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Abstract In the present work we study the scale depen-
dence at the level of the effective action of charged black
holes in Einstein–Maxwell as well as in Einstein–power-
Maxwell theories in (2 + 1)-dimensional spacetimes with-
out a cosmological constant. We allow for scale dependence
of the gravitational and electromagnetic couplings, and we
solve the corresponding generalized field equations imposing
the null energy condition. Certain properties, such as horizon
structure and thermodynamics, are discussed in detail.

1 Introduction

In recent years gravity in (2 + 1) dimensions has attracted
a lot of interest for several reasons. The absence of propa-
gating degrees of freedom, its mathematical simplicity, the
deep connection to Chern–Simons theory [1–3] are just a
few of the reasons why to study three-dimensional gravity.
In addition (2+1) dimensional black holes are a good testing
ground for the four-dimensional theory, because properties of
(3 + 1)-dimensional black holes, such as horizons, Hawking
radiation and black hole thermodynamics, are also present in
their three-dimensional counterparts.

On the other hand, the main motivation to study non-linear
electrodynamics (NLED) was to overcome certain problems
of the standard Maxwell theory. In particular, non-linear elec-
tromagnetic models are introduced in order to describe sit-
uations in which this field is strong enough to invalidate
the predictions provided by the linear theory. Originally,
Born–Infeld non-linear electrodynamics was introduced in
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the 1930s in order to obtain a finite self-energy of point-
like charges [4]. During the last decades this type of action
reappears in the open sector of superstring theories [5,6]
as it describes the dynamics of D-branes [7,8]. Also, these
kinds of electrodynamics have been coupled to gravity in
order to obtain, for example, regular black holes solutions
[9–11], semiclassical corrections to the black hole entropy
[12] and novel exact solutions with a cosmological constant
acting as an effective Born–Infeld cut-off [13]. A particularly
interesting class of NLED theories is the so-called power-
Maxwell theory described by a Lagrangian density of the
form L(F) = Fβ , where F = FμνFμν/4 is the Maxwell
invariant, and β is an arbitrary rational number. When β = 1
one recovers the standard linear electrodynamics, while for
β = D/4 with D being the dimensionality of spacetime,
the electromagnetic energy momentum tensor is traceless
[14,15]. In three dimensions the generic black hole solution
without imposing the traceless condition has been found in
[16], while black hole solutions in linear Einstein–Maxwell
theory are given in [17,18]. Also, interesting solutions and
properties of black holes in the presence of power-Maxwell
theory have been found in Refs. [19–22] whereas some topo-
logical black hole solutions with power-law Maxwell field
have been investigated in [23–25]. Moreover, the relations
between Einstein–power-Maxwell theory and F(R) gravity
have been obtained in Refs. [26,27].

Scale dependence at the level of the effective action is
a generic result of quantum field theory. Regarding quan-
tum gravity it is well known that a consistent formulation
is still an open task. Although there are several approaches
to quantum gravity (for an incomplete list see e.g. [28–36]
and the references therein), most of them have something
in common, namely that the basic parameters that enter into
the action, such as the cosmological constant or Newton’s
constant, become scale-dependent quantities. Therefore, the
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resulting effective action of most quantum gravity theories
acquires a scale dependence. Those scale-dependent cou-
plings are expected to modify the properties of classical black
hole backgrounds. To be more precise, we use the term classi-
cal black hole, when we refer to the corresponding non-scale-
dependent case. Thus, despite both Einstein–Maxwell and
Einstein–power-Maxwell black hole being classical solu-
tions, we split each black hole into two cases: the classical
case (if the gravitational coupling is constant) and the scale-
dependent case (if the gravitational coupling is not constant
anymore). Therefore, in the rest of the paper we shall only
use the term classical for non-scale-dependent black holes.

Please note that this scale-dependent theory is similar to
Brans–Dicke scalar–tensor theory [37–41] in the sense that
the gravitational coupling is not a constant any more. How-
ever, the two theories differ by the fact that, for the pure scale
dependence considered, the underlying action does not have
a kinetic term for this coupling.

It is the aim of this work to study the scale dependence at
the level of the effective action of three-dimensional charged
black holes in linear (Einstein–Maxwell) and non-linear
(Einstein–power-Maxwell) electrodynamics. We use the for-
malism and notation of [42,43] where the authors applied the
same technique to the BTZ black hole [45,46]. Our work is
organized as follows: After this introduction, in the next sec-
tion we present the action and the classical black hole solu-
tion both in Einstein–Maxwell and Einstein–power-Maxwell
theories. The framework and the null energy condition are
introduced in Sects. 3 and 4. The scale dependence for linear
electrodynamics is presented in Sect. 5, while the correspond-
ing solutions for the non-linear theory are given in Sect. 6.
The discussion of our results and remarks are shown in Sect.
7 whereas in Sect. 8 we summarize the main ideas and con-
clude. Finally, we present a brief appendix in which we show
the effective Einstein field equations for an arbitrary index β

in the last section.

