

≡ AVW + AV Q + AV R (40)

Here WI contains only the Feynman propagators whereas
QI and RI also contain non-Feynmam poles. The Feynman
part is

WI = 1

8q2d1d2

(
−A1 − q+B1

(q − q1)
2⊥

)
+ A2

8q2d2

+ 1

8q2d1

(
A4 + q+B4

(q − q1)
2⊥

)
. (41)

The part QI contains terms with a pole at q1− = 0,

QI = 1

8q2q1−d2

{
− B1

(q − q1)
2⊥

+ q+C2

(q − q1 − q2)
2⊥

+ B2

}

+ B4

8q2q1−(q − q1)
2⊥

. (42)

Explicitly

QI = T1 + T2 + T3

q1−d2
, (43)

where

T1 = 1

8(q − q1)
2⊥

{p+(6p + 8q3 + 8q2)μ − 4p2+n−
μ + n+

μ

×(4p+ p− − 6p2 + 2(p − q2 − q3)
2)} (44)

T2 = 1

8(q − q1 − q2)
2⊥

{−4p+(2q3 + p)μ + 4p2+n−
μ

−4n+
μ(p+ p− + q2

3 )} (45)

T3 = −1

4
n+

μ . (46)

RI contains terms proportional to 1/[q1−(q1− + q2−)]:

RI = 1

8q2q1−(q1− + q2−)

(
C2

(q − q1 − q2)
2⊥

+ 4n−
μ

q2

p−

)
.
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Explicitly

RI = 1

q1−(q1−+q2−)

1

8q2(q−q1−q2)
2⊥

{−(p+2q3)μ−n+
μ

×
(
p− + q2

3

p+

)
+ n−

μ

(
p+ + (p + q3)

2⊥
p−

)}

= 1

q1−(q1− + q2−)
L(p, q3), (47)

where we used our definition (7) of the generalized Lipatov
vertex. To these contribution one also has to add 5 other terms
with simultaneous permutations of momenta q1,2,3 and color
indices b1,2,3 of the out-going reggeons.

To finally sum all different contributions in Sect. 6 it will
be convenient to present the color factor in the form

tb f bb1c f cb2d f db3a = 1

i
[tb1, tc] f cb2d f db3a

= −[tb1, [tb2 , td ]] f db3a

= (tb2 td tb1 + tb1 td tb2 − td tb2 tb1

−tb1 tb2 td) f db3a . (48)

4.6 Relation to the vertex R→RRP

On the mass shell and in the gauge (el) = 0 the vertex
R→RRRP could be related to the vertex R→RRP. In fact
we had then

WI = p2+B(p, q2 + q3, q1)

[(q − q1)2 + i0][(q − q1 − q2)2 + i0] , (49)

QI = − p+B(p, q3, q2)

q1−[(q − q1 − q2)2 + i0] , (50)

and

RI = L(p, q3)

q1−(q1− + q2−)
(51)

where B and L were the standard Bartels and Lipatov
vertices. The cancellation of all non-Feynman singularities
heavily relied on the relations (50) and (51).

As we have found that Eq. (51) indeed holds also for the
off-mass-shell gluon and in the arbitrary gauge. So our central
problem is to see if (50) is also valid for the off-shell gluon
in the arbitrary gauge.

From our study of the R→RRP vertex we determined (in
fact defined) the generalized Bartels vertex B by Eq. (9). It
follows that

− p+B(p, q3, q2) = 1

4(p + q2 + q3)
2⊥

×
(
a(p, q3, q2) + p+b(p, q2, q3)

2(p + q3)
2⊥

)
.

(52)

In fact we have seen that

p+b = −2p+(p + q2 + q3)
2⊥β,

where

β = (p + 2q3)μ − p+n−
μ + n+

μ

( q2
3

p+
+ p−

)
.

So we get

− p+B(p, q3, q2) = a

4(p + q2 + q3)
2⊥

− p+β

2(p + q3)2 .

(53)

It contains two terms with different singularities in the trans-
verse space. Our expression for QI also has two terms with
the same singularities plus a term with no singularities what-
soever, which can be included in any of the two previous ones
with the appropriate factor.

