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Abstract Recent experiments on η → 3π decays have
provided an extremely precise knowledge of the amplitudes
across the Dalitz region which represent stringent constraints
on theoretical descriptions. We reconsider an approach in
which the low-energy chiral expansion is assumed to be
optimally convergent in an unphysical region surrounding
the Adler zero, and the amplitude in the physical region
is uniquely deduced by an analyticity-based extrapolation
using the Khuri–Treiman dispersive formalism. We present
an extension of the usual formalism which implements the
leading inelastic effects from the K K̄ channel in the final-
state ππ interaction as well as in the initial-state ηπ inter-
action. The constructed amplitude has an enlarged region of
validity and accounts in a realistic way for the influence of
the two light scalar resonances f0(980) and a0(980) in the
dispersive integrals. It is shown that the effect of these res-
onances in the low-energy region of the η → 3π decay is
not negligible, in particular for the 3π0 mode, and improves
the description of the energy variation across the Dalitz plot.
Some remarks are made on the scale dependence and the
value of the double quark mass ratio Q.

1 Introduction

The physics of QCD in the soft regime is dominated by the
phenomenon of spontaneous symmetry breaking because of
the presence of three light quarks in the standard model.
The low-energy dynamics can then be described accurately
through an expansion built from a chiral effective theory
(e.g. [1] for a recent review). This approach, which applies
in both the Euclidean and the Minkowski space-times is, to
some extent, complementary to the purely numerical lattice
simulation method. In the effective theory, however, part of
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the information on the non-perturbative QCD dynamics is
contained as sets of values of the chiral coupling constants.
These are not known, a priori, except for their order of mag-
nitude [2] and must be determined as part of the probing of
the effective theory.

In QCD, isospin-breaking phenomena are driven by md −
mu , the mass difference of the two lightest quarks. For low-
energy observables, an isospin-breaking ratio which conve-
niently absorbs some of the next-to-leading (NLO) chiral
coupling constants was introduced in Ref. [3]

Q−2 = m2
d − m2

u

m2
s − ((mu + md)/2)2 . (1)

In general, isospin-breaking effects induced by electromag-
netism are comparable in size to those proportional to
md − mu and their precise evaluation is made difficult by
the poor knowledge of the associated chiral coupling con-
stants [4]. In this respect, the η → 3π amplitude plays
a special role because these electromagnetic contributions
vanish in the SU (2) chiral limit [5] and are thus expected
to be suppressed. This has been confirmed in the work of
Refs. [6,7] who evaluated the contributions proportional to
e2mu , e2md .

A number of recent high-statistics experiments have stud-
ied the 3π0 decay mode of the η [8–12] as well as the charged
mode π+π−π0 [13–16]. An extremely precise knowledge
of the energy variation of the amplitudes squared across the
Dalitz plot, which are traditionally represented by a set of
polynomial parameters, has now become available. These
accurate experimental results allow for stringent tests of the
theoretical description of the amplitude which must obvi-
ously be passed before one attempts to determine Q.

The Dalitz plot parameters derived directly from the NLO
chiral amplitude, which was first computed in [17], are in
clear disagreement with experiment.
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For instance, the prediction for the parameter α, involved
in the neutral mode, has the wrong sign. The same problems,
essentially, are found in the resummed expansion approach
discussed recently in Ref. [18].

The computation of the amplitude at the next-to-next-to
leading (NNLO) chiral order was performed [19]. The com-
parison with experiment again fails if one assumes a sim-
ple naive model for the O(p6) couplings Ci (classified in
Ref. [20]) which are involved as six independent combina-
tions. The η decay amplitude thus contains crucial informa-
tion on the true QCD values of these couplings, which are
essentially not known at present.

One obvious deficiency of the chiral expansion when cal-
culating scattering or decay amplitudes in physical regions
is the lack of exact unitarity (as emphasised e.g. in Ref. [21])
which is restored gradually when going to higher orders. In
the case of η → 3π , a large amount of work was devoted
to the problem of estimating these unitarity, or final-state
rescattering, higher order corrections [22–28].

In the present paper we reconsider, more specifically, the
approach followed in Refs. [22,24,25]. The main underly-
ing assumption is that the chiral expansion of the η →
π+π−π0 decay amplitude should be optimally converging
in an unphysical region of the Mandelstam plane in the neigh-
bourhood of the Adler zero. The amplitude in the physical
region is then deduced from a well-defined extrapolation pro-
cedure based on the analyticity properties of amplitudes in
QCD, which utilise the set of dispersive equations derived ini-
tially by Khuri and Treiman [29] and perfected in the work of
Refs. [22,24,25]. These equations implement crossing sym-
metry and unitarity in a more complete way than more naive
loop-resummation approaches [26].

In previous work, ππ rescattering was assumed to be
elastic. This is essentially exact in the physical η decay
region. However, the dispersive formalism involves integrals
over an energy range extending up to infinity. A property of
the ππ scattering amplitude in the isoscalar S-wave is the
sharp onset of K K̄ inelasticity associated with the f0(980)

scalar resonance [30,31]. Because of isospin violation, the
ηπ → ππ amplitude actually exhibits a double resonance
effect from both the f0(980) and thea0(980) scalars [32] near
the K K̄ threshold. Our aim is to propose a generalisation of
the Khuri–Treiman formalism which takes into account K K̄
inelasticity in the unitarity relations for both ππ scattering
and ηπ scattering (which may be viewed as an initial-state
interaction).

Some approximations will be made, which simplify con-
siderably the practical implementation, such that crossing
symmetry is maintained at the level of the η → 3π

amplitudes but not in the amplitudes involving the K K̄
channel.

In this multi-channel formalism, the double resonance
effect is taken into account in the dispersive integrals and,

furthermore, the construction of the η → 3π amplitude
becomes valid in an extended energy region which includes
not only the η decay region but also a portion of the ηπ →
ππ scattering region. This will allow us to study how the
energy dependence induced by the two 1 GeV scalar reso-
nances propagate down to the low-energy region and quanti-
tatively affects the Dalitz plot parameters. The fact that these
resonances could be influential at low energy was pointed
out previously in Ref. [33].

The plan of the paper is as follows. We first review
in Sect. 2 the derivation of the one-channel equations in
which the amplitudes satisfy elastic ππ unitarity in the S
and the P-waves. In Sect. 3 we write the unitarity relations
including the ηπ and the K K̄ channels. A closed system
of unitarity equations involves, besides η → 3π , isospin-
violating components of ηπ → K K̄ , ππ → K K̄ as well
as K K̄ → K K̄ amplitudes. A multi-channel set of Khuri–
Treiman integral equations is defined such that the solution
amplitudes satisfy these unitarity relations. We then discuss
in Sect. 4 the matching between the chiral expansion ampli-
tudes and the dispersive ones. We adopt a simple approach
which consists in imposing the requirement that the differ-
ence between the chiral NLO and dispersive amplitudes van-
ishes at order p4. This provides four equations which, in
the single-channel case determine completely the dispersive
amplitude provided one had introduced exactly four polyno-
mial parameters in the Khuri–Treiman representation. This
is generalised to the multi-channel situation, in which one
introduces 16 polynomial parameters. Finally, in Sect. 5, the
results on the Dalitz plot parameters are presented and some
remarks are made on the determination of the quark mass
ratio Q.

2 Khuri–Treiman equations in the elastic
approximation

We recall below how the dispersion-based equations derived
by Khuri and Treiman [29] for K → 3π decay can be gen-
eralised and applied to η → 3π , following [22,24,25].

2.1 Single-variable amplitudes for η → 3π

As initially demonstrated in the case of ππ → ππ ( [34]),
amplitudes involving four pseudo-Goldstone bosons satisfy,
in a certain kinematical range, an approximate representation
in terms of functions of a single variable which have simple
analyticity properties (see [35] for a review). In the case of
η → 3π , and neglecting quadratic isospin breaking, there
are three functions involved [24,25]: M0, M1, M2. We will
follow the notation of Ref. [25] and write the η → π+π−π0

amplitude as
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T η→π+π−π0(s, t, u) ≡ A(s, t, u)

= −εL

[
M0(s) − 2

3
M2(s) + (s − u)M1(t)

+ (s − t)M1(u) + M2(t) + M2(u)
]
, (2)

with an overall factor1 εL , which is proportional to the
isospin-breaking double quark mass ratio Q2 given in Eq. (1)

εL = Q−2 m2
K − m2

π

3
√

3F2
π

m2
K

m2
π

. (3)

The Mandelstam variables are defined, as usual, as

s = (pπ+ + pπ−)2, t = (pη − pπ+)2, u = (pη − pπ−)2 ,

(4)

and they satisfy

s + t + u = 3s0, s0 = 1

3
m2

η + m2
π . (5)

General analyticity properties imply that η → 3π decay
and ηπ → ππ scattering are described by the same func-
tion in different regions of the Mandelstam plane. The corre-
sponding physical regions are illustrated in Fig. 1. The analo-
gous representation for η → 3π0 involves the two functions
M0 and M2 only and reads

Tη→π0π0π0(s, t, u) = −εL

[
M0(s) + M0(t) + M0(u)

+ 4
3

(
M2(s) + M2(t) + M2(u)

)]
.

(6)

The representations (2) and (6) are accurate in regions
of the Mandelstam plane where the imaginary parts of the
partial-wave amplitudes with angular momentum j ≥ 2 in
the s, t or u channels are negligible (compared to those of
the j = 0, 1 partial waves). In the case of η → 3π or ηπ →
ππ , this condition is satisfied in the range where s, t , u are
sufficiently small compared with the masses squared of the
tensor resonances, i.e. |s|, |t |, |u| � 1 GeV2. This condition
is also satisfied exactly by the amplitude obtained from the
chiral expansion up to order p6 [19]. This will prove very
useful for writing matching conditions.