2 Classical linear and non-linear electrodynamics in
(2+ 1) dimensions

In this section we present the classical theories of linear
and non-linear electrodynamics. Those theories will then
be investigated in the context of scale-dependent couplings.
The starting point is the so-called Einstein–power-Maxwell
action without cosmological constant (�0 = 0), assuming
a generalized electrodynamics i.e. L(F) = C |F |β , which
reads

I0[gμν, Aμ] =
∫

d3x
√−g

[
1

16πG0
R − 1

e2β
0

L(F)

]
, (1)

where G0 is Einstein’s constant, e0 is the electromagnetic
coupling constant, R is the Ricci scalar, L(F) is the elec-
tromagnetic Lagrangian density where C is a constant, F is
the Maxwell invariant defined in the usual way i.e. F =
(1/4)FμνFμν and Fμν = ∂μAν − ∂ν Aμ is the electro-
magnetic field strength tensor. We use the metric signature
(−,+,+), and natural units (c = h̄ = kB = 1) such that the
action is dimensionless. Note that β is an arbitrary rational
number, which also appears in the exponent of the electro-
magnetic coupling in order to maintain the action dimension-
less. It is easy to check that the special case β = 1 reproduces
the classical Einstein–Maxwell action, and thus the standard
electrodynamics is recovered. For β �= 1 one can obtain
Maxwell-like solutions. In the following we shall consider
both cases: first when β = 3/4, since it is this value that
allows us to obtain a trace-free electrodynamic tensor, pre-
cisely as in the four-dimensional standard Maxwell theory,
and second when β = 1 because is the usual electrodynamics
in 2 + 1 dimensions. In the two cases one obtains the same
classical equations of motion, which are given by Einstein’s
field equations,

Gμν = 8πG0

e2β
0

Tμν. (2)

The energy momentum tensor Tμν is associated with the
electromagnetic field strength Fμν through

Tμν ≡ T EM
μν = LFgμν − L(F)Fμγ Fν

γ , (3)

where LF = dL/dF . In addition, for static circularly sym-
metric solutions the electric field E(r) is given by

Fμν = (δrμδtν − δrνδ
t
μ)E(r). (4)

For the metric, circular symmetry implies

ds2 = − f (r)dt2 + g(r)dr2 + r2dφ2. (5)

Note that, in the classical solution, we are able to deduce the
Schwarzschild ansatz, namely g(r) = f (r)−1. Finally, the
equation of motion for the Maxwell field Aμ(x) reads

Dμ

(
LF Fμν

e2β
0

)
= 0. (6)

With the above in mind, for charged black holes one only
needs to determine the set of functions { f (r), E(r)}. Using
Einstein’s field equations 2 and Eq. 6 combined with Eq. 4
and the definition of LF , one obtains the classical electric
field as well as the lapse function f (r).

It is possible to determine the electric field as well as the
lapse function without assuming a particular value for β for
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classical solutions; however, we will focus on two of them.
First, the Einstein–Maxwell case is in itself interesting due
to its relation with the four-dimensional case. On the other
hand, the Einstein–power-Maxwell case with β = 3/4 is
a desirable one due to a remarkable property: it has a null
trace, which is also present in the four-dimensional case.
The general treatment for any value of β can be found in the
appendix.

2.1 Einstein–Maxwell case

The classical (2 + 1)-dimensional Einstein–Maxwell black
hole solution (β = 1) is given by

f0(r) = −M0G0 − 1

2

Q2
0

e2
0

ln

(
r

r̃0

)
, (7)

E0(r) = Q0

r
e2

0, (8)

where M0 is the mass and Q0 is the electric charge of the
black hole and r̃0 stands for the radius where the electro-
static potential vanishes. The event horizon r0 is obtained by
demanding that f0(r0) = 0, which reads

r0 = r̃0e
− 2M0G0e

2
0

Q2
0 , (9)

and rewriting the lapse function using the event horizon one
gets

f0(r) = − Q2
0

2e2
0

ln

(
r

r0

)
. (10)

Black holes show thermodynamic behaviour. Here, the
Hawking temperature T0, the Bekenstein–Hawking entropy
S0, and the heat capacity C0 are found to be

T0(r0) = 1

4π

∣∣∣∣ Q2
0

2e2
0r0

∣∣∣∣, (11)

S0(r0) = AH (r0)

4G0
, (12)

C0(r0) = T
∂S

∂T

∣∣∣∣
Q

= −S0(r0). (13)

Note that AH (r0) is the horizon area which is given by

AH (r0) =
∮

dx
√
h = 2πr0. (14)

2.2 Einstein–power-Maxwell case

Solving Einstein’s field equations for β = 3/4, the lapse
function f (r) and the electric field E(r) are found to be

f0(r) = 4G0Q2
0

3r
− G0M0, (15)

E0(r) = Q0

r2 . (16)

It is worth mentioning that, unlike in the previous section, the
solutions here considered do not contain the electromagnetic
coupling. This is due to the fact that a dimensional analysis
on the action (1) for β = 3/4 reveals that the electric charge
is dimensionless in this case. As a consequence, we can set
the electromagnetic coupling to unity without affecting the
classical action.

