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Abstract Rainbow metrics are a widely used approach to
the metric formalism for theories with modified dispersion
relations. They have had a huge success in the quantum
gravity phenomenology literature, since they allow one to
introduce momentum-dependent space-time metrics into the
description of systems with a modified dispersion relation.
In this paper, we introduce the reader to some realizations
of this general idea: the original rainbow metrics proposal,
the momentum-space-inspired metric and a Finsler geome-
try approach. As the main result of this work we also present
an alternative definition of a four-velocity dependent metric
which allows one to handle the massless limit. This paper
aims to highlight some of their properties and how to prop-
erly describe their relativistic realizations.

1 Introduction

The analysis of Planck-scale modified dispersion relations
(MDRys), inspired by different approaches to quantum grav-
ity, has attracted a lot of attention in recent years [1,2]. The
motivation for this comes mainly from the fact that predic-
tions arising from such modifications could be confronted
with astrophysical and cosmological observations allowing
one to test some general features about the quantum nature of
space-time. For instance, we can find that different observa-
tions confronting the detection time of particles with differ-
ent energy (see for instance [3,4] and the references therein)
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could be set up in order to put constraints on the deformation
parameters characterizing the MDR [5,6].!

The different predictions for this type of phenomena can
be accommodated in two different scenarios. On the one
hand, there is the Lorentz Invariance Violation (LIV) frame-
work which presupposes an observer-dependent scenario [6—
8]. On the other hand, a relativistic description for the time
delay predictions [5,9], i.e., observer independent, is possi-
ble within the Double Special Relativity (DSR) framework
introduced in [10] (see also [11,12]).

Cosmology and astrophysics being the most suitable are-
nas to test these theories, it is of paramount importance
to take into account the interplay between such deforma-
tion effects and space-time curvature either in the case of
the Poincaré symmetry breakdown or the deformation sce-
nario. Therefore, efforts have been made devoted to trying
to find a geometric characterization of the MDRs. A first
attempt to incorporate MDRs into a metric formalism was
the so-called rainbow metrics approach [13]. In this frame-
work, the space-time metric should be modified according
to the particles’ modified dispersion relation, expressed as
m? = g"’(p) Dy Dy, leading to a family of energy-dependent
metrics ds? = gaﬁ(p)dx"‘dxﬁ (see for instance [13,14]).
This recently has attracted much interest in the literature (see
for instance [15—19] and the references therein).

Here we will show that this rainbow (energy-dependent)
metric is not invariant under a deformed boost. It should be
noticed, in fact, that this class of metrics does not automati-
cally leads to a flat invariant (under a ten-generator deformed
Poincaré group) limit for the line-element ds2. Thus, rainbow

! Other phenomena like reaction threshold violations which may be
suggested by a MDR may lead to different predictions in two different
scenarios.

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-017-5017-0&domain=pdf
mailto:iarley\protect _lobo@fisica.ufpb.br
mailto:niccolo@accatagliato.org
mailto:francisco.nettel@roma1.infn.it

451 Page2of 10

Eur. Phys. J. C (2017) 77:451

metric phenomenology may seem more suited to formalize
LIV scenarios than (deformed) symmetric ones. However, we
will show how such energy-dependent metrics play an impor-
tant role at the kinematical level in MDR-inspired Finsler
geometries [20-24], and also in a maximally symmetric sce-
nario.

Finsler geometry is analogous to Riemannian geometry.
However, a typical difference is that in Finsler geometry
objects are defined on the tangent bundle, while in Riemann
geometry they live on M. Another important difference is
that in Riemannian geometry there is a unique connection
compatible with the metric as opposite to the Finsler case
where there are different possibilities [25]. This formalism
has been proven to be very reliable in providing a power-
ful tool to investigate on non-standard particle physics and
models of quantum gravity on anisotropic space-times, see
for instance [26,27]. Finsler geometry makes it possible to
formalize a generalization of the relativistic Lagrangian for-
malism in the description of the kinematics of a single particle
on curved momentum and space-time geometries, with four-
velocity-dependent metrics (an exploration on the Hamilto-
nian approach to such a framework can be found in [28,29]).
Another generalization of relativistic theories from a Hamil-
tonian approach can be formalized within the so-called rel-
ative locality framework [30-34], in which the Hamiltonian
is identified as an invariant element in a curved momen-
tum space. In this framework, the fundamental metric is the
momentum-space one £ *? (p). These approaches, describing
£-deformed theories, do not contradict each other, but the
two metrics play different roles in describing the kinematics
of particles subject to MDR: the Finsler metric enters in the
description of the Lagrangian formalism and the momentum-
space metric in the Hamiltonian one. Since these structures
(from rainbow, Finsler and momentum-space approaches)
are symmetric, bilinear and non-degenerate maps and are
sufficient to find worldlines and dispersion relations (how-
ever, using different methods), they can be properly defined
as metrics.