The functions MI (w) are analytic in w with a cut on the
positive real axis: 4m2

π ≤ w < ∞. Based on Regge theory,
we expect that the functions M0(w) and M2(w) should not
grow faster than w at infinity, while M1 should be bounded
by a constant. In the one-channel Khuri–Treiman framework,
both M0 and M2 are usually assumed to behave linearly in
w when w → ∞. With this asymptotic behaviour, there is

1 It is convenient to formally factor out εL but the amplitude is actually
of the form Tη→3π = εL A + �m2

K B + e2 C where e is the electric
charge and �m2

K is the physical K 0 −K+ mass squared difference (see
Appendix A).
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Fig. 1 Mandelstam plane showing the physical regions for η → 3π

decay and for ηπ → ππ scattering

a family of redefinitions of the functions M1 and M2 which
leaves the physical amplitude A(s, t, u) unmodified [25,36],

M1(w) → M1(w) + a1,

M2(w) → M2(w) + a2 + b2 w
(7)

(a1, a2, b2 being arbitrary constant parameters), provided one
correspondingly redefines M0 as

M0(w) → M0(w) + a0 + b0 w (8)

with

a0 = −4

3
a2 + 3s0(a1 − b2), b0 = −3a1 + 5

3
b2 , (9)

and using the s + t + u constraint (5). This arbitrariness can
be fixed by imposing the three w = 0 conditions

M1(0) = 0 , M2(0) = 0 , M ′
2(0) = 0. (10)

In the coupled-channel set-up, to be discussed below, the
asymptotic condition on M0 will be modified such that
M0(w) goes to a constant when w → ∞ instead of behaving
linearly. This restricts the allowed redefinitions of M1, M2 to
those which satisfy a1 = 5/9 b2. In that case, only the two
w = 0 conditions M1(0) = M2(0) = 0 can be imposed,
while M ′

2(0) is determined from the equations.
These properties of the functions MI lead to the following

dispersive representations:

M0(s) = α̃0 + β̃0s + s2

π

∫ ∞

4m2
π

ds′ disc[M0(s′)]
(s′)2(s′ − s)

M1(s) = s

π

∫ ∞

4m2
π

ds′ disc[M1(s′)]
s′(s′ − s)

,

M2(s) = β̃2s + s2

π

∫ ∞

4m2
π

ds′ disc[M2(s′)]
(s′)2(s′ − s)

, (11)
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defining

disc[MI (s)] ≡ 1

2i
(MI (s + iε) − MI (s − iε)). (12)

2.2 Isospin amplitudes and crossing relations

We choose the following conventional isospin assignment
for the pions and the kaons
⎛
⎜⎝

π+

π0

π−

⎞
⎟⎠ ∼

⎛
⎜⎝

−|1 1〉,
|1 0〉,
|1 −1〉

⎞
⎟⎠

(
K+

K 0

)
∼

(
K̄ 0

−K−

)
∼

( | 1
2

1
2 〉

| 1
2

−1
2 〉

)
. (13)

Let us consider the amplitudes which correspond to isospin
states of the ππ system,

MI,Iz = 〈ηπ |T̂ |ππ; I Iz〉. (14)

One can express Tηπ0→π+π− = A(s, t, u) in terms of I =
0, 2 isospin amplitudes,

A(s, t, u) = − 1√
3
M0,0(s, t, u) − 1√

6
M2,0(s, t, u). (15)

Further relations for the isospin amplitudes can be obtained
using crossing symmetries. Under s − t and s − u crossing
one obtains,

Tηπ−→π0π− = A(t, s, u)

= 1√
2
(M1,−1(s, t, u) + M2,−1(s, t, u)),

Tηπ+→π+π0 = A(u, t, s)

= 1√
2
(M1,1(s, t, u) + M2,1(s, t, u)). (16)

Since the isospin-breaking operator in QCD, HI B =
−1/2(md − mu)ψ̄λ3ψ , transforms as I = 1, Iz = 0, one
can use the Wigner–Eckart theorem,

〈 j ′m′|T k
q | jm〉 = (−1) j

′−m′
(

j ′ k j
−m′ q m

)
〈 j ′||T k || j〉 , (17)

which yields the following relations among theMI,Iz ampli-
tudes

M1,1 = −M1,−1,

M2,1 = M2,−1 =
√

3
2 M2,0.

(18)

One can then express the three independent isospin ampli-
tudes in terms of the function A(s, t, u),

M0,0(s, t, u) = − √
3
(
A(s, t, u)

+ 1

3
(A(t, s, u) + A(u, t, s))

)
,

M1,1(s, t, u) = 1√
2

(−A(t, s, u) + A(u, t, s)) ,

M2,1(s, t, u) = 1√
2

(A(t, s, u) + A(u, t, s)) . (19)

In the following we will simply denote

M0,0 ≡ M0, M1,1 ≡ M1, M2,1 ≡ M2. (20)

Inserting the representation (2) we obtain an expression of the
three isospin amplitudes in terms of the one-variable func-
tions MI (w)

M0(s, t, u) =√
3 εL

[
M0(s) + 1

3
M0(t) + 10

9
M2(t)

+ 2

3
(s − u)M1(t) + (t ↔ u)

]
,

M1(s, t, u) =
√

2

3
εL

[
3tM1(s) + 3

2
M0(t)

+ 3

2
(s − u)M1(t) − 5

2
M2(t) − (t ↔ u)

]
,

M2(s, t, u) = − √
2 εL

[
M2(s) + 1

2
M0(t) + 1

6
M2(t)

− 1

2
(s − u)M1(t) + (t ↔ u)

]
. (21)

2.3 Partial waves and elastic ππ unitarity relations

In order to derive expressions for the discontinuities
disc[MI (s)], we must consider partial waves and their uni-
tarity relations. We can define the partial-wave expansion of
the isospin amplitudes as

MI (s, t, u) = 16π
√

2
∑
j

(2 j + 1)MI
j (s)Pj (z), (22)

where z is the cosine of the scattering angle in the centre-of-
mass frame of ηπ → ππ , which is related to the Mandelstam
variables by

t, u = 1

2

(
m2

η + 3m2
π − s ± κ(s) z

)
,

κ(s) =
√

(1 − 4m2
π/s) ληπ (s) (23)

with

λPQ(s) = (s − (mP + mQ)2)(s − (mP − mQ)2). (24)

From the representation of the isospin amplitudes, Eq. (21)
one easily derives the expression for the partial waves. The
result, for the j = 0, 1 partial waves, can be written as,
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M0
0(s) =

√
6 εL

32π
[M0(s) + M̂0(s)]

M1
1(s) = εL

48π
κ(s) [M1(s) + M̂1(s)] (25)

M2
0(s) = − εL

16π
[M2(s) + M̂2(s)],

where the functions M̂I (s) are given by linear combinations
of angular integrals of the functions MI

M̂0 = 2

3
〈M0〉 + 20

9
〈M2〉 + 2(s − s0)〈M1〉 + 2

3
κ〈zM1〉

κ M̂1 = 3〈zM0〉 − 5〈zM2〉 + 9

2
(s − s0)〈zM1〉 + 3

2
κ〈z2M1〉

M̂2 =〈M0〉 + 1

3
〈M2〉 − 3

2
(s − s0)〈M1〉 − 1

2
κ〈zM1〉,

(26)

with the notation [25]

〈znMI 〉(s) = 1

2

∫ 1

−1
dz znMI (t (s, z)). (27)

Writing unitarity relations, one must first consider the
unphysical situation where the η meson is stable,mη ≤ 3mπ .
The physical case is defined using analytic continuation in
mη as in the classic derivation of generalised unitarity [37].

The contribution from the ππ states to the unitarity rela-
tion for the partial wave MI

j reads

Im MI
j (s) = disc[MI

j (s)] = σπ(s)( f Ij (s))
∗MI

j (s) , (28)

with

σP (s) =
√

1 − 4m2
P

s
θ(s − 4m2

P ) (29)

and f Ij (s) is the ππ → ππ partial-wave amplitude, which
is related to the scattering phase shift by

exp(2iδ Ij (s)) = 1 + 2iσπ(s) f Ij (s). (30)

The equality between the imaginary part and the discontinu-
ity in Eq. (28) holds when mη < 3mπ . For the physical value
of mη the right-hand side of Eq. (28) continues to give the
discontinuity across the unitarity cut, while the imaginary
part must be deduced from the dispersive representation.

2.4 Khuri–Treiman equations in the elastic approximation

In the unphysical situation when mη < 3mπ , the cuts of
the functions M̂I (w) are located in the region Re[w] < 4m2

π

such that Eq. (25) correspond to a splitting of the partial-wave
amplitudes into two functions which have a separated cut

structure. When the η mass is increased to its physical value,
the m2

η + iε prescription must be used [37] and this ensures

that the complex cut of the M̂I functions, which approaches
infinitesimally close the unitarity cut in the region 4m2

π ≤
s ≤ (mη − mπ )2, remains well separated from it (see Fig. 4
in Ref. [38]). Using the fact that M̂I (s) has no discontinuity
across the unitarity cut one can deduce from (28) that the
discontinuities of the functions MI (s) along 4m2

π ≤ s < ∞
are given by

disc[MI (s)] = exp(−iδ Ij (s)) sin δ Ij (s)[MI (s+iε)+M̂I (s)],
(31)

where j = 0 when I = 0, 2 and j = 1 when I = 1. In the
sequel, we will drop the j subscript in the ππ phase shift.
Equation (31) implies that the functions MI can be written
as Muskhelishvili–Omnès (MO) integral representations,

M0(s) = �0(s)
[
α0 + β0s + (γ0 + Î0(s)) s

2
]
,

M1(s) = �1(s)
[
(β1 + Î1(s)) s

]
,

M2(s) = �2(s)
[
Î2(s) s

2
]

, (32)

where

Îa(s) = 1

π

∫ ∞

4m2
π

ds′ sin δa(s′)M̂a(s′)
|�a(s′)|(s′)2−na (s′ − s)

, na = δ1a,

(33)

and where the Omnès functions �I are given in terms of the
ππ phase shifts by the usual relation,

�I (s) = exp

[
s

π

∫ ∞

4m2
π

ds′ δ I (s′)
(s′)(s′ − s)

]
. (34)

The phase shifts, in the present context, are usually taken to
obey the following asymptotic conditions:

δ0(∞) = δ1(∞) = π, δ2(∞) = 0, (35)

which seem rather natural since these conditions are roughly
satisfied at the K K̄ threshold. In the elastic approximation
framework, one can thus take the phases to be constant or
quasi-constant in the inelastic region, above 1 GeV.

The polynomial part in the MO representation (32) was
chosen to have four parameters. This allows one to define a
unique dispersive amplitude by implementing four indepen-
dent matching conditions with the chiral NLO amplitude.
Taking into account the asymptotic conditions on the phase
shifts (35) one easily sees that the Khuri–Treiman equa-
tions (32) implement the following asymptotic behaviour for
the functions MI :
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M0(w) ∼ M2(w) ∼ w, M1(w) ∼ constant. (36)

The functions MI also satisfy the w = 0 conditions (10) and
are thus uniquely defined.

3 Beyond the elastic ππ approximation

Elastic unitarity for ππ scattering is valid exactly below the
four pions threshold and approximately up to the K K̄ thresh-
old. Close to 1 GeV, the ππ phase shift increases very sharply
under the influence of the f0(980) resonance which also cou-
ples strongly to K K̄ . In order to properly account for the
effect of this resonance it is thus necessary to go beyond the
elastic unitarity approximation. We discuss in this section
how to include both the ηπ and the K K̄ channels into the
unitarity relations and then generate a generalisation of the
Khuri–Treiman equations. This will allow us to account for
both the f0(980) and the a0(980) resonances in a realistic
way.

3.1 ηπ contribution to unitarity

Including the ηπ channel in addition to ππ , the unitarity
relation becomes

disc[MI
j (s)] = σπ(s)( f Ij (s))

∗MI
j (s)

+ σηπ (s)(MI
j (s))

∗ f ηπ
j (s), (37)

where

σPQ(s) = θ(s − (mP + mQ)2)

√
λPQ(s)

s
(38)

and f ηπ
j (s) is the ηπ → ηπ partial-wave amplitude. In the

energy region where ηπ scattering is elastic, which we will
assume to extend up to the K K̄ threshold, f ηπ

j (s) is related
to the scattering phase shift by

exp(2iδηπ
j (s)) = 1 + 2iσηπ (s) f ηπ

j (s). (39)

The j = 1 partial wave f ηπ
1 corresponds to exotic quantum

numbers j PC = 1−+ and should thus remain rather small up
to the 1 GeV region.2 Therefore, ηπ rescattering is expected
to affect mainly the two j = 0 amplitudes M0

0 and M2
0. In

the elastic regime, using Eq. (37) one easily derives that the
relation between the amplitudes on both sides of the unitarity
cut reads

MI
0(s − iε) = exp(−2iδ I (s)) exp(−2iδηπ

0 (s))MI
0(s + iε),

(40)

2 A resonance possibly exists in this amplitude [39] with a mass M �
1.3 GeV.

with I = 0, 2. Comparing with the analogous relation in
the elastic unitarity case (28) one deduces that including the
effect of ηπ rescattering in the ηπ → ππ amplitude (which
can be viewed as an initial-state interaction) amounts to sim-
ply perform the following replacements in the Omnès repre-
sentations (32):

δ I (s) → δ I (s) + δ
ηπ
0 (s) , I = 0, 2. (41)

In practice, ηπ rescattering is expected to become significant
when the energy approaches the mass of the a0(980) reso-
nance. It becomes necessary, then, to also take into account
the K K̄ channel.