At classical level a horizon is present, and it is computed
by requiring that f (r0) = 0, which reads

r0 = 4

3

Q2
0

M0
. (17)

Expressing the mass M0 in terms of the horizon one obtains

f0(r) = 4

3
G0Q

2
0

[
1

r
− 1

r0

]
. (18)

Classical thermodynamics plays a crucial role since it pro-
vides us with valuable information as regards the underly-
ing black hole physics. The Hawking temperature T0, the
Bekenstein–Hawking entropy S0 and the heat capacity C0

are given by

T0(r0) = 1

4π

∣∣∣∣M0G0

r0

∣∣∣∣, (19)

S0(r0) = AH (r0)

4G0
, (20)

C0(r0) = −AH (r0)

4G0
. (21)

In agreement with the notation in the previous section,
AH (r0) is the so-called horizon area.

3 Scale dependent couplings and scale setting

This section summarizes the equations of motion for the scale
dependent Einstein–Maxwell and Einstein–power-Maxwell
theories. The notation follows closely [65] as well as [42–44].

The scale-dependent couplings of the theories are (i)
the gravitational coupling Gk , and (ii) the electromagnetic
coupling 1/ek . Furthermore, there are three independent
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fields, which are the metric gμν(x), the electromagnetic four-
potential Aμ(x), and the scale field k(x).

The effective action for the non-linear electrodynamics
reads


[gμν, Aμ, k] =
∫

d3x
√−g

[
1

2κk
R − 1

e2β
k

L(F)

]
. (22)

The equations of motion for the metric gμν(x) are given
by

Gμν = κk

e2β
k

T effec
μν , (23)

with

T effec
μν = T EM

μν − e2β
k

κk
�tμν. (24)

Note that T EM
μν is given by Eq. (3), κk = 8πGk is the Ein-

stein constant and the additional quantity �tμν is defined as
follows:

�tμν = Gk(gμν� − ∇μ∇ν)G
−1
k . (25)

The equations of motion for the four-potential Aμ(x) taking
into account the running of ek are

Dμ

(
LF Fμν

e2β
k

)
= 0. (26)

It is important to note that since the renormalization scale
k is actually not constant any more, this set of equations
of motion do not close consistently by itself. This implies
that the stress energy tensor is most likely not conserved for
almost any choice of functional dependence k = k(r). This
type of scenario has largely been explored in the context of
renormalization group improvement of black holes in asymp-
totic safety scenarios [47–61]. The loss of a conservation law
comes from the fact that there is one consistency equation
missing. This missing equation can be obtained from vary-
ing the effective action (22) with respect to the scale field
k(r), i.e.

d

dk

[gμν, Aμ, k] = 0, (27)

which can thus be understood as variational scale setting
procedure [62–66]. The combination of (27) with the above
equations of motion guarantees the conservation of the stress
energy tensors. A detailed analysis of the split symmetry
within the functional renormalization group equations sup-
ports this approach of dynamic scale setting [67].

The variational procedure (27), however, requires the
knowledge of the exact beta functions of the problem. Since
in many cases the precise form of the beta functions is
unknown (or at least uncertain) one can, for the case of sim-
ple black holes, impose a null energy condition and solve for
the couplings G(r), �(r), e(r) directly [42,43,68,69]. This
philosophy of assuring the consistency of the equations by
imposing a null energy condition will also be applied in the
following study of Einstein–Maxwell and Einstein–power-
Maxwell black holes.

4 The null energy condition

The so-called Null Energy Condition (hereafter NEC) is the
less restrictive of the usual energy conditions (dominant,
weak, strong, and null), and it helps us to obtain desirable
solutions of Einstein’s field equations [70,71]. Considering
a null vector μ, the NEC is applied on the matter stress
energy tensor such as

Tm
μν

μν ≥ 0. (28)

The application of such a condition was appropriately imple-
mented in Ref. [42] inspired by the Jacobson idea [72]. Note
that in proving fundamental black hole theorems, such as
the no hair theorem [73] and the second law of black hole
thermodynamics [74], the NEC is, indeed, required.

For scale-dependent couplings, one requires that the afore-
mentioned condition is not violated and, therefore, the NEC
is applied on the effective stress energy tensor for a special
null vector μ = { f −1/2, f 1/2, 0} such as

T effec
μν μν =

(
T EM

μν − e2β
k

κk
�tμν

)
μν ≥ 0. (29)

In addition, the left hand side (LHS) is null as well as
T EM

μν μν = 0 and the condition reads

�tμν
μν = 0. (30)

One should note that Eq. (30) allows us to obtain the gravita-
tional coupling G(r) easily by solving the differential equa-
tion

G(r)
d2G(r)

dr2 − 2

(
dG(r)

dr

)2

= 0, (31)

which leads to

G(r) = G0

1 + εr
. (32)
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The NEC allows us to decrease the number of degrees of
freedom, and thus it becomes an important tool for scale-
dependent black hole problems.

5 Scale dependence in Einstein–Maxwell theory

In order to get insight into non-linear electrodynamics regard-
ing the running of couplings, one first has to discuss the
effects of scale dependence in linear electrodynamics. With
this in mind, one also needs to determine the set of four
functions {G(r), E(r), f (r), e(r)2}, which are obtained by
combining Einstein’s effective equations of motion with the
NEC taking into account the EOM for the four-potential Aμ.