For definitiveness, in this paper we will work with a MDR
described by the generic Hamiltonian widely studied in the
literature on a 1 + 1 dimensional expanding universe (see for
instance [5] and the references therein):

H=a2()(QF — 1) + a3 (y Q3 + BQM2), (1)

where (1, x) are the so-called conformal time coordinates,
(€2, IT) are their conjugate momenta, a(n) is the scale factor
of the universe, f and y are two numerical parameters of
order 1 and ¢ ~ 1/Mp is the deformation parameter, where
Mp ~ 1.2 x 102¢eV is the Planck mass in units where
¢ = h = 1. The MDR is recovered imposing the on-shell
relation H = m?>.

The paper is organized as follows: in Sect. 2 we mention

some issues in the rainbow metric approach which are rele-
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vant to the arguments presented in this paper. In Sect. 3 we
review the Lagrangian formalism and the role of momentum-
space metrics; we will also give a glimpse on the symmetries
for both scenarios, but a detailed study will be presented in
[35]. Section 4 is devoted to a review of the MDR-inspired
Finsler geometries introduced in [20,21]. Next, in Sect. 5,
we discuss the problems found in the MDR-Finsler approach
regarding the massless limit and propose an alternative way
to handle it by re-writing the action for the particle as a
Polyakov-like action. This approach allows us to obtain a
metric that describes the same MDR kinematics and whose
massless case is well defined as the continuous limit from the
massive one. A detailed description of these metrics can be
found in [35]. In Sect. 6 we discuss the particles’ dynamics,
geodesic equations and worldlines in the different formalisms
described in the previous sections. It is important to note that
the work presented here is only related to the kinematics of
particles subject to MDR in a relativistic description using
deformed symmetries. At this stage we do not pursue a fun-
damental theory; instead we aim for an effective description
which eventually will allows us to make contact with the
quantum gravity phenomenology of space-time. There are
different perspectives where a fundamental description of
quantum gravity is proposed by using Finsler geometry and
where the study of N-connections is fully justified, e.g. MDR
in a LIV framework as the Horava-Lifshitz theory; see for
example [24]. Therefore, our discussion on connections in
Finsler geometry will be limited to the minimum required.
It is worth to mention that all the results are valid up to first
order in the deformation parameter ¢ but the technique may
be straightforwardly applied to higher order perturbations,
with only the requirement of having a well-defined Legendre
transformation relating the Hamiltonian with the Lagrangian.
Finally, in Sect. 7 we give some closing remarks about the
results here presented.

2 Deformed symmetries and rainbow metrics

The purpose of this section is to clarify some aspects about the
symmetries within the rainbow metric approach. Consider
the case a(n) = 1 of the rainbow line-element [13] related
to the Hamiltonian (1)

ds? = (1 — Ly po)(dx®)? — (1 + £8po)(dx")?. 2)

The Hamiltonian (1) is invariant (in the flat space-time
limit) under a set of ¢-deformed Lorentz transformations.
A deformed boost generated by

y V4
N =x"pi(1 — typo) + x! (Po + (ﬂ + 5) et + 5/%?%)

3)
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has a finite action on an observable A, which can be expressed
in terms of Poisson brackets as

£

where & is the rapidity parameter. It can be shown that,
despite having {\/, H} = 0, the line-element (2) is not invari-
ant but of first order in the rapidity parameter £, leading to
the transformation

(ds?) = ds? — €&(Bp1(dx)? + yp1(dx®)?). )

This non-invariance poses a problem from a relativistic point
of view, since the norm of the vectors would not be invariant
under a deformed transformation. Moreover, this changes
the perspective of this working framework; since we cannot
identify local invariant observers under deformed Poincaré
transformations, it is necessary to break Lorentz invariance.
This property has important consequences for the definition
of a photon’s trajectories in rainbow gravity, since ds> = 0
does not define locally-invariant worldlines.