3.2 K K̄ contributions to unitarity

Let us now include the K K̄ states into the partial-wave uni-
tarity relations.

(a) I = 1, j = 1: We are concerned mainly with j = 0
amplitudes but let us consider the j = 1 amplitude M1

1
here also for completeness. The K K̄ contribution reads

disc[M1
1(s)]KK = σK+K 0 (s)

×
(
T K+ K̄ 0→π+π0

1 (s)
)∗

T ηπ+→K+ K̄ 0

1 (s).

(42)

The amplitude T ηπ+→K+ K̄ 0

1 is isospin violating3 and, at
linear order in isospin-breaking, one can set σK+K 0(s) =
σK (s). We will denote the amplitudes appearing above
as

T K+ K̄ 0→π+π0

1 (s) ≡ g1
1(s),

T ηπ+→K+ K̄ 0

1 (s) ≡ N 1
1 (s).

(43)

(b) I = 2, j = 0: For the M2
0 amplitude now, the K K̄

contribution reads

disc[M2
0(s)]KK = σK+K 0(s)

×
(
T K+ K̄ 0→π+π0

0 (s)
)∗

T ηπ+→K+ K̄ 0

0 (s). (44)

The amplitude T ηπ+→K+K 0

0 is isospin-conserving in this

case, since j is even while the amplitude T K+ K̄ 0→π+π0

0
is isospin-violating. We will denote the two amplitudes
in Eq. (44) as

3 The amplitudes T ηπ+→K+ K̄ 0

j are isospin-violating (conserving) for

odd (even) values of j . This can be seen using G-parity: G|(K K̄ )Ij 〉 =
(−1)I+ j |(K K̄ )Ij 〉. Since I = 1 for K+ K̄ 0, G = +1 for odd values of
j and −1 for even values while G = −1 for ηπ .
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T ηπ+→K+ K̄ 0

0 (s) ≡ gηπ
0 (s),

T K+ K̄ 0→π+π0

0 (s) ≡ G12
0 (s).

(45)

(c) I = 0, j = 0: Finally, for the M0
0 amplitude, the K K̄

contributions to the unitarity relations are

disc[M0
0(s)]KK

= σK+(s)
(
T K+K−→(ππ)0

0 (s)
)∗

T ηπ0→K+K−
0 (s)

+ σK 0(s)
(
T K 0 K̄ 0→(ππ)0

0 (s)
)∗

T ηπ0→K 0 K̄ 0

0 (s).

(46)

Let us now separate the isospin-conserving and the isospin
violating contributions. For the kinematical factors, we intro-
duce

σK (s) = 1
2 (σK+(s) + σK 0(s)) ,

�σK = 1
2 (σK+(s) − σK 0(s)).

(47)

For the ηπ0 → K+K−, K 0 K̄ 0 amplitudes, the isospin con-
serving part, gηπ

0 , was introduced in Eq. (45) and we call the
isospin-violating one N 0

0 . One has

gηπ
0 (s) = 1√

2

(
T ηπ0→K+K−

0 (s) − T ηπ0→K 0 K̄ 0

0 (s)
)

N 0
0 (s) = 1√

2

(
T ηπ0→K+K−

0 (s) + T ηπ0→K 0 K̄ 0

0 (s)
)

. (48)

For the K K̄ → (ππ)0 amplitudes, the isospin-conserving
and the isospin-violating amplitudes are denoted as

I = 0 : g0
0 = 1√

2

(
T K+K−→(ππ)0

0 + T K 0 K̄ 0→(ππ)0

0

)

I = 1→0 : G10
0 = 1√

2

(
T K+K−→(ππ)0

0 − T K 0 K̄ 0→(ππ)0

0

)
.

(49)

Using this notation, the K K̄ contributions in the unitarity
relations for the partial waves MI

j can be summarised as
follows:

I = 0 : disc[M0
0(s)]KK = σK (s)

[ (
G10

0 (s)
)∗

gηπ
0 (s)

+ (
g0

0(s)
)∗ N 0

0 (s)
]

+ �σK (s)
[(
g0

0(s)
)∗

gηπ
0 (s)

]

I = 1 : disc[M1
1(s)]KK = σK (s)

(
g1

1(s)
)∗ N 1

1 (s)

I = 2 : disc[M2
0(s)]KK = σK (s)

(
G12

0 (s)
)∗

gηπ
0 (s).

(50)

These contributions involve new isospin-breaking K K̄ →
ππ and ηπ → K K̄ amplitudes: G10

0 , G12
0 , N 0

0 , N 1
1 . In order

Table 1 Isospin-conserving (cons.) and isospin-violating (viol.) ampli-
tudes involving ππ , πη and K K̄ channels

Cons. Viol.

ππ → ππ f Ij −
ηπ → ηπ f ηπ

j −
ηπ → ππ − MI

j

ηπ → K K̄ gηπ

j (even) N 0
j (even) , N 1

j (odd)

K K̄ → ππ gIj G10
j (even) , G12

j (even) , G01
j (odd)

K K̄ → K K̄ hI
j H10

j

to write a closed set of unitarity equations we must also
consider K K̄ → K K̄ amplitudes. For these, the isospin-
conserving/violating components are denoted hI

j , H10
j

T K+K−→K+K−
j (s) = 1

2

(
h0
j (s) + h1

j (s) + 2H10
j (s)

)

T K+K−→K 0 K̄ 0

j (s) = 1

2

(
h0
j (s) − h1

j (s)
)

T K 0 K̄ 0→K 0 K̄ 0

j (s) = 1

2

(
h0
j (s) + h1

j (s) − 2H10
j (s)

)
.

(51)

Table 1 summarises our notation for the various amplitudes
involved.

4 Multi-channel Khuri–Treiman equations

4.1 Closed system of unitarity equations

We can now write down a closed system of unitarity equa-
tions. It will be convenient to introduce a matrix notation for
the isospin conserving amplitudes with I = 0 and I = 1

T0 =
(
f 0
0 g0

0

g0
0 h0

0

)
T1 =

(
f ηπ
0 gηπ

0

gηπ
0 h1

0

)
. (52)

The I = 0 amplitude M0
0 is now embedded into a system of

four coupled unitarity equations

Im

(
M0

0 G10
0

N 0
0 H10

0

)
= T0∗

�0

(
M0

0 G10
0

N 0
0 H10

0

)

+
(
M0

0
∗ G10

0
∗

N 0
0

∗ H10
0

∗

)
�1T1 + T0∗

(
0 0

0 �σK

)
T1

, (53)

where

�0 =
(

σπ(s) 0

0 σK (s)

)
�1 =

(
σηπ (s) 0

0 σK (s)

)
, (54)
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while the I = 2 amplitude M2
0 is involved in a system of

two unitarity equations,

Im

(
M2

0

G12
0

)
= σπ( f 2

0 )∗
(
M2

0

G12
0

)
+ T1�1

(
M2

0
∗

G12
0

∗

)
. (55)

Finally, for the I = 1 amplitude M1
1, the coupled unitarity

equations read

Im

(
M1

1

N 1
1

)
=

(
f 1
1 g1

1

g1
1 h1

1

)∗
�0

(
M1

1

N 1
1

)
. (56)

In the following, however, we will disregard the inelastic-
ity effects for M1

1 and continue to use the elastic unitarity
equation (28) in this case.

4.2 Coupled Muskhelishvili–Omnès representation

The next step is to write each one of the isospin-violating
partial-wave amplitudes as a sum of two functions, one hav-
ing a right-hand cut only and one having a generalised left-
hand cut. For physical mass values, the left and right-hand
cuts of the various partial waves appear to be overlapping, but
it is possible to separate them unambiguously. In the case of
the amplitudes involving the η meson, this is done by using
the m2

η + iε prescription. The amplitude K K̄ → K K̄ has
a left-hand cut which extends on the real axis in the range
[−∞, 4m2

K − 4m2
π ]. Using the m2

K + iε prescription shifts
this cut above the real axis.

For the I = 0 amplitudes one writes

(
M0

0(s) G10
0 (s)

N 0
0 (s) H10

0 (s)

)

=
√

6εL

32π
×

(
M0(s) + M̂0(s) G10(s) + Ĝ10(s)

N0(s) + N̂0(s) H10(s) + Ĥ10(s)

)
(57)

which generalises Eq. (25), while for the I = 2 amplitudes
one can write

(
M2

0(s)

G12
0 (s)

)
= − εL

16π

(
M2(s) + M̂2(s)

G12(s) + Ĝ12(s)

)
. (58)

One can now employ the standard Omnès method in order to
express the right-cut functions in terms of the left-cut ones.
Introducing the matrix notation

M0(s) =
(
M0(s) G10(s)

N0(s) H10(s)

)
, M̂0(s) =

(
M̂0(s) Ĝ10(s)

N̂0(s) Ĥ10(s)

)

(59)

the discontinuity relation for the M0 functions is deduced
from the unitarity relation (53),

disc[M0(s)] = T0∗
(s)�0 [

M0(s + iε) + M̂0(s)
]

+ [
(M0(s − iε) + M̂0(s)

]
�1 T1(s)

+ T0∗
(s)��K T1(s), (60)

where

��K = 32π√
6 εL

�σK

(
0 0
0 1

)
, (61)

and �σK is given in Eq. (47). Equation (60) generalises the
one-channel discontinuity relation (31).

Let us now consider the following matrix:

X(s) = �−1
0 (s)M0(s)

t�−1
1 (s), (62)

where �I are the 2×2 Muskhelishvili–Omnès matrices cor-
responding to the T -matrices T I . Making use of the follow-
ing discontinuity properties of the MO matrices:

�0(s + iε) = (1 + 2iT0�0)�0(s − iε)

= (1 − 2iT0∗
�0)−1�0(s − iε),

t�1(s + iε) = t�1(s − iε)(1 + 2i�1T1)

= t�1(s − iε)(1 − 2i�1T1∗
)−1, (63)

one can express the discontinuity of the X matrix elements
in terms of the M̂0 functions and �σK

disc[X(s)] = �Xa(s) + �Xb(s), (64)

where

�Xa = �−1
0 (s − iε)

[
T0∗

(s)�0M̂0(s + iε) (65)

+ M̂0(s − iε)�1T1(s)
]
t�−1

1 (s + iε).

An alternative expression for �Xa can be derived, using
Eq. (63),

�Xa = −
{

Im [�−1
0 (s + iε)] M̂0(s) t�

−1
1 (s + iε)

+�−1
0 (s − iε) M̂0(s) Im [t�−1

1 (s + iε)]
}
,

(66)

which shows that it represents the discontinuity of the fol-
lowing quantity:

�Xa = −disc[�−1
0 (s) M̂0(s)

t�−1
1 (s)] (67)

across the right-hand cut. The quantity �Xb is proportional
to �σK and it is given by
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�Xb = 32π√
6 εL

�σK

×�−1
0 (s − iε)T0∗

(s)

(
0 0
0 1

)
T1(s)t�−1

1 (s + iε).