5.1 Solution

The solution for this scale-dependent black hole is given by

G(r) = G0

1 + εr
,

E(r) = Q0

r
e(r)2,

f (r) = − G0M0

(rε + 1)2 − Q2
0

2e2
0

(ln(r/r̃0) + rε)

(rε + 1)2 , (33)

e(r)2 = e2
0

[
1

(1 + rε)3 + 4
rε

(1 + rε)3

−
(

4M0G0 − 5Q2
0 + 2Q2

0 ln

(
r

r̃0

))
r2ε2

(1 + rε)3

]
,

where the integration constants are chosen such as the clas-
sical Einstein–Maxwell (2 + 1)-dimensional black hole is
recovered according to [18]. It is relevant that the gravi-
tational coupling G(r) is obtained by taking advantage of
NEC, while the electric field E(r) is given by the covariant
derivative 26, which depends on the electromagnetic cou-
pling constant e(r). Besides, the lapse function f (r) and the
coupling e(r) are directly obtained by using Einstein’s effec-
tive field equations combined with the solutions for E(r) and
G(r). In addition, our solution reproduces the results of the
classical theory in the limit ε → 0, i.e.

lim
ε→0

G(r) = G0,

lim
ε→0

E(r) = Q0

r
e2

0,

lim
ε→0

f (r) = −G0M0 − Q2
0

2e2
0

ln

(
r

r̃0

)
,

lim
ε→0

e(r)2 = e2
0,

(34)

which justifies the naming of the constants aforementioned
{G0, M0, Q0, e0} in terms of their meaning in the absence of

0 5 10 15 20

-2

-1

0

1

2

r

f(
r)

Fig. 1 Lapse function f (r) for ε = 0 (black solid line), ε = 0.04 (blue
dashed line), ε = 0.15 (dotted red line) and ε = 1 (dotted dashed green
line). The values for the rest of the parameters have been taken as unity

scale dependence [42], as it should. Besides, the parameter ε

controls the strength of the new scale dependence effects, and
therefore it is useful to treat it as a small expansion parameter
as follows:

G(r) ≈ G0[1 − rε + O(ε2)], (35)

E(r) ≈ Q0

r
e2

0[1 + εr + O(ε2)], (36)

f (r)≈ f0(r)+
[

2G0M0− 1

2

Q2
0

e2
0

+ Q2
0

e2
0

ln

(
r

r̃0

)]
rε+O(ε2),

(37)

e(r)2 ≈ e2
0[1+εr+O(ε2)]. (38)

In Fig. 1 the lapse function f (r) is shown for different
values of ε in comparison to the classical (2+1)-dimensional
Einstein–Maxwell solution. The figure shows that the scale-
dependent solution for small ε · r values is consistent with
the classical case. However, when ε · r becomes sufficiently
large, a deviation from the classical solution appears.

The electromagnetic coupling e(r) is shown in Fig. 2 for
different values of ε. Note that when ε is small the classical
case is recovered, but when ε increases the electromagnetic
coupling tends to decrease until it is stabilized.

5.2 Asymptotic behaviour

In this subsection a few invariants need to be revisited.
In particular we will focus on the Ricci scalar R and the
Kretschmann scalar K. Both of them are relevant for check-
ing if some additional divergences appear. For the static and
circularly symmetric metric we have considered, the Ricci
scalar is given by

R = − f ′′(r) − 2 f ′(r)
r

, (39)
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–1.0

–0.5

0.0

0.5

1.0

1.5

r

e(
r)

2

Fig. 2 Electromagnetic coupling e(r)2 for ε = 0 (black solid line),
ε = 0.0025 (short dashed blue line), ε = 0.007 (dotted red line),
ε = 0.02 (dotted dashed green line), ε = 0.08 (long dashed orange
line) and ε = 0.5 (double dotted dashed purple line). The other values
have been taken as unity

or more precisely

R = Q2
0

2r2e2
0(1 + rε)4

− 8M0G0e2
0 + 4Q2

0 ln(r/r̃0)

2r2(1 + rε)4e2
0

rε

+ 4M0G0e2
0 − 7Q2

0 + 2Q2
0 ln(r/r̃0)

2r2(1 + rε)4e2
0

(rε)2. (40)

We require that classically the Ricci scalar reads

R0 = 1

2

Q2
0

e2
0r

2
. (41)

Considering r values close to zero one obtains

R ≈ R0

[
1 −

[
8M0G0e2

0

Q2
0

+ 4 ln

(
e
r

r̃0

)]
rε + · · ·

]
. (42)

Thus, upon comparing Eq. (40) with Eq. (41) we observe
that the scale-dependent effect strongly distorts this invariant.
Nevertheless, for small values of r the standard case R0 is
recovered. In the same way, one expects that ε should be
small, therefore one can expand the Ricci scalar around ε = 0
but the solution is exactly the same reported for r 
 1.
Regarding the Kretschmann scalar, it is computed to be

K = Rμναβ R
μναβ. (43)

Thus, when ε is small the Kretschmann scalar reads

K ≈ K0

[
1 −

[
16M0G0e2

0

3Q2
0

+ 8

3
ln

(
r

r̃0

)]
rε

]
+ · · · (44)

Note that the classical result for this invariant is indeed
K0 = 3Q4

0/4r4, which coincides with our solution when
ε → 0.