Forgetting this factor for a while have therefore to compare
T1 with a/(p+q2 +q3)

2⊥ and T2 with b/(p+q3)
2⊥. We start

from T2. Presenting

T2 = t2
8(p + q3)

2⊥
we have

t2 = −4(p+(p + 2q3)μ − p2+n−
μ + n+

μ(p+ p− + q2
3 )

to be compared with the second term in (53). We find that
they are identical, so that the part containing 1/(p + q3)

2⊥ in
QI has indeed the form (50).

Now we compare terms containing 1/(p+ p2 + p3)
2⊥ We

present

T1 + T3 = t1
8(p + q2 + q3)

2⊥
,

where from our previous calculations

t1 = 2p+(3p + 4q2 + 4q3)μ − 4p2+n−
μ + n+

μ(4p+ p−
−6p3 + 2(p − q2 − q3)

2 − 2(p + q2 + q3)
2⊥). (54)

Taking into account factor 1/8 and 1/4 in p+B, t1 is to be
compared with

2a(p, q3, q2) = 2p+(3p + 4q2 + 4q3)μ − 4p2+n−
μ

+2n+
μ(−(p + 2q2 + q3, p − q3) + q2

2 + q2
3

−(p + q2 + q3)
2⊥ − (p + q3)

2 + 2p+ p−). (55)
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We observe that the first two terms are identical. The coeffi-
cients before n+

μ are: in t1

−6p2 + 2(p − q2 − q3)
2 − 2(p + q2 + q3)

2⊥ + 4p+ p−

and in 2a

−2(p + 2q2 + q3, p − q3) + 2q2
2 + 2q2

3 − (p + q3)
2

−2(p + q2 + q3)
2⊥ + 4p+ p−.

The last two terms are identical. The first ones give in t1

−4p2 + 2q2
2 + 2q2

3 − 4pq2 − 4pq3 + 4q2q3

and in 2a

−2p2 − 4pq2 − 2pq3 + 2pq3 + 4q2q3

+2q2
3 + 2q2

2 + 2q2
3 − 2p2 − 2q2

3 − 4pq3.

These two expressions also coincide.
So we have proven that (50) is also true for the emis-

sion of a virtual gluon in an arbitrary gauge. This opens
the way to demonstrate that all non-Feynman singularities in
AV are canceled by the rescattering contributions, provided
one takes full Feynman quark propagators in them and treats
appropriately the singularities at qi− = 0 and qi− +qk− = 0
with i �= k = 1, 2, 3.

As to Eq. (49), inspection of our results shows that it does
not hold generally. However in the quasi-light-cone gauge it
is fulfilled indeed. In fact in that gauge, as mentioned, we can
drop all terms with pμ and n+

μ . Then one finds

A1μ = 8p+(q1 + q2 + q3)μ − 4p2+n−
μ,

B1μ = 4q2(2(q2 + q3)μ − 2p+n−
μ). (56)

Comparison with (20) shows that this corresponds to chang-
ing q2 → q2 + q3 from which (49) indeed follows in the
quasi-light-cone gauge.

5 Rescattering

In the rescattering the gluon is emitted by vertices R→RRP
and R→RP (Lipatov) which are known for off-mass-shell
emitted gluon. The diagrams themselves are quite obvious
and do not differ from the on-mass-shell case. So for cal-
culating the rescattering contribution we can use our results
derived for on-mass-shell emission in [9] substituting for
the Bartels and Lipatov vertices their expression for the off-
mass-shell gluon and in the arbitrary gauge introduced in our
Sect. 2. Some details of the manipulations with color factors
can also be found in [9].

5.1 Single rescattering: diagrams in Fig. 4

Diagrams with a single rescattering of the projectile separate
into two groups with emission of the gluon from the R→RRP
vertex shown in Fig. 4 and from a reggeon shown in Fig. 5.