(68)

We can then write a twice-subtracted dispersive representa-
tion for X(s) and generate, via (62), a MO representation for
the M0 amplitudes
(
M0(w) G10(w)

N0(w) H10(w)

)

= �0(w)
[
P0(w) + w2 ( Îa(w) + Îb(w))

]
t�1(w), (69)

where P0 is a 2 × 2 matrix of polynomial functions,

P0(w) =
(

α0 + β0w + γ0w
2 αG

0 + βG
0 w + γ G

0 w2

αN
0 + βN

0 w + γ N
0 w2 αH

0 + βH
0 w + γ H

0 w2

)

(70)

and the integral parts are

Îa,b = 1

π

∫ ∞

4m2
π

ds′

(s′)2(s′ − w)
�Xa,b(s

′). (71)

One remarks that in the term �Xb the quark mass ratio εL
appears in the denominator and thus cancels with the over-
all factor in the complete amplitudes. This part is driven by
the physical K+ −K 0 mass difference via the �σK function
(see (47)). This mechanism was first studied in Ref. [32] who
predicted that a large isospin violation should take place at 1
GeV in the ηπ → ππ scattering amplitude, due to the contri-
butions from both the a0(980) and the f0(980) resonances.
The set of equations (69) account for the other sources of
isospin violation as well.

We now consider the case of the I = 2 amplitudes and we
also introduce a matrix notation for the column matrices

M2 =
(
M2(s)
G12(s)

)
, M̂2 =

(
M̂2(s)
Ĝ12(s)

)
(72)

From the unitarity relations including the ππ , πη and K K̄
contributions we deduce the discontinuity of the M2 func-
tions

disc[M2(s)] = σπ( f 2
0 (s))∗

(
M2(s + iε) + M̂2(s)

)
+T1(s)�1

(
M2(s − iε) + M̂2(s)

)
.

(73)

As before, we introduce a matrix X2, multiplying M2 by
inverse MO functions,

X2 = �−1
2 �−1

1 M2. (74)

Its discontinuity relation is expressed in terms of the M̂2

functions and the MO functions

�X2 = �−1
2 (s − iε)�−1

1 (s + iε)
[
σπ f 2

0
∗
(s)M̂2(s)

+T1(s)�1M̂2(s)
]
.

(75)

An alternative useful expression for �X2 can be derived

�X2 = −
{

Im [�−1
2 (s + iε)]�−1

1 (s + iε)

+�−1
2 (s − iε) Im [�−1

1 (s + iε)]
}
M̂2(s)

= −disc
[
�−1

2 (s)�−1
1 (s)

]
M̂2(s). (76)

This leads to the following integral MO representation for
the matrix M2:
(
M2(w)

G12(w)

)
= �2(w)�1(w)

×
(

Î2(w)w2

αK
2 + βK

2 w +
(
γ K

2 + Î K2 (w)
)

w2

)

(77)

with

(
Î2(w)

Î K2 (w)

)
= 1

π

∫ ∞

4m2
π

ds′

(s′)2(s′ − w)
�X2(s

′). (78)

Equations (69) and (77) together with the uncoupled
equation for M1 (32) involve 16 polynomial parameters. The
polynomial dependence was chosen such that the equations
would reduce exactly to the set of elastic equations (32) if
one switches off the coupling to the K K̄ channel as well as
ηπ rescattering.4 One remarks that the asymptotic behaviour
in the coupled-channel equations is modified as compared to
the one-channel case: since the matrix elements of the MO
matrices �I , decrease as 1/s when s goes to ∞ the entries of
the M0 matrix (thus the M0 function) behave as constants.
The asymptotic behaviour of M2, in contrast, remains the
same as before.

In addition to the polynomial parameters, the right-hand
side of Eqs. (69), (77) involve a number of “hat functions”.
The functions M̂I are determined in terms of the functions
MI by the angular integrals (26), but one still needs to deter-
mine the other hat functions Ĝ10, N̂0, Ĥ10, Ĝ12, which are
related to the K K̄ amplitudes. For this purpose, one would
have to consider all the related crossed channel amplitudes
and write similar sets of equations (which would introduce
further one-variable functions). Here, since we are mainly

4 The one-channel case is recovered by setting (T1)i j = 0 and the MO
matrices to [�0]i j = δi j (1 + δi1�0) and [�1]i j = δi j .
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interested in the ηπ → ππ amplitude we will content with
an approximation for the amplitudes involving the K K̄ chan-
nel, simply neglecting the integrals which involve the left-cut
functions, i.e. we take

Ĝ10 = N̂0 = Ĥ10 = Ĝ12 = 0. (79)

In support of this approximation, one observes that if one
were to neglect the left-cut integrals in the η → 3π ampli-
tude itself, one would still obtain a qualitatively reasonable
description (e.g. [40]). With this approximation, Eqs. (69)
and (77) constitute a closed set of equations which form a
coupled-channel generalisation of the Khuri–Treiman equa-
tions (32) for M0 and M2.

4.3 Matching to the chiral amplitudes

We intend to fix the 16 polynomial parameters by matching
to the chiral expansions of the amplitudes involved. For the
η → 3π amplitude we will use the NLO expansion also
including the part of the electromagnetic contributions of
order e2(md + mu) from Ref. [6]. This makes it possible to
display explicitly the term induced by the K+ − K 0 mass
difference via unitarity which, in the dispersive representa-
tion, is contained in the Îb integrals (see Eqs. (68), (71)). The
explicit chiral expressions for the functions MI as used here
are given in Appendix A.

For the isospin-violating amplitudes involving the K K̄
channel we will use the leading order chiral expansion. At
this order, the partial-wave amplitudes have no left-hand
cut, which is consistent with the approximation of dropping
the left-cut functions in the integral equations. The relevant
expressions (including the O(e2) contributions) are given
below

Ḡ10(w) =
√

6

�Kπ

(
3

8
w − 1

2
m2

K

)
+ 2

√
2

3 εL

e2C

F4
π

,

N̄0(w) =
√

3

�Kπ

(
−3

4
w + m2

π

)
,

H̄10(w) = 4√
6 εL

e2C

F4
π

,

Ḡ12(w) =
√

6

�Kπ

(
9

16
w − 3

4
m2

K

)
− 1√

2 εL

e2C

F4
π

,

(80)

with

�PQ = m2
P − m2

Q (81)

and the coupling constant C can be related to the π+ − π0

mass difference (see Appendix A).

We implement matching conditions for the η → 3π

amplitude following the simple method of Ref. [38] which
differs slightly from that of Ref. [25].

Let M̄(s, t, u) be the amplitude computed in the chiral
expansion at order p4. The polynomial parameters of the
dispersive amplitude must be determined such that the dis-
persive and chiral amplitudes coincide for small values of the
Mandelstam variables. At order p4 one should thus have

M(s, t, u) − M̄(s, t, u) = O(p6). (82)

This condition is satisfied automatically for the discontinu-
ities, which implies that one can neglect the discontinuity of
the differences of the one-variable functions MI − M̄I and
thus expand these differences as polynomials,

MI (w) − M̄I (w) =
nI∑
n=0

λn wn (83)

(with n0 = n2 = 2, n1 = 1). Inserting these expansions into
the amplitude difference M(s, t, u) − M̄(s, t, u) and requir-
ing that the O(p4) polynomial part vanishes gives four equa-
tions. In the elastic Khuri–Treiman framework these deter-
mine the four parameters via the following four equations:

α0 = M̄0(0) + 4

3
M̄2(0) + 3s0 (M̄ ′

2(0) − M̄1(0)) + 9s2
0 M̄eff

2

β0 = M̄ ′
0(0) + 3 M̄1(0) − 5

3
M̄ ′

2(0) − 9s0 M̄
eff
2 − �′

0(0) α0

β1 = M̄ ′
1(0) − Î1(0) + M̄eff

2

γ0 = 1

2
M̄ ′′

0 (0) − Î0(0) + 4

3
M̄eff

2 − 1

2
�′′

0(0) α0 − �′
0(0) β0

(84)

with

M̄eff
2 = 1

2
M̄ ′′

2 (0) − Î2(0) (85)

and one must keep in mind that the integrals Î I (0) which
appear on the right-hand sides depend linearly on the four
parameters. In Ref. [25] the first two of Eq. (84) were replaced
by two equations related to the position sA of the Adler zero
of the chiral amplitude M̄(s, t, u) along the line u = s and
the value of its derivative at s = sA. We will see below that
Eq. (84) do actually implement these Adler zero conditions to
a rather good approximation. Additionally, approximations
were made in Ref. [25] in the determination of β1 and γ0

(yielding e.g. γ0 � 0), the validity of which depends on the
assumed behaviour of the phase δ0 in the inelastic region.
Here, the four equations will be solved without approxima-
tion. Doing so, one notes that the polynomial parameters
get an imaginary part from the contributions of the integrals
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Î I (0), which, however, is small (less that 10% of the real
part).

In the coupled-channel case, the matching of the η → 3π

amplitude again gives rise to four equations. In addition, we
can match the values at w = 0 of each one of the four K K̄
amplitudes with the chiral ones given in Eq. (80) as well as
the values of the first and second derivatives (which are van-
ishing). Altogether, this provides 16 constraints which fix all
the polynomial parameters appearing in the coupled-channel
Khuri–Treiman equations. The details of these matching
equations are given in Appendix B.

5 Results and comparisons with experiment

5.1 Numerical method

The main difficulty which is involved in deriving accurate
numerical solutions of the Khuri–Treiman equations is tied
to the evaluation of the angular integrals 〈znMI 〉 needed to
obtain the hat functions M̂I and to the treatment of the sin-
gularities of these functions in the computation of the Îa
integrals which are finite. These technical aspects are dis-
cussed in detail in Ref. [24]. By a change of variables one
can rewrite the angular integrals as integrals over t

〈znMI 〉(s) = 1

(κ(s))n+1

∫ t+(s)

t−(s)
(2t + s − 3s0)

n MI (t) dt,

(86)

with

t±(s) = 1

2
(3s0 − s ± κ(s)). (87)

When s lies in the range (mη −mπ )2 < s < (mη +mπ )2, the
endpoints t±(s) become complex. In fact, using the m2

η + iε
prescription one sees that t+ and t− are placed on opposite
sides of the unitarity cut when s gets larger that (m2

η−m2
π )/2.

The integral from t− to t+ must then be evaluated along a
complex contour which circles around the unitarity cut of
the functions MI . Rather than computing explicitly MI (w)

for complex values of w, as in Ref. [24], we follow here the
approach of Ref. [38] which consists in inserting the disper-
sive representations (11) of the MI functions into Eq. (86)
and computing analytically the t integrals. This makes it pos-
sible to express the functions 〈znMI 〉 in terms of the discon-
tinuities disc[MI ] along the positive real axis. The relevant
formulae are recalled in Appendix C.

The equations are conveniently solved using an iterative
procedure. On the first iteration step, one sets the M̂I func-
tions equal to zero. Then the Î integrals are also equal to zero
and it is straightforward to compute the values of the poly-
nomial parameters from the matching equations and then the

functions MI , G10, N0, H10, G12 as well as the disconti-
nuities disc[MI ] (which are given from Eq. (31) in the one-
channel case and (60), (73) in the coupled-channel case). The
coupled-channel framework is somewhat more complicated
to handle than the single-channel one, essentially because
the MO matrices do not obey a simple explicit representa-
tion in terms of the T -matrix elements and must be solved
for numerically, but it does not otherwise involve any specific
difficulty. Then, on each iteration step, one updates the val-
ues of the functions M̂I using disc[MI ] from the preceding
step, and then compute the Îa integrals. Then one updates
the values of the polynomial parameters and derive the new
values of all the functions MI , G10, N0, H10, G12 and those
of discontinuities disc[MI ].