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

M0

r H

Fig. 3 Black hole horizons rH as a function of the mass M0 for ε = 0
(black solid line), ε = 1 (blue dashed line), ε = 2.5 (dotted red line)
and ε = 6 (dotted dashed green line). The values of the rest of the
parameters have been taken as unity

The other regime of asymptotic behaviour can be stud-
ied in a large radius expansion r → ∞. In this limit the
lapse function f (r) decays as r−1, which disagrees with the
classical result shown in Eq. (15). On the other hand, the
electromagnetic coupling e(r) also tends to zero as r−1 in
contrast with the expected result, e0. Finally, one obtains
that E(r) ∼ r−2, R ∼ r−4 and K ∼ r−6, all of them
going to zero as expected. However, it can be shown that
these functions decay faster than those corresponding to the
classical solutions. In fact, in the absence of a running cou-
pling, a straightforward calculation reveals that E(r) ∼ r−1,
R ∼ r−2 and K ∼ r−4.

5.3 Horizons

The event horizon occurs when the lapse function vanishes,
i.e. f (rH ) = 0. Thus, this Einstein–Maxwell black hole
solution represents a non-trivial deviation from the classical
solution which is manifest when we compare our solution
with the corresponding black hole solution without the scale
dependence. Here, the horizon radius reads

rH = 1

ε
W

⎛
⎝εe

− 2G0M0e
2
0

Q2
0

⎞
⎠ , (45)

where W (·) is the so-called Lambert-W function, which is a
set of functions, namely the branches of the inverse relation of
the functionY (rε) = rεerε with rε being a complex number.
In particular, Eq. (45) is also the principal solution for rε. In
Fig. 3 the scale-dependent effect on horizon is shown. We can
see that the deviation from the classical case is also evident
for small M0 values.

In addition, one can expand the horizon around ε = 0
obtaining the classical solution plus corrections i.e.
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rH ≈ r0

[
1 − εr0 + O(ε2)

]
. (46)

5.4 Thermodynamic properties

After having gained experience on the horizon structure one
can now move towards the usual thermodynamic properties
associated with our solution shown at Eq. (33). Thus, the
Hawking temperature of the black hole assuming the ansatz
(5) is given by

TH (rH ) = 1

4π

∣∣∣∣ lim
r→rH

∂r gtt√−gtt grr

∣∣∣∣, (47)

i.e.

TH (rH ) = 1

4π

∣∣∣∣ Q2
0

2rH (1 + εrH )e2
0

∣∣∣∣. (48)

Taking advantage of the fact that the integration constant ε

should be small, one can expand around ε = 0 to get the
well-known Hawking temperature (at leader order) i.e.

TH (rH ) ≈ T0(r0)|1 + εr0 + O(ε2)|. (49)

In Fig. 4 we show the effective temperature which takes into
account the running coupling effect.

Moreover, the Bekenstein–Hawking entropy for his black
hole is

S = AH (rH )

4G(rH )
= S0(rH )(1 + εrH ), (50)

and assuming small values of ε one can expand to get

2.0 2.5 3.0 3.5 4.0 4.5

0.0

0.5

1.0

1.5

2.0

M0

T
H

Fig. 4 The Hawking temperature TH as a function of the classical mass
M0 for ε = 0 (black solid line), ε = 750 (blue dashed line), ε = 1800
(dotted red line) and ε = 3000 (dotted dashed green line). The other
values of the rest of the parameters have been taken as unity. Note that
the vertical axis is scaled 1 : 106

1 2 3 4 5

0.00

0.01

0.02

0.03

0.04

0.05

M0

S

Fig. 5 The Bekenstein–Hawking entropy S as a function of classical
mass M0 for ε = 0 (black solid line), ε = 200 (blue dashed line),
ε = 600 (dotted red line) and ε = 1000 (dotted dashed green line). The
other values have been taken as unity

S ≈ S0(r0)

[
1 − 1

2
(εr0)

2 + O(ε3)

]
. (51)

In Fig. 5 below we show the entropy for our (2 + 1)-
dimensional Einstein–Maxwell scale-dependent black hole.
It is clear that the running effect is dominant when ε is not
small, while for large values of M0 the effect is practically
zero.

Finally, the heat capacity is computed in the usual way
i.e.:

CQ = T
∂S

∂T

∣∣∣∣
Q

, (52)

which reads

CQ = −S0(rH )(1 + εrH ). (53)

The classical case is, of course, recovered in the ε → 0 limit.
Due to a weak ε dependence it was necessary to plot the

figure with very large values of ε in order to generate a visible
effect. The scale-dependent effect is notoriously small for
those quantities.

5.5 Total charge

The electric field is parametrized through the total charge Q,
but in our previous discussion Q0 only denotes an integration
constant which coincides with the charge of the classical
theory. In general, we need to compute the total charge by
the following relation [76]:

Q =
∫ √−gd�

(LF Fμν

e2β
k

)
nμσν, (54)

where nμ and σν are the unit spacelike and timelike vectors
normal to the hypersurface of radius r , and they are given
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by nμ = ( f −1/2, 0, 0) and σν = (0, f 1/2, 0) as well as√−gd� = rdφ. Making use of these we obtain

Q = 2πQ0, (55)

which is proportional to the classical value and has no ε

dependence.