In both diagrams gray disks correspond to the R→RRP
vertex given analytically in (10). Since the vertex is sym-
metrical with respect to permutation of the two out-going
reggeons, the symmetrization for diagrams in Fig. 4 has to
be carried out only for cyclic permutations of reggeons 1, 2,
3. The color factors are

C1 = −i f db3a(T b2T dT b1 − T dT b2T b1) (57)

for the first diagram and

C2 = −i f db3a(T b1T b2T d − T b1T dT b2) (58)

for the second one.
The projectile factors, apart from the color factors, contain

the quark propagators, which in the Regge limit are

1

±q1− + i0
(59)

with the sign − for the left diagram and + for the right one.
As mentioned in the rescattering only the delta-function part
of the propagator should be left. So (59) should be substituted
as

1

±q1− + i0
→ −iπδ(q1−). (60)

With these preliminaries we find the contribution to the
rescattering amplitude from Fig. 4 as

AR
1 = g4ū(k′)γ+u(k)(C1 + C2)(−iπ)δ(q1−)

×
[
− q+B(p, q3, q2)

(q − q1 − q2)2 + i0
+ L(p, q3)

q2−

]
. (61)

5.2 Single rescattering: diagrams in Fig. 5

Passing to the diagrams in Fig. 5 we have their color factors

C3 = −i f db3a(T dT b1 tb2 − T dT b2T b1)

for the first diagram and

C4 = −i f db3a(T b1 tb2T d − T b2T b1T d)

for the second.
The three-reggeon vertex R→RR was calculated in [8] to

be

g f cb1b2

2q1−
(q1 + q2)

2⊥ = −g f cb1b2

2q2−
(q1 + q2)

2⊥ (62)
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Fig. 4 Diagrams with the
double interaction of the
projectile and the gluon emitted
from the R→RRP vertex

Fig. 5 Diagrams with the
double interactions of the
projectile and the gluon emitted
from the R→RP vertex

Fig. 6 Diagrams with the triple interaction of the projectile

(we haveq1−+q2− = 0 in the vertex). The quark propagators
are

1

±(q1− + q2−) + i0

with signs − for the first diagram and + for the second. Taking
into account that we have to leave only delta-functional parts
we finally get the rescattering amplitude for Fig. 5:

AR
2 = g4ū(k′)γ+u(k)(C3 + C4)(−iπ)δ(q1− + q2−)

× L(p, q3)

q1−
+ (permutations (123)). (63)

5.3 Double rescattering of the projectile

There are 18 diagrams with three reggeons interacting with
the projectile quark. Three of them are shown in Fig. 6,
the others can be obtained by means of all permutations of

reggeons 1,2,3. The color factors for the three diagrams in
Fig. 6 are

C5 = f db3aT dT b2T b1 , C6 = f db3aT b1T dT b2 ,

C7 = f db3aT b2T b1T d

The quark propagators are

1

−(q1− + q2−) + i0

1

−q1− + i0

in the first diagram

1

q1− + i0

1

−q2− + i0

in the second diagram and

1

q1− + i0

1

q1− + q2− + i0

123
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in the third diagram. As it was discussed in [8] due to locality
in quark rapidity v.p. poles of quark propagators should be
dropped. So in all propagators we are to retain only the δ-
functional parts. Taking into account that

δ(q1−)δ(q1− + q2−) = δ(q2−)δ(q1 + q2−) = δ(q1−)δ(q2−)

we find the rescattering amplitude

AR
3 = −g4ū(k′)γ+u(k)L(p, q3)(C5 + C6 + C7)

×(−iπ)2δ(q1−δ(q2−). (64)

6 Cancellation of non-Feynman singularities

Inspection of our expressions for the contributions from the
R→RRP vertex and from rescattering we see that they have
exactly the same form as in the case of emitted on-mass-shell
gluons in the gauge (el) = 0. All the difference is due to
the newly defined generalized Lipatov and Bartels vertices.
The crucial point is that the same Bartels vertex B(p, q3, q2)

appears in the vertex amplitude AV Q and rescattering ampli-
tude AR

1 , exactly as happens in the on-mass-shell case. As a
result cancellation of non-Feynman singularities and restora-
tion of Feynman propagators for the rescattering projectile
proceeds in the same manner as in the on-mass-shell case
[9]. So we only briefly comment on the derivation.