Convergence is found to be reasonably fast. Denoting by
M (n)

I the result obtained at the nth iteration step we can esti-
mate the rate of convergence from the quantity

ε(n) = max
I,s

∣∣∣∣∣
M (n)

I (s) − M (n−1)
I (s)

M (n)
I (s)

∣∣∣∣∣ . (88)

Anticipating on the numerical results to be presented below,
with n = 5, 6, 7 we find: ε(5) � 4 · 10−3, ε(6) � 2 · 10−4,
ε(7) � 4 · 10−5. The I = 2 amplitude is the one which has
the slowest convergence rate.

5.2 Input I = 0, 1 T-matrices

Above the K K̄ threshold, the S and T matrices are related
by

S = 1 + 2i
√

� T
√

�. (89)

Two-channel unitarity implies that all the T -matrix elements
are determined from three real inputs: a) the phase of S11,
b) the modulus of T12 and c) the phase of T12. For I =
0 scattering, experimental data exist for these quantities up
to 2 GeV, approximately. We will use here a determination
based on the experimental data of Hyams et al. [41] for the
ππ → ππ phase shifts and the data of Refs. [42,43] (above
1.3 GeV) for the ππ → K K̄ amplitude.5 In the higher-
energy region, a smooth interpolation is performed with the
following asymptotic conditions:

lim
s→∞ δ0

ππ→K K̄
(s) = 2π, lim

s→∞ |T 0
ππ→K K̄

(s)| = 0 (90)

which ensure (in general) the existence of a corresponding
unique MO matrix [45]. Below the K K̄ threshold, a deter-
mination of the phase shift based on the data of Ref. [41]

5 We note, however, that a recent analysis of the ππ Roy equations
in a once-subtracted version [44] shows some tension with the data of
Cohen et al. [42] assuming that it saturates ππ inelasticity near the K K̄
threshold.
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Fig. 2 Illustration of the I = 0 T -matrix used. The upper figure shows
the ππ phase shift (upper curve) and the phase of the ππ → K K̄ ampli-
tude g0

0 (lower curve). The dotted line is the phase used for computing
the one-channel Omnès function. The lower figure shows the modulus
of g0

0 . The curve is a fit to the data above the K K̄ threshold and an
extrapolation, based on analyticity, below

together with constraints from the ππ Roy equations (in
the twice-subtracted version of Ref. [46]) is performed. It
is assumed that inelasticity can be neglected in this region,
which implies that the phase of the ππ → K K̄ amplitude
coincides with the ππ phase shift (Fermi–Watson theorem).
This allows one to determine the modulus of this amplitude
below the K K̄ threshold [47] where it is also needed. Details
on the parametrisation can be found in Refs. [48,49]. Figure 2
shows the experimental data used and the fitted curves.

In the case of the I = 1 T -matrix, experimental infor-
mation on ηπ and K K̄ scattering are indirect and far less
detailed than for I = 0. We will rely here on the chiral K -
matrix model proposed in Ref. [50] which provides a simple
interpolation between certain known properties of the promi-
nent I = 1 scalar resonances a0(980) and a0(1450) and the
low-energy properties constrained by chiral symmetry. The
T -matrix reproduces, by construction, the ηπ → ηπ and
ηπ → K K̄ chiral amplitudes at NLO (and more approxi-
mately the amplitude K K̄ → K K̄ ).
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Fig. 3 Illustration of the I = 1 T -matrix. The upper figure shows the
ηπ phase shift and the phase of the ηπ → K K̄ amplitude gηπ

0 (minus
π ). The lower figure shows the modulus of gηπ

0 , which is also compared
with the chiral O(p4) result

It depends on the values of the O(p4) chiral couplings:
we use here (as in Ref. [50]) a set of values for these taken
from a p4 fit of Ref. [51]. We note that the value of L3 in this
set is L3 = −3.82 · 10−3. We will use this value also in the
computation of the η → 3π amplitude, for consistency.

A further constraint can be implemented by computing the
ηπ and K K̄ scalar form-factors from this T -matrix. Chiral
symmetry relates the ηπ and the Kπ scalar radii, which leads
to the prediction that 〈r2〉ηπ

S should be remarkably small,
〈r2〉ηπ

S � 0.1 fm2. This small value can be reproduced pro-
vided the phase δηπ→K K̄ raises sufficiently slowly above

the K K̄ threshold. The phenomenological parameters of the
model are also constrained by the properties of the reso-
nances. Figure 3 shows a typical result for the ηπ phase shift
and for the phase and modulus of the ηπ → K K̄ amplitude6

which we will use in the present work.

6 The phase shown is that of T0(ηπ+ → K+ K̄ 0) = −gηπ
0 (according

to the isospin convention of Eq. (13)). It satisfies δ0
ηπ→K K̄

(ma0(1450)) =
100◦, which corresponds to 〈r2〉ηπ

S = 0.12 fm2, within 20% of the chiral
O(p4) result.
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Fig. 4 The ππ phase shifts used for computing single-channel Omnès
functions for the I = 2 S-wave and the I = 1 P-wave

Finally, the phase shifts which we used for the I = 1
ππ P-wave and the I = 2 S-wave, for which inelasticity is
ignored, are shown in Fig. 4. In the energy region

√
s ≤ 0.8

GeV, these phase shifts are given by the Roy equations solu-
tion parametrisation of Ref. [46]. They are fitted to exper-
imental data from [41] (P-wave) and [52,53] (I = 2) in
the region

√
s ≤ 1.5 GeV and interpolated to δ1

1(∞) = π ,
δ2

0(∞) = 0 in the higher-energy region.

5.3 Illustration of the role of the inelastic channels

Results for the η → 3π amplitude obtained from solving
numerically the Khuri–Treiman equations are presented in
Fig. 5, which shows the real part of the amplitude along the
line t = u as a function of s. Let us consider the role of the
inelastic channels in four energy regions

(a) In the neighbourhood of s = 1 GeV2 there is a
very sharp energy variation, as one could have easily
expected, induced by the interference of the a0 and f0
resonances and the presence of the K+K− and K 0 K̄ 0

thresholds.
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Fig. 5 Real part of the η → 3π amplitude along the t = u line as a
function of the energy s in two different regions. The yellow shaded
area indicate the physical regions for the scattering ηπ0 → π+π−
(upper figure) and the decay η → π+π−π0 (lower figure). The red
solid curve corresponds to the solution of the coupled-channel Khuri–
Treiman equations and the dashed curve to the single-channel solution.
The blue dash-dotted curve is the chiral O(p4) result

(b) In the region 0.7 � s � 0.97 GeV2 the coupled-channel
amplitude displays a large enhancement as compared to
the single-channel amplitude.

(c) In the lower-energy region, s � 0.7 GeV2, on the con-
trary, the effect of the inelastic channels is to reduce the
size of the amplitude. One also observes that in this region
the influence of the inelastic channels becomes small.

(d) In the sub-threshold region, finally, the coupled-channel
and single-channel amplitudes are essentially indistin-
guishable. This is expected since the amplitudes are con-
strained to satisfy the same chiral matching equations.

It is not difficult to identify the main mechanism which
generates the behaviour described above. For this purpose,
let us consider the i = 1, j = 1 component of the matrix M0

and let us absorb the effect of the integrals Îa , Îa at s = 0
into the polynomial matrix, defining

P̃0(s) ≡ P0(s) + s2( Îa(0) + Îb(0)). (91)
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Fig. 6 Components of the Omnès matrices �0 and �1, which play an
important role (see text)

The real parts of the three components of P̃0, which are
related to the K K̄ channel, have the following expressions:

Re [ P̃0]21(s) � 0.15 − 4.94 s − 12.3 s2,

Re [ P̃0]12(s) � −0.81 + 5.73 s + 1.27 s2,

Re [ P̃0]22(s) � 0.89 + 0.22 s − 6.25 s2.

(92)

These polynomial coefficients are controlled, we recall, by
the matching conditions to the LO chiral ηπ → K K̄ ,
ππ → K K̄ , and K K̄ → K K̄ isospin-violating amplitudes
(see Appendix B). The component Re [P0]21 is negative in
the region s > 4m2

π and dominates the others in the range
s � 0.2 GeV2. In fact, the corresponding contribution to M0

dominates in the whole region 4m2
π < s < 0.95 GeV2. In

this region, the contribution from the inelastic channels can
thus be written approximately as

[M0]inel11 � (�0)12(�1)11

(
P0 + s2( Îa + Îb)

)
21

. (93)

The components of the Omnès matrices which appear in
Eq. (93) are plotted in Fig. 6. The salient feature here is
that the real part of the I = 0 component (�0)12 is positive
at low energy and changes sign7 at s � 0.73 GeV2. This
is the main reason why the inelastic channels decrease the
η → 3π amplitude below 0.7 GeV2 and increase it above.
This behaviour is enhanced by the I = 1 component (�1)11,
which is larger than 1 (reflecting the attractive nature of the
ηπ → ηπ interaction below 1 GeV).

7 The presence of a zero below the K K̄ threshold follows from Watson’s
theorem which is obeyed by the component (�0)12 and leads to the
relation Re (�0)12/Im (�0)12 = cot δ0

0 . This implies that Re (�0)12

vanishes when the phase shift δ0
0 goes through π/2.
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Fig. 8 Real part of the η → 3π0 decay amplitude along the t = u line
as a function of s. The lines are as in Fig. 5

The behaviour of the amplitude along the t = s (or u = s)
line, which displays the Adler zero, is shown in Fig. 7. In the
sub-threshold region, the chiral, the single-channel and the
coupled-channel amplitudes are seen to be very close. For
the position of the Adler zero, we find

sN LO
A = 1.42m2

π+ , sSCA = 1.45m2
π+ , sCCA = 1.49m2

π+ .

(94)

Finally, the results for the η → 3π0 amplitude are shown
in Fig. 8. The influence of the inelastic channels are seen
to be quite substantial in this case in the whole low-energy
region. One also sees that there is no region in which there is
close agreement between the dispersive and the chiral O(p4)

amplitudes. This, of course, is because of the occurrence of
the combination M0(s)+ M0(t)+ M0(u) and the fact that at
least one of the variables s, t , u must lie above the ππ thresh-
old, thus generating significant S-wave rescattering chiral
corrections.
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5.4 Dalitz plot parameters

One traditionally describes the Dalitz plot in terms of two
dimensionless variables X , Y such that |X |, |Y | ≤ 1 and the
centre of the Dalitz plot corresponds to X = Y = 0. In the
case of the charged decay amplitude η → π+π−π0, the
variables X , Y are related to the Mandelstam ones by

X =
√

3

2mη Qc
(u − t),

Y = 3

2mη Qc

(
(mη − mπ0)2 − s

)
− 1, (95)

with Qc = mη − 2mπ+ − mπ0 . Assuming charge conjuga-
tion invariance, the amplitude must be invariant under the
transformation X → −X and a polynomial parametrisation
of the amplitude squared can be written as

|Mc(X,Y )|2
|Mc(0, 0)|2 = 1+a Y +b Y 2 +d X2 + f Y 3 +g X2Y +· · ·

(96)

In the case of the neutral decay amplitude η → 3π0, Qc must
be replaced by Qn = mη − 3mπ0 in the definition of X and
Y . Charge conjugation and Bose symmetry imply that the
amplitude must be invariant under the two transformations

z → z exp
(2iπ

3

)
, z → −z∗ (97)

with z = X + iY . The amplitude squared can thus be repre-
sented as

|Mn(X,Y )|2
|Mn(0, 0)|2 = 1 + 2α |z|2 + 2β Im (z3) + · · · (98)

A direct comparison of the dispersive amplitudes squared
with the experimental data from KLOE [16] is shown in Fig. 9
and our numerical results for the Dalitz plot parameters are
collected in Table 2. The numbers quoted in the table are
obtained in a way which parallels the experimental determi-
nation: a discrete binning of the Dalitz plot is performed (we
used 1150 bins) and a global least-squares fit of the theoret-
ical (chiral or dispersive) amplitudes squared is performed
using the representations (96), (98). The table also shows the
two most recent experimental determinations [15,16].