6 Einstein–power-Maxwell scale dependence

This section is devoted to the study of a (2 + 1) scale-
dependent gravity coupled to a power-Maxwell source. As
mentioned before, the case β = 3/4 leads to a dimensionless
electromagnetic coupling which was set to the unity in Sect.
2.2. However, if one considers a scale-dependent gravity, the
electromagnetic coupling has a non-trivial scale dependence.
Therefore, in this section we shall keep the electromagnetic
coupling dependence of the action 1. In this way, the solution
consists of a set of four functions {G(r), E(r), f (r), e(r)3},
which are obtained by combining Einstein’s effective equa-
tions of motion with the NEC taking advantage of the EOM
for the four-potential Aμ. In what follows we shall obtain the
solutions of the system in terms of the functions mentioned
above.

6.1 Solution

The integration constants have been chosen such as the scale
dependent solution reduces to the classical NLED case when
the appropriate limit is taken. Thus, our solution reads

G(r) = G0

1 + εr
,

E(r) = Q0

r2

(
e(r)

e0

)3

,

f (r) = 4G0Q2
0

3r(rε + 1)3 − M0G0(r3ε2 + 3r2ε + 3r)

3r(rε + 1)3 ,

e(r)3 = e3
0

[
(2rε(3rε + 2) + 1)

(rε + 1)4 − M0r3ε2(rε + 4)

4Q2
0(rε + 1)4

]
.

(56)

In the limit ε → 0 we obtain

lim
ε→0

G(r) = G0,

lim
ε→0

E(r) = Q0

r2 ,

lim
ε→0

f (r) = 4G0Q2
0

3r
− G0M0,

lim
ε→0

e(r)3 = e3
0.

(57)

Note that if we set e0 = 1, the classical solution in Sect. 2.2
is recovered. Moreover, if one demands that G0 = 1 (which
is the standard lore) then we are in complete agreement with
the classical solution given in Ref. [75].

6.2 Asymptotic behaviour

The asymptotic behaviour of this solution can be studied by
computing geometrical invariants i.e. the Ricci scalar, which
for our solution is

R = −4G0ε

[
M0 + 4Q2

0ε

r(rε + 1)5

]
, (58)

where the classical case (with a null cosmological constant)
is clearly R0 = 0. For r → 0 one obtains

R ≈ −4G0ε

[
M0 + 4Q2

0ε

r

]
+ O(r). (59)

We observe that the Ricci scalar is altered in the presence of a
scale-dependent coupling. In addition, one may note that an
unexpected r6 divergence appears, which is controlled by ε.

Another geometrical invariant is the Kretschmann scalar
K, which is given by

K = Rμναβ R
μναβ. (60)

For r → 0 one can obtain the first terms, which are

K ≈ 32G2
0Q

4
0

3r6

[
1 −

(
M0

Q2
0

ε + 4ε2
)
r2

]
+ O(r−3). (61)

Taking into account that the ε should be small we have

K ≈ 32G2
0Q

4
0

3r6

[
1 − M0r2

Q2
0

ε + O(ε2)

]
, (62)

where the standard value K0 has been obtained demanding
that ε goes to zero. Classically, the Ricci scalar for a null
cosmological constant is identically zero; however, in the
presence of scale-dependent couplings it exhibits a singular-
ity. The Kretschmann scalar exhibits a singularity at r → 0
for both the classical and the scale-dependent case. On the
other hand, the opposite regime of asymptotic behaviour is
studied in the large radius expansion r → ∞ both for the
Ricci and the Kretschmann scalar. The Ricci scalar as well
as the Kretschmann scalar are asymptotically close to zero
(Figs. 6, 7).

Regarding the limit r → ∞ the lapse function goes as
r−1, in agreement with the asymptotic behaviour of the clas-
sical solution. In addition, note the unusual behaviour of the
electromagnetic coupling in the light of the scale-dependent
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f(
r)

Fig. 6 Lapse function f (r) for ε = 0 (black solid line), ε = 0.04 (blue
dashed line), ε = 0.15 (dotted red line) and ε = 1 (dotted dashed green
line). The values of the rest of the parameters have been taken as unity
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r H

Fig. 7 Black hole horizons rH as a function of the mass M0 for ε = 0
(black solid line), ε = 0.4 (blue dashed line), ε = 1 (dotted red line)
and ε = 2 (dotted dashed green line). The values of the rest of the
parameters have been taken as unity

framework in Fig. 8. Starting from e3
0 the electromagnetic

coupling decays softly and it stabilizes when

lim
r→∞ e(r)3 = −

(
1

3r0ε

)
e3

0, (63)

instead of reaching the classical value. The electric field tends
to zero as expected, but slowly compared with the classi-
cal case. In fact, E(r) behaves as r−1 in obvious deviation
from the result shown in Eq. (16). Finally, the curvature and
Kretschmann scalars hold the same asymptotic behaviour of
the results obtained in the absence of running, i.e. R ∼ r−4

and K ∼ r−6.