Terms containing non-Feynman singularities separate into
two groups depending on their momentum structure. One
part contains the generalized Bartels vertex B. Contribution
to this group come from the amplitude AV Q , Eq. (43), and
the first term in the rescattering amplitude AR

1 , Eq. (61).
Taking into account (48) we find that these terms differ only
in that factor ±1/q1− inAV Q is substituted by −iπδ(q1−) in
AR

1 . In the sum of these two contributions we get the normal
Feynman propagators

± 1

q1−
− iπδ(q1−) = 1

±q1− + i0
.

As a result the contribution from B(p, q3, q2) to the total
amplitude will be given by

AV QF
1 g4ū(k′)γ+u(k) f b3cd q+B(p, q3, q2)

(q − q1 − q2)2 + i0

×
[
i f ab2dT aT b1

−q1− + i0
+ i f ab2dT b1T a

q1− + i0

]
, (65)

which is actually the part of the rescattering contribution
AR

1 with the Bartels vertex and Feynman propagator for the
rescattering projectile.

Thus we are left with only the terms containing the Lipatov
vertex L . They come from all contributions. We concentrate
on the terms containing L(p, q3). We separate the common
factor

g4ū(k′)γ+u(k) f db3a L(p, q3).

It has to be multiplied by the sum of different contributions
from our amplitudes. Denoting different terms as F I , I =
V, R1, R2, R3 for contributions from amplitudes AV R , AR

1 ,
AR

2 and AR
3 , respectively, we find

FV R = T b2T dT b1 +T b1T dT b2 −T dT b2T b1 −T b1T b2T d

q1−(q1−+q2−)

+(1 ↔ 2),

FR1 = −T b2T dT b1 − T dT b2T b1 + T b1T b2T d − T b1T dT b2

q2−
×(−iπ)δ(q1−) + (1 ↔ 2),

FR2 =
(
T dT b2T b1

q1−
− T b2T b1T d

q2−

)

×(−iπ)δ(q1− + q2−) + (1 ↔ 2),

FR3 = −(T dT b2T b1 + T b1T dT b2 + T b2T b1T d)

×(−iπ)2δ(q1−)δ(q2−) + (1 ↔ 2). (66)

Straightforward algebraic manipulations (see [9]) demon-
strate that the sum of these contributions leads to the ampli-
tude which corresponds to the double rescattering Fig. 4 with
Feynman propagators for the rescattering projectile, namely

ARF
3 = −g4γ+ f db3a

[
k2+ · T dT b2T b1

((k − q1 − q2)2 + i0)((k − q1)2 + i0)

+ k2+ · T b1T dT b2

((k′ + q1)2 + i0)((k − q2)2 + i0)

+ k2+ · T b2T b1T d

((k′ + q2)2 + i0)((k′ + q1 + q2)2 + i0)

]
L(p, q3)

+(permutations of 1, 2, 3). (67)

In conclusion the total amplitude for production of a vir-
tual gluon on three centers is given by the sum of three con-
tributions

Atot = AVW + AV QF + ARF
3 (68)

corresponding to emission from the vertex and single and
double rescattering, in which all propagators are of the Feyn-
man type.

In the general gauge this expression is quite compli-
cated. However it drastically simplifies in the quasi-light-
cone gauge, introduced in Sect. 3. For transverse polariza-
tions the Bartels vertex takes its standard form and the Lipa-
tov one only slightly changes. For longitudinal polarization
both vertices become quite simple (Eqs. (23) and (24)).

6.1 Conclusion

We have found that with the gluon produced off mass shell
both for two and three targets we can drop the induced part
of the effective vertex and use instead full quark propagators
in the rescattering contribution provided we interpret the sin-
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gularities at q1− = 0 and q2− = 0 in the induced part in the
principal value sense.

However in contrast to the on-mass-sell case the produc-
tion amplitude cannot be deduced from the purely transverse
BFKL-Bartels picture by just introducing Feynman propaga-
tors into the transverse Lipatov and Bartels vertices. Instead
one has to appropriately change these vertices to account for
the virtuality of the emitted gluon, so that they result to be
not purely transversal.

A remarkably simple result follows in a particular gauge,
which is an immediate generalization of the light-cone gauge
for the off-mass-shell gluon. Then the changes in the vertices
is minimal. Still a new, longitudinal, polarization is to be
taken to account.
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