It is clear, at first, that the amplitudes obtained from solv-
ing the Khuri–Treiman equations and constrained to match
the chiral NLO amplitudes are in much better agreement with
the experimental results in the physical decay region than the
NLO amplitude itself. In particular, the parameter b, which
was too large by a factor of three is reduced by a factor of two
and the parameter α, which was positive, becomes negative.
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Fig. 9 The computed charged amplitudes squared, normalised to 1 at
X = 0, Y = 0.05 are shown along the line X = 0 as a function of
Y (upper plot) and along the line Y = 0.05 as a function of X (lower
plot) and compared with the acceptance corrected results provided by
the KLOE collaboration [16]

This is in close agreement with the results obtained a long
time ago by Kambor et al. [24].

Our main new result is that taking into account the K K̄
inelastic channels and the effect of ηπ rescattering has a non
negligible influence on the Dalitz parameters and tends to
further improve the agreement with experiment. The influ-
ence of these inelastic channels for the parameters d and g is
small (less than 5%) but quite significant for the parameter
b, which is reduced by 17% and now lies within 15% of the
experimental value. This reflects the reduction of the ampli-
tude caused by the inelastic effects at low energy discussed
in Sect. 5.3.

Similarly, the parameter α is modified by approximately
20% by the K K̄ inelastic channels and becomes rather close
to the experimental result. The parameter g is the only one
which shows a mismatch, by a factor of two, with the value
measured by KLOE.

Finally, let us consider the sensitivity of the Dalitz plot
parameters to the strength of the ηπ interaction, which is not
precisely known at present. This is illustrated in Table 3. The
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Table 2 Results for the Dalitz plot parameters of the charged and neu-
tral η → 3π decays based on the NLO chiral amplitude (in the form
given in Appendix A with L3 = −3.82 ·10−3) and its dispersive extrap-

olations based on single-channel and coupled-channel Khuri–Treiman
equations and the matching procedure described in the text. The last
two columns show experimental results from Refs. [15,16,54]

η → π+π−π0 O(p4) Single-ch. Coupled-ch. KLOE BESIII

a −1.328 −1.156 −1.142 −1.095(4) −1.128(15)

b 0.429 0.200 0.172 0.145(6) 0.153(17)

d 0.090 0.095 0.097 0.081(7) 0.085(16)

f 0.017 0.109 0.122 0.141(10) 0.173(28)

g −0.081 −0.088 −0.089 −0.044(16) –

η → π0π0π0 PDG

α +0.0142 −0.0268 −0.0319 −0.0318(15)

β −0.0007 −0.0046 −0.0056 −

Table 3 Relative variation of the Dalitz plot parameters from their
central values. Second column: the ηπ T -matrix elements are set
to zero, third column: the ηπ T -matrix has larger phase shifts:
δηπ→K K̄ (ma0(1450)) = 180◦ (instead of 100◦) and the scattering

length is aηπ
0 = 21.6 · 10−3 (instead of 13.2 · 10−3)), fourth column

L3 = −2.65 · 10−3 (from Ref. [55]) instead of L3 = −3.82 · 10−3

No ηπ (%) Large ηπ(%) L3 = −2.65 · 10−3 (%)

�a/|a| −0.6 +0.8 +3.9

�b/|b| +9.0 −9.6 −2.4

�d/|d| −0.7 +0.8 −13.0

� f/| f | −6.3 +6.4 −11.3

�g/|g| −0.2 +0.3 +10.8

�α/|α| +9.1 −9.2 +5.5

table also shows that varying the O(p4) coupling L3 has a
significant influence, in particular on the parameter d.

5.5 The ratio �(η → 3π0)/�(η → π+π−π0)

Let us quote here the results for the ratio of the 3π0 and the
π+π−π0 decay rates

R3π0/π+π−π0 ≡ �(η → 3π0)

�(η → π+π−π0)
. (99)

We find that the influence of the inelastic channels on this
ratio is very small,

R3π0/π+π−π0 �1.451 (coupled-channel),

R3π0/π+π−π0 �1.449 (single-channel). (100)

As compared with the chiral O(p4) result

R3π0/π+π−π0 = 1.425 (Chiral NLO), (101)

this ratio is thus predicted to increase under the effect of
the final-state interactions, by roughly 2%. The experimental

status of this quantity is not completely clear at present, as
the PDG [54] quotes two different numbers

R3π0/π+π−π0 = 1.426 ± 0.026 (PDG fit),
= 1.48 ± 0.05 (PDG average).

(102)

Besides, the CLEO collaboration [56] has performed an
experiment dedicated to the determinations of the η meson
decay branching fractions and they quote

R3π0/π+π−π0 = 1.496 ± 0.043 ± 0.035 (CLEO) (103)

as the most precise determination of the 3π0/π+π−π0 ratio.

5.6 The quark mass ratio Q from the chirally matched
dispersive amplitude

It must first be recalled that, once the electromagnetic inter-
action is taken into account, the quark mass ratio Q is no
longer invariant under the QCD renormalisation group since
the quark mass variation with the scale depends on its electric
charge

μ0
dmq(μ0)

dμ0
= −

(
γ QCD + e2

q γ QED
)
mq(μ0) ,

γ QED = 3e2

8π2 + O(e4)

(104)

(with eu = 2/3, ed = es = −1/3). This implies the follow-
ing scale variation for the factor εL :

μ0
dεL

dμ0
= e2

16π2

m2
π

3
√

3F2
π

+ O(e2(md − mu), e
2m2

q). (105)

It can then easily be verified, using the equations of Appendix
A which include the e2m2

π contributions [6], that the scale
invariance of the complete NLO chiral amplitude is restored
thanks to the combination of two of the electromagnetic
coupling constants [4], Kr

9 + Kr
10. Indeed, as shown in
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Refs. [57,58] this combination depends not only on the chiral
scale μ but also on the QCD scale μ0 and satisfies

μ0
d

dμ0

(
Kr

9(μ,μ0) + Kr
10(μ,μ0)

) = 3

4

1

16π2 . (106)

In practice, this means that in order to determine Q(μ0)

from the η → 3π amplitude we must specify the values of
the electromagnetic chiral couplings Ki at the corresponding
scale. We choose here μ0 = 0.77 GeV and estimate the val-
ues of the couplings Kr

i (μ,μ0) from a resonance saturation
model [59]. Such estimates are qualitative at best but it can be
shown, based on general order of magnitude arguments, that
the uncertainty induced on the amplitude should not exceed
a few percent [6,7].

Having verified that the dispersive amplitude is in quali-
tative agreement with experiment concerning the Dalitz plot
parameters, we can make an estimate of the value of Q. In the
present approach, the amplitude in the physical decay region
is derived as a Khuri–Treiman solution uniquely defined from
the chiral NLO amplitude by the set of four matching equa-
tions, and thus has a definite dependence on Q. We can then
estimate the value of Q by the requirement that the dispersive
amplitude reproduces the experimental values of the η → 3π

decay widths

�exp[ η → π+π−π0] = (299 ± 11) eV

�exp[ η → 3π0] = (427 ± 15) eV
(107)

taken from the PDG [54] (constrained fit). Doing this, we
find

η → π+π−π0 : Q = 21.8 ± 0.2 (single-channel),

Q = 21.6 ± 0.2 (coupled-channel),

η → 3π0 : Q = 21.9 ± 0.2 (single-channel),

Q = 21.7 ± 0.2 (coupled-channel),

(108)

where the quoted errors only reflect the experimental ones
on the widths (we comment below on the theoretical error).
This shows that the effect of the inelastic channels on the
determination of Q is rather small, of the order of 1%, and
tends to decrease its value.

The central value of Q is somewhat smaller than the
results which are obtained from lattice QCD+QED simu-
lations of hadron masses: Q = 22.9 ± 0.4 (Ref. [60]),
Q = 23.4(0.4)(0.3)(0.4) (Ref. [61]). The error on Q associ-
ated with the phase shifts below 1 GeV is rather small, of the
order of 1%. The error associated with the NLO amplitude,
essentially related to L3, is of the same order. The largest
error arises from chiral NNLO contributions to the ampli-
tude which will modify the determination of the polynomial

parameters via the matching conditions. Assuming that they
induce a 10% relative error in the determination of each one
of the four polynomial parameters α0, β0, γ0, β1 and assum-
ing the errors to be independent, gives the following theory
error on Q:

�Qth = ±2.2 (109)

Q being mostly sensitive to the variation of the first two
parameters α0, β0. We have also varied the remaining 14
polynomial parameters, assuming a 20% relative error, and
found that they have a much smaller influence.

Within the error (109), the determination based on η →
3π decay is compatible with the lattice QCD results, which
confirms that the size of the NNLO corrections to the η decay
amplitude in the sub-threshold region should not exceed 10%.

5.7 Further experimental constraints on Q

Our estimate for the error on Q (Eq. (109)) was based on
a general order of magnitude assumption on the size of the
NNLO corrections to the four leading polynomial parame-
ters.

More precise information on the size of these correc-
tions can be derived by making use of the precise experi-
mental results on the energy dependence across the Dalitz
region, imposing the requirement that the dispersive ampli-
tude reproduces these via a least-squares fit.

Not all the four leading polynomial parameters can get
independently constrained in this way since a ratio of ampli-
tudes is involved. We will make the simple choice to fix one
of them, α0, from its chiral value and to perform a variation
of the three others β0, γ0, β1.

We will use the latest KLOE experimental data [16] which
consist of a set of amplitudes squared, |Texp(Xi ,Yi )|2, mea-
sured over 371 energy bins in the Dalitz region and satisfying
the normalisation condition

|Texp(0, 0.05)|2 = 1 ± 0.01. (110)

We introduce corresponding theory amplitudes Tth(X, Y ) =
Mc(X,Y )/Mc(0, 0.05) and define the χ2 as

χ2 =
∑
bins

(
λ|Tth(Xi ,Yi )|2 − |Texp(Xi ,Yi )|2

)2

∣∣�Texp(Xi ,Yi )
∣∣2 (111)

allowing for a floating of the normalisation within the exper-
imental error via a parameter λ.

At first, setting λ = 1 and computing the χ2 with our
chirally matched central amplitude with L3 = −3.82 · 10−3

we obtain χ2 = 3079. If, instead, we use the value recently
derived in Ref. [55] from Kl4 decays: L3 = −2.65 · 10−3,
one obtains a significantly reduced result: χ2 = 714. It
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thus seems reasonable to use this value as a starting point,
which fixes the central value of α0. We have then searched
for a minimum of the χ2 by varying the real parts of the
three polynomial parameters β0, γ0, β1 (keeping their imag-
inary parts fixed) and the normalisation λ. The other polyno-
mial parameters, in particular α0, are kept fixed to their chi-
rally matched value. In this way, we obtain at the minimum:
χ2

min = 387, which corresponds to a value per degree of free-
dom χ2

min/dof = 1.055. The fitted values of the polynomial
parameters differ from the chirally matched values by less
than 5% (the numerical values are given in Appendix D). This
confirms that this difference can be consistently attributed to
chiral NNLO effects.