6.3 Horizons

Applying the condition f (rH ) = 0 one obtains the scale-
dependent horizon which reads

rH = −1

ε

[
1 −

[
1 + 3εr0

]1/3
]
, (64)

0 20 40 60 80
–1.0

–0.5

0.0

0.5

1.0

1.5

r

e(
r)

3

Fig. 8 Electromagnetic coupling e(r)3 for ε = 0 (black solid line),
ε = 0.25 (dashed blue line), ε = 0.45 (dotted red line) and ε = 1
(dotted dashed green line). The values of the rest of the parameters
have been taken as unity

r± = −1

ε

[
1 + 1

2
(1 ± i

√
3)[1 + 3εr0]1/3

]
, (65)

where r0 is the classical value given by Eq. (17). Note that
one obtains three horizons, out of which one is real (physical
horizon) and two r± are complex (non-physical).

In addition, since the scale dependence of the coupling
constants is usually assumed to be weak, it is reasonable to
consider the dimensionful parameter ε as small compared
to the other scales and, therefore, one can expand around ε

close to zero, which gives us

rH ∼= r0

[
1 − εr0 + 5

3
(εr0)

2 + · · ·
]
. (66)

One should note that when ε tends to zero the classical case is
recovered. Besides, although ε could take positive or negative
values, here in order to obtain desirable physical results we
require that ε > 0.

In our set of solutions {G(r), E(r), f (r), e(r)3} we can
expand around zero for small values of ε, i.e.

G(r) ≈ G0[1 − rε + O(ε2)], (67)

E(r) ≈ E0(r) + O(ε2), (68)

f (r) ≈ f0(r) +
[

2G0M0 − 4G0Q2
0

r

]
rε + O(ε2), (69)

e3(r) ≈ e3
0[1 + O(ε2)]. (70)

6.4 Thermodynamic properties

Using the horizon structure and the lapse function (which is
given by Eq. (56)) one can calculate the Hawking temperature
of the corresponding scale-dependent black hole. At the outer
horizon this temperature is given by the simple formula
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TH = 1

4π

∣∣∣∣ lim
r→rH

∂r gtt√−gtt grr

∣∣∣∣, (71)

which reads in terms of the horizon radius (Fig. 9)

TH = 1

4π

∣∣∣∣ M0G0

rH (1 + εrH )

∣∣∣∣. (72)

In order to recover the classical result we expand around
ε = 0 and upon evaluating at the classical horizon we obtain

TH (rH ) ≈ T0(r0)

∣∣∣∣1 + 1

3
(εr0)

2 + O(ε3)

∣∣∣∣, (73)

where it is clear that ε → 0 coincides with Eq. (19) as it
should.

In addition, the Bekenstein–Hawking entropy obeys the
well-known relation heritage of Brans–Dickey theory applied
to the (2 + 1)-dimensional case (Fig. 10),

S = 1

4

∮
dx

√
h

G(x)
, (74)

where hi j is the induced metric at the horizon. For the present
circularly symmetric solution this integral is trivial because
the induced metric for constant t and r slices is ds = rdφ

and, moreover, G(x) = G(rH ) is constant along the horizon.
Using these facts, the entropy for this solution is found to be
[42,43]

S = AH

4G(rH )
= S0(rH )(1 + εrH ), (75)

while for small values of ε one obtains

S ≈ S0(r0)

[
1 − 1

3
(εr0)

2 + O(ε3)

]
, (76)

which, of course, coincides with the classical results in the
limit ε → 0.

In addition, the heat capacity (at constant charge) CQ can
be calculated by

CQ = T
∂S

∂T

∣∣∣∣
Q

. (77)

Combining Eq. (72) with (75) one obtains the simple relation

CQ = −1

8

M0

TH
= −S0(rH )(1 + εrH ). (78)

Note that the black hole is unstable since CQ < 0, and it
coincides with the classical result in the limit ε → 0.

0 2 4 6 8

0

1

2

3

4

5

6

M0

T
H

Fig. 9 Hawking temperature TH as a function of the classical mass M0
for ε = 0 (black solid line), ε = 20 (blue dashed line), ε = 50 (dotted
red line) and ε = 100 (dotted dashed green line). The values of the rest
of the parameters have been taken as unity

6.5 Total charge

As in the previous case, the total charge Q needs to be com-
puted by the relation [76]

Q =
∫ √−gd�

(LF Fμν

e2β
k

)
nμσν. (79)

In this case we obtain

Q = Q0

2e3/2
0

, (80)

which also is proportional to the classical value and does not
show an ε dependence.

7 Discussion

Scale dependent gravitational couplings can induce non-
trivial deviations from classical Black Holes solutions.

We have studied two cases: first the Einstein–Maxwell
and second the Einstein–power-Maxwell case. The two have
a common feature: the lapse function tends to zero when
r → ∞, a characteristic which is absent in the classical
solutions.

In addition, the total charge is modified as a conse-
quence of our scale-dependent framework. Moreover, we
have found that, for the same value of the classical black
hole mass, the event horizon radius (and the Bekenstein–
Hawking entropy) decreases when the strength of the scale
dependence increases. This is in agreement with the findings
in [47–61].