The theory error in this approach is dominated by the vari-
ation (by 10%) of the single polynomial parameter α0 (we
have also added an error associated with the input T -matrices
and an error from varying the imaginary parts of the poly-
nomial parameters). The error induced by the variation of
the parameters β0, γ0, β1 is now computed using the covari-
ance matrix as evaluated by the MINUIT fitting program [62]
(this matrix is given in Appendix D). This error is added in
quadrature with the experimental error on the π+π−π0 and
3π0 decay rates. Finally, the result for the quark mass ratio
as determined from this fitted amplitude can be written as

Qfit = 21.50 ± 0.70th ± 0.67exp. (112)

We find it useful to quote the theoretical and experimental
errors separately since the former is not necessarily gaussian.

Previous determinations of Q which combine chiral con-
straints and fits to Dalitz plot data have been performed
in Refs. [28,63–67]. In the most sophisticated of these
approaches [67], five polynomial parameters are included
in the fit and the effect of the π+ −π0 mass difference in the
amplitudes is accounted for.

Finally, we quote the values of the 3π0 Dalitz plot param-
eters which can be predicted from our fitted amplitude

αfit = −0.0337±0.0012, βfit = −0.0054±0.0001. (113)

6 Conclusions

We have proposed an extension of the Khuri–Treiman for-
malism for the η → 3π amplitude which includes the ηπ

and the K K̄ channels in the unitarity equations in addition
to the elastic ππ channel.

Modulo some approximations (in particular we do not
attempt to impose unitarity in the crossed channels involv-
ing kaons like πK → πK or ηK → πK ) the equations
for the one-variable functions M0 and M2 are shown to be
simply replaced by 2 × 2 matrix equations. These are given
in Eqs. (69) and (77) which involve both the I = 0 and the

I = 1 Omnès 2 × 2 matrices. Equation (69) exhibits explic-
itly the contribution induced by the physical K 0 − K+ mass
difference via unitarity in integral form.

The amplitudes derived from this extended framework
should be valid in an energy range which covers the physical
decay region and also the physical region of the scattering
ηπ → ππ below 1 GeV. Given a fixed number of polyno-
mial parameters, an improved precision at low energy should
result from the fact that the effects of the two prominent light
scalar resonances a0(980) and f0(980) are taken into account
in the dispersive integrals.

Using four polynomial parameters in the η → 3π ampli-
tude we have reconsidered the idea of performing a prediction
of the amplitude in the physical region as an extrapolation
of the O(p4) chiral amplitude, uniquely defined by fixing all
the polynomial parameters by matching conditions.

These are imposed in the form of a set of equations
which ensure that the differences between the dispersive
and the O(p4) chiral η → 3π amplitude are of order p6

or higher. One verifies then that the chiral and the dis-
persive η → π+π−π0 amplitudes are very close in the
neighbourhood of the Adler zero. These conditions also
ensure, for the charged decay amplitude, that the single and
multi-channel dispersive amplitudes are quasi-identical in
the whole region 0 ≤ s ≤ 4m2

π , |t − u| ≤ (mη + mπ )2. In
contrast, for η → 3π0, one finds that the unitarity induced
chiral corrections are significant even in the sub-threshold
region.

We have considered the Dalitz plot parameters and we
found that the induced influence of the a0(980), f0(980)

resonances is not negligible, in particular for the neutral
mode. The modifications of the parameters, in the coupled-
channel framework, go in the sense of improving the agree-
ment with experiment, in particular for the parameters a,
b, f of the charged mode. The parameter α, for the neu-
tral mode is modified by 20% by the effects of the res-
onances and lies rather close to the experimental value.
The remaining differences between the experimental and the
dispersive-theoretical amplitude suggest that NNLO contri-
butions are needed in the matching conditions, at the 5-10%
level, which seems quite plausible. Some of these NNLO
effects could be accounted for in a more general framework
which would implement both unitarity and crossing symme-
try completely for all the channels involved. This is left for
future work.

The η → 3π amplitudes constructed in the present
approach inherit a well-defined dependence on the quark
mass ratio Q from that of the chiral NLO amplitude. We
can then determine Q such as to reproduce the integrated
decay widths. The central value that one obtains is some-
what low compared to the recent determinations from lat-
tice QCD simulations but it is compatible within the uncer-
tainty induced by the NNLO effects in the matching. Some
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knowledge of these NNLO effects seems necessary in order
to improve the precision of the determination of Q by this
method.
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Appendix A: The amplitude η → π+π−π0 at chiral
order p4 and e2 p2

We give below the explicit expressions for the three functions
M̄I in the chiral expansion at order p4 and including e2 p2

contributions as used in the present work. They are given in
a form which is manifestly scale invariant independently of
the values of mπ , mK , mη. The amplitude is identical to the
one originally computed in Ref. [17] when e2 = 0 and the
mπ , mK , mη values in the NLO part obey the Gell-Mann-
Okubo relation 3m2

η = 4m2
K − m2

π . Following Ref. [17] the
LEC’s Lr

5, Lr
7, Lr

8 are expressed in terms of the two physical
quantities8

�GMO = 4m̄2
K − m̄2

π − 3m̄2
η

m̄2
η − m̄2

π

, �F = FK

Fπ

− 1 (A.1)

and in terms of the quark mass ratio (ms + m̂)/m̂ (see
Ref. [3]). We also include the electromagnetic contributions
of order e2 p2 evaluated in Ref. [6] which allows one to iden-
tify the piece induced by the physical K+ − K 0 mass differ-
ence via unitarity. Further electromagnetic corrections which
have been computed in Ref. [7] are not included here. The
expressions for M̄I given below also implement the w = 0
conditions (10), which simplifies somewhat the writing of
the matching relations.

Using the notation

�PQ = m2
P − m2

Q, RPQ = m2
P

�PQ
log

m2
P

m2
Q

(A.2)

8 In Eq. (A.1) m̄ P are QCD masses for which we use the values provided
by the FLAG review [68] m̄π = 0.1348, m̄K = 0.4942 and m̄η �
mη = 0.537862 (all in GeV) which gives �GMO = 0.2068. Also using
FK /Fπ from this review gives �F = 0.2005. Elsewhere in the chiral
formulae we use Fπ = 92.21 MeV (from the PDG), mπ = 0.13957,
mK = mK+ = 0.493677 GeV and L3 = −3.82 · 10−3.

the function M̄0 reads

M̄0(s) = (3 s − 4m2
π )

�ηπ

(
1 + 2

3
�GMO + 2m2

π

�F

�Kπ

)

+ m2
π

�ηπ

(
− 8

3
�GMO

)

+ 2

3

m2
π m2

K

�ηπ F2
π

J̄ ′
πη(0)

(
m2

η + 3m2
π − 5

3
s

)

+ 1

16π2

m2
π m2

K

�ηπ F2
π

(
− 4 + 2 Rπη + 4

3
RπK

− 8

3
log

(
m2

π

m2
η

)
+ 24 log

(
m2

η

m2
K

))

+ 1

16π2

m4
π

�ηπ F2
π

(
4 + 16 Rπη − 58

3
RπK

+ 2 log

(
m2

π

m2
K

)
+ 28

3
log

(
m2

η

m2
K

))

+ 1

16π2

s m2
K

�ηπ F2
π

(
4 − 2 Rπη − 12 log

(
m2

η

m2
K

))

+ 1

16π2

s m2
π

�ηπ F2
π

(
− 4 − 11

2
Rπη + 15

2
RπK

+ 7 log

(
m2

π

m2
η

)
+ 4 log

(
m2

η

m2
K

))

+ 1

16π2

s2

�ηπ F2
π

(
− 3

4
+ 3

4

m2
π

m2
K

− 3 log

(
m2

π

m2
K

))

+ m2
π

�ηπ F2
π

(2

9
J̄πη(s) (2m2

K − 6m2
π + 3 s)

− 2

3
J̄ηη(s) (m2

K − m2
π )

)

+ 1

�ηπ F2
π

(
− 1

3
J̄ππ (s) (m2

π − 2 s)

(2m2
K − 6m2

π + 3 s) − 1

6
J̄K K (s)

(8m4
K − 12 s m2

K − 6 s m2
π + 9 s2)

)

+ �M̄a
0 (s) + �M̄b

0 (s) + �M̄c
0(s). (A.3)

The contributions �M̄a
0 , �M̄b

0 are induced by the electro-
magnetic interaction and proportional to e2,

�M̄a
0 (s) = − 1

εL

4 e2 m2
π

9
√

3F2
π

(3 s − 4m2
π )

�ηπ

(3

2
(2Kr

3 − Kr
4)

− Kr
5 − Kr

6 + Kr
9 + Kr

10 + 3C

2F4
π

1

16π2 (1 + LK )
)
,

�M̄b
0 (s) = 1

εL

e2 C

3
√

3 F6
π

(
(4m2

K − 3 s) J̄K K (s)

+ 3m2
K J̄ ′

KK (0)
(5

3
s − m2

η − 3m2
π

))
. (A.4)
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The last contribution, �M̄c
0 , is induced by the physical K+−

K 0 mass difference

�M̄c
0(s) = − 1

εL

1

16
√

3F4
π

s(4m2
K − 3 s)

× (
J̄K 0K 0(s) − J̄K+K−(s)

)
. (A.5)

The parameters C and Kr
i in the above expressions are the

chiral coupling constants which appear at order e2 and e2 p2,
respectively [4].

The chiral expression for the function M̄1 reads

M̄1(t) = t
1

�ηπ F2
π

(
− 4 Lr

3 + 1

16π2

(1

4
− log

(m2
π

m2
K

)))

+ 1

�ηπ F2
π

(
− 1

4
J̄ππ (t) (4m2

π − t)

− 1

8
J̄K K (t) (4m2

K − t)
)

(A.6)

and it has no electromagnetic contributions. The function M̄2,
finally, reads

M̄2(t) = t
m2

π m2
K

�ηπ F2
π

(
− 2

3
J̄ ′
πη(0)

)

+ m2
π

�ηπ F2
π

(
+ 1

6
J̄πη(t) (4m2

K − 3 t)
)

+ 1

�ηπ F2
π

(
+ 1

4
J̄ππ (t) (2m2

π − t) (4m2
K − 3 t)

− 1

8
J̄K K (t) (4m2

K − 3 t)2
)

+ �M̄2(t) (A.7)

with the electromagnetic contribution

�M̄2(t) = − 1

εL

e2 C

4
√

3 F6
π

(
(4m2

K − 3 t) J̄K K (t)

− 4m2
K t J̄ ′

KK (0)
)
. (A.8)

The coupling C can be simply determined from the π+ −π0

mass difference,

m2
π+ − m2

π0 = 2e2C

F2
π

+ O(e2 p2). (A.9)

The couplings Kr
i are expected to have an order of mag-

nitude Kr
i (μ = mρ) ∼ 1/(16π2) but, otherwise, they are

not precisely known. Fortunately, in the η → 3π ampli-
tude, they appear multiplied by e2m2

π . This is in contrast to
other isospin-violating observables likem2

K+ −m2
K 0 in which

they appear multiplied by the larger factor e2m2
K . A simple

resonance saturation estimate [58,59] gives −2K3 + K4 �

−4.0 · 10−3, K5 + K6 � 14.4 · 10−3, K9 + K10 � 7.5 · 10−3

(with μ = μ0 = 0.77 GeV), which suggests that there are
cancellations in the combination relevant for η → 3π

−3

2
(−2Kr

3 + Kr
4) − Kr

5 − Kr
6 + Kr

9 + Kr
10 (A.10)

+ 3C

2F4
π

1

16π2 (1 + LK ) � 0.12 · 10−3. (A.11)

Appendix B: Matching equations

We reproduce below the set of matching relations from which
we determine the set of 16 polynomial parameters of the
Khuri–Treiman coupled-channel equations (i.e. Eqs. (69), (77)
and the second one of Eq. (32)). In order to simplify the rela-
tions it is assumed here that the chiral expressions for the
η → 3π functions M̄I satisfy, as in Appendix A, the w = 0
relations M̄1(0) = M̄2(0) = M̄ ′

2(0) = 0. Derivatives at
w = 0 are denoted either by dots or by primes and matrix
elements of the I = 0, 1 MO matrices are denoted here by
�

(I )
i j . The chiral LO expressions for the K K̄ amplitudes N̄0,

Ḡ10, H̄10 and Ḡ12 are given in Eq. (80). A first set of five
relations is

αN
0 = N̄0(0),

αG
0 = Ḡ10(0),

αH
0 = H̄10(0),

αK
2 = Ḡ12(0),

βK
2 = Ḡ ′

12(0) − (�̇
(1)
22 + �̇(2)) αK

2 . (B.12)

Then, introducing the notation

M̄eff
2 = 1

2
M̄ ′′

2 (0) − Î2(0)

+
(

−�̇(2) �̇
(1)
12 − 1

2
�̈

(1)
12

)
αK

2 − �̇
(1)
12 βK

2 , (B.13)

we have

α0 = M̄0(0) + 9 s2
0 M̄eff

2 − 3 s0�̇
(1)
12 αK

2 ,

β0 = M̄ ′
0(0) − 9 s0 M̄

eff
2 − (�̇

(0)
11 + �̇

(1)
11 ) α0 − �̇

(1)
12 αG

0

− �̇
(0)
12 αN

0 + 5

3
�̇

(1)
12 αK

2 ,

β1 = M̄ ′
1(0) − Î1(0) + M̄eff

2 (B.14)

and

βN
0 = N̄ ′

0(0) + (−�̇
(0)
22 − �̇

(1)
11 ) αN

0 − �̇
(0)
21 α0 − �̇

(1)
12 αH

0

βG
0 = Ḡ ′

10(0) + (−�̇
(1)
22 − �̇

(0)
11 ) αG

0 − �̇
(1)
21 α0 − �̇

(0)
12 αH

0
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βH
0 = H̄ ′

10(0) + (−�̇
(1)
22 − �̇

(0)
22 ) αH

0 − �̇
(1)
21 αN

0 − �̇
(0)
21 αG

0

γ0 = 1

2
M̄ ′′

0 + 4

3
M̄eff

2 − Î11(0)

+
(

−�̇
(0)
11 �̇

(1)
11 − 1

2
�̈

(1)
11 − 1

2
�̈

(0)
11

)
α0

+ (−�̇
(1)
11 − �̇

(0)
11 ) β0 +

(
−1

2
�̈

(1)
12 − �̇

(1)
12 �̇

(0)
11

)
αG

0

− �̇
(1)
12 βG

0 +
(

−�̇
(0)
12 �̇

(1)
11 − 1

2
�̈

(0)
12

)
αN

0 − �̇
(0)
12 βN

0

− �̇
(1)
12 �̇

(0)
12 αH

0 , (B.15)

where Îi j denote the matrix elements of the matrix sum Îa +
Îb (see Eqs. (65) (68) (71)). The final four relations read

γ N
0 = − Î21(0) + (−�̇

(1)
11 �̇

(0)
21 − 1

2
�̈

(0)
21 ) α0 − �̇

(0)
21 β0

− �̇
(1)
12 �̇

(0)
21 αG

0 + (−�̇
(1)
11 �̇

(0)
22 − 1

2
�̈

(0)
22

− 1

2
�̈

(1)
11 ) αN

0 + (−�̇
(0)
22 − �̇

(1)
11 ) βN

0

+
(

−1

2
�̈

(1)
12 − �̇

(1)
12 �̇

(0)
22

)
αH

0 − �̇
(1)
12 βH

0

γ G
0 = − Î12(0) +

(
−�̇

(1)
21 �̇

(0)
11 − 1

2
�̈

(1)
21

)
α0 − �̇

(1)
21 β0

+
(

−�̇
(1)
22 �̇

(0)
11 − 1

2
�̈

(0)
11 − 1

2
�̈

(1)
22

)
αG

0

+
(
−�̇

(1)
22 − �̇

(0)
11

)
βG

0 − �̇
(1)
21 �̇

(0)
12 αN

0

+
(

−�̇
(1)
22 �̇

(0)
12 − 1

2
�̈

(0)
12

)
αH

0 − �̇
(0)
12 βH

0

γ H
0 = − Î22(0) − �̇

(1)
21 �̇

(0)
21 α0 −

(
�̇

(1)
22 �̇

(0)
21 + 1

2
�̈

(0)
21

)
αG

0

− �̇
(0)
21 βG

0 +
(

−�̇
(1)
21 �̇

(0)
22 − 1

2
�̈

(1)
21

)
αN

0 − �̇
(1)
21 βN

0

−
(

1

2
�̈

(1)
22 + �̇

(1)
22 �̇

(0)
22 + 1

2
�̈

(0)
22

)
αH

0

− (�̇
(1)
22 + �̇

(0)
22 ) βH

0

γ K
2 = − Î K2 (0) +

(
−1

2
�̈

(1)
22 − �̇(2) �̇

(1)
22 − 1

2
�̈(2)

)
αK

2

+
(
−�̇

(1)
22 − �̇(2)

)
βK

2 . (B.16)

Appendix C: Angular integrals and hat functions

Using the dispersive representations (11) of the functions
MI , one can express the angular integrals in the following
form which displays explicitly their singularity when s →
(mη − mπ )2. For I = 0, 2 one has

〈MI 〉(s) = α̃I + 1

2
β̃I (3s0 − s) + 2R0

I (s)

κ(s)

− 1

π

∫ ∞

4m2
π

dt ′ disc[MI (t
′)] K (0)(t ′, s),

〈zMI 〉(s) = 1

6
β̃I κ(s) + 4R1

I (s)

(κ(s))2

− 1

π

∫ ∞

4m2
π

dt ′ disc[MI (t
′)] K (1)(t ′, s), (C.17)

where κ(s) is given in Eq. (23). For I = 1 one has

〈znM1〉(s) =
(

2

κ(s)

)n+1

Rn
1 (s)

− 1

π

∫ ∞

4m2
π

dt ′ disc[M1(t
′)] P(n)(t ′, s) (C.18)

The functions Rn
I (s), which control the singularities, arise

from the part of the t integration contour which encircle the
unitarity cut, they are given by

Rn
I (s) = i

∫ Re [t−(s)]

4m2
π

dt ′
(
t ′ − 1

2
(3s0 − s)

)n

disc[MI (t
′)]

(C.19)

(where t±(s) is given in Eq. (87)) in the s range

1

2
(m2

η − m2
π ) < s < m2

η − 5m2
π (C.20)

and Rn
I (s) = 0 otherwise. In particular, no divergence occurs

when s → 4m2
π or s → (mη + mπ )2.

The kernels which are needed here are given by the fol-
lowing expressions:

P(0)(t ′, s) = 1

t ′
+ 1

κ(s)
L(t ′, s),

P(1)(t ′, s) = 2

κ(s)
+ (2t ′ + s − 3s0)

(κ(s))2 L(t ′, s),

P(2)(t ′, s) = 1

3t ′
+ 2(2t ′ + s − 3s0)

κ(s)2

+ (2t ′ + s − 3s0)
2

κ(s)3 L(t ′, s). (C.21)

and

K (0)(t ′, s) = 3s0 − s

2(t ′)2 + P(0)(t ′, s),

K (1)(t ′, s) = κ(s)

6(t ′)2 + P(1)(t ′, s). (C.22)

The function L(t ′, s) arises from the parts of the t integra-
tion contour not taken into account in the functions Rn

I (the
function L(t ′, s) thus vanishes when s → (mη −mπ )2, such
that the kernels remain finite) it is given by
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(1) 4m2
π ≤ s < (mη − mπ )2:

L(t ′, s) = log(t+(s) − t ′ + iε) − log(t−(s) − t ′ + iε).

(C.23)

(2) (mη − mπ )2 ≤ s < m2
η − 5m2

π :

L(t ′, s)= log(t+(s)−t ′) − log( 1
2 (3s0 − s) − t ′+iε)

− log(t−(s) − t ′)+log( 1
2 (3s0 − s)−t ′ − iε).

(C.24)

(3) m2
η − 5m2

π ≤ s < ∞

L(t ′, s) = log(t ′ − t+(s)) − log(t ′ − t−(s)). (C.25)

Appendix D: Supplementary material

The integral equations for the amplitudes MI depend linearly
on the 16 polynomial parameters. The matching equations are
also linear. One can then express the amplitudes in which, for
instance, the four leading parameters α0, β0, γ0, β1 are fixed
to some arbitrary values and the remaining 12 parameters are
fixed from the corresponding matching equations in the form
of a linear superposition,

MI (s) = M (0000)
I (s) + α0M

(1000)
I (s) + β0M

(0100)
I (s)

+ γ0M
(0010)
I (s) + β1M

(0001)
I (s). (D.26)

We provide our numerical results for the amplitudes in
which the parameters α0, β0, γ0, β1 are either 0 or 1 in
five data files: MI_0000.dat, MI_1000.dat, MI_0100.dat,
MI_0010.dat, MI_0001.dat. In each file, the first column is s
(in GeV2) and the other columns are the corresponding real
and imaginary parts of M0, M1 and M2. We note that these
amplitudes depend on the energy value Easy above which the
T matrix parameters are set to their asymptotic values. We
take here Easy = 10 GeV. We give below the corresponding
values of the four polynomial parameters for several cases
considered in this paper.

(1) Chirally matched amplitude, L3 = −3.82 · 10−3:

α0 = −0.69285 + i 0.05692,

β0 = 17.27894 − i 0.64122,

γ0 = −46.42237 + i 1.02473,

β1 = 8.45260 + i 0.27853.

(D.27)

(2) Chirally matched amplitude, L3 = −2.65 · 10−3:

α0 = −0.67534 +i 0.05677,

β0 = 17.0817 −i 0.63953,

γ0 = −42.5778 +i 1.02438,

β1 = 6.7383 +i 0.27776.

(D.28)

(3) Fitted amplitude:

α0 = −0.67534 + i 0.05677,

β0 = 17.2280 − i 0.63953,

γ0 = −44.3672 + i 1.02438,

β1 = 6.53640 + i 0.27776.

(D.29)

Note that α0 and the imaginary parts of β0, γ0, β1 are the
same as in 2).

The covariance matrix of the three fitted parameters reads

β0 γ0 β1

β0 0.261
γ0 −0.846 2.847
β1 0.439 −1.439 0.742

and, finally, the value of the normalisation parameter λ

(see Eq. (111)) is λ = 1.009 ± 0.001.
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