On the other hand, the Hawking temperature increases
with ε. Please, note that the effect of the scale dependence
in the Einstein–power-Maxwell case is stronger than the
Eintein–Maxwell case.
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Fig. 10 The Bekenstein–Hawking entropy S as a function of the clas-
sical mass M0 for ε = 0 (black solid line), ε = 20 (blue dashed line),
ε = 50 (dotted red line) and ε = 100 (dotted dashed green line). The
other values have been taken as unity

The behaviour of the electromagnetic coupling e(r)
depends on the choice of the electromagnetic Lagrangian
density. While e(r) goes to zero in the limit r → ∞ for a
Maxwell Lagrangian density, it approaches a constant value
for the power-Maxwell case.

Finally, it is well known that a black hole (as a thermo-
dynamical system) is locally stable if its heat capacity is
positive [77]. In both scale-dependent cases it is found that
these black holes are unstable (CQ < 0), like their classical
counterparts.

8 Conclusion

In this article we have studied the scale dependence of
charged black holes in three-dimensional spacetime both in
linear (Einstein–Maxwell) and non-linear (Einstein–power-
Maxwell) electrodynamics. In the second case we have con-
sidered the case where the electromagnetic energy momen-
tum tensor is traceless, which happens for β = 3/4. After
presenting the models and the classical black hole solutions,
we have allowed for a scale dependence of the electromag-
netic as well as the gravitational coupling, and we have solved
the corresponding generalized field equations by imposing
the null energy condition in three-dimensional spacetimes
with static circular symmetry. Horizon structure, asymp-
totic spacetimes and thermodynamics have been discussed
in detail.

Appendix

In this appendix we study some features of the scale-
dependent (2+1) gravity coupled to a power-Maxwell source
for an arbitrary β. For this system the action is given by


 =
∫

d3x
√−g

[
1

16πG(r)
R − 1

e(r)2β
L(F)

]
, (81)

where G(r) and e(r) are the gravitational and the electro-
magnetic scale-dependent couplings, R is the Ricci scalar,
L(F) = Cβ |F |β is the electromagnetic Lagrangian density,
F = (1/4)FμνFμν is the Maxwell invariant, and C is a
dimensionless constant which depends on the choice of β.
Metric signature (−,+,+) and natural units (c = h̄ = kB =
1) are used in our computations.

Variations of Eq. (81) with respect to the metric field lead
to the modified Einstein’s equations

Rμν − 1

2
gμνR = 8π

G(r)

e2β(r)
Tμν − �tμν, (82)

where Tμν stands for the power-Maxwell energy momentum
tensor and

�tμν = G(r)(gμν� − ∇μ∇ν)G(r)−1 (83)

is the non-material energy momentum tensor which arises as
a consequence of the scale dependence of the gravitational
coupling. On the other hand, after variations of the action of
Eq. (81) with respect to the electromagnetic four-potential,
Aμ, one obtains the modified Maxwell equations

Dμ

(LF Fμν

e(r)2β

)
= 0. (84)

Henceforth, only static and circularly symmetric solutions
will be considered. Therefore we shall assume the ansatz

ds2 = − f (r)dt2 + f (r)−1dr2 + r2d�2, (85)

Fμν = (δtμδrν − δrμδtν)E(r), (86)

for the metric and the electromagnetic tensor, respectively.
With the former prescription is straightforward to prove, from
Eq. (84), that the electric field is given in terms of the elec-
tromagnetic coupling by

E(r) = 2
β−1

2β−1 C− β
2β−1 Q

1
2β−1
0 e(r)

2β
2β−1

β
1

2β−1 r
1

2β−1

, (87)

or, in a more convenient way

E(r) =
[(

2β−1C−β

β

)(
Q0

r
e(r)2β

)] 1
2β−1

. (88)

Please, note that setting β = 1 and C = 1 the electric field
reported in Eq. (33) is recovered,

E(r) = Q0

r
e(r)2. (89)

In the same way, for β = 3/4 and C3/4 = 27/33− 4
3 e2

0Q
2/3
0

one obtains

E(r) = Q0

r2

(
e(r)

e0

)3

, (90)
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in complete agreement with Eq. (56). It is worth noting that,
even in the general case, the electric field depends on a spe-
cific power of the charge as a consequence of the non-linear
electrodynamics; in the cases β = 1 and β = 3/4, this
behaviour is not observed due to a particular setting of C .

If the null energy condition is used as an additional condi-
tion, we find that the scale-dependent gravitational coupling
reads

G(r) = G0

1 + εr
, (91)

where G0 is Newton’s constant and ε is the running param-
eter. Note that the classical limit is recovered in the limit
ε → 0. Finally, Eq. (82) reduces to a pair of differential
equations for { f (r), e(r)2α} given by

2ακ0C
−αQ2α

0 (2β − 1)re(r)2α

+β2αr2α((2rε + 1) f ′(r) + 2ε f (r)) = 0, (92)

2ακ0C
−αQ2α

0 e(r)2α

−β2αr2α((rε + 1) f ′′(r) + 2ε f ′(r)) = 0, (93)

where α = β
2β−1 and κ0 = 8πG0. It can be checked by

the reader that, in the case β = 3/4, the solutions of the
set of equations (87), (91), (92) and (93) coincide with those
listed in Eq. (56) after an appropriate choice of the integration
constants.
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