Therefore, rainbow metrics seem to suit better a LIV-like
phenomenology than a deformed relativistic one. This in
turn is related to the non-invariance under a boost (3) of
the ¢-deformed Lagrangian (see Ref. [21]). So, as long as
breaking of the Lorentz invariance is not ruled out, rainbow
metrics could be a useful approach to cosmological LIV-
phenomenology.

3 Lagrangian formalism and momentum-space metrics

From the Hamiltonian (1) it is possible to write the action
S[q,p,k]=/dt[ﬁ9+)€ﬂ—k(H—m2)], ©)

where X is introduced as a Lagrange multiplier to enforce
the mass-shell condition; ¢ = (n,x), p, = (L, II) are
the space-time and momentum-space coordinates and ¢ =
dg/dt. Using the Hamilton equations

g% = MH.q"}, (N

we can express the action (6) in terms of the four-velocities
q'Ot

2
Slq. A1 = fdrc(q, g7 = /dr(“;;’) i — )

ta’(n)
812

(vit® + Bii?) + km2). @®)

2 See [35] for more details on the representation of this boost.

If m # 0, itis possible to solve for the Lagrange multiplier
A = A(g, ¢) from the extremization of the action, § S /§1 = 0,

1 o ., Lamyi+ Bii?)
A= %a(n)\/ﬂz——xz 5 72— i2 : ®)

Substituting A into (8) gives us the Lagrangian depending
on coordinates and velocities £(g, ¢):

. i P %2+ yn?
L(q,q) = ma(n) nz—xz—zmza(n)%~ (10)

At first order in the deformation parameter £ it is possible to
express the Lagrangian (10) as

L(q,q) =m\/gulg, )q"q", (11

where g,,(q,¢) can be identified, as we will see in the
next section, as a four-velocity-dependent space-time metric
within the Finsler formalism. Inverting the relation between
four-velocities and four-momenta, it is possible to think of
guv as momentum dependent. This metric is, in general, not
invariant under the deformed set of symmetries of the MDR
defined by H = m? [21,36]. In this sense we can regard it as
some kind of rainbow metric.

3.1 Momentum-space metric

As we mentioned before, in the context of relative local-
ity, momentum space is curved and the metric for this space
allows one to interpret the Planck-scale DSR as a space-time
manifestation of momentum-space curvature. In this frame-
work, unusual features like energy-dependent time delays
and deformed composition laws can be interpreted as dual
redshift effects and composition laws in a curved manifold
[33]. In the relative locality framework, the mass-shell rela-
tion is the geodesic distance (from the momentum-space ori-
gin to the particle’s momentum) of the momentum-space
metric ¢ as

1
H =m? =/0 ¢ (p) pupy do, (12)

where p, (o) is the tangent vector to the momentum-space
geodesics parametrized by o> In our case the momentum-
space metric (in the Minkowskian limit in 1 4 1 dimensions)
can be represented by the diagonal matrix

v [ 1+2yepoy 0
¢ ‘( 0 —(1—2;%;70))' (13

3A systematic discussion on this topic can be found in [37].

@ Springer



451 Page 4 of 10

Eur. Phys. J. C (2017) 77:451

Interestingly, the Hamiltonian H and the Lagrange multiplier
A (9) can be expressed as the algebraic relations

2 = Cuv(g)gtq” = VEuw (@)grqY

14
Hnr 2m 14

where ¢, are the components of the momentum-space met-
ric in terms of the four-velocity. These algebraic relations
may lack geometrical meaning; nevertheless they suggest the
relevance of the momentum-space metric in the relativistic
description of the DSR kinematics.

Observing Eq. (13) and using (14) we notice that from
a(n) = 1 we can recover a simple expression for the
(deformed) special relativity space-time norm, defining the
space-time line-element as

ds?= gy dxdx=(1 -2y po)(dx)* — (1+2€Bpo) (dx")*.
(15)

We can repeat what we did with (2) to show that here this
line-element is indeed invariant:

(ds?) = ds?. (16)

Therefore, in 341D this formalism allows us to define a class
of locally flat observers immersed in a 10 £-deformed gener-
ators symmetric space-time, formalized within the coherent
framework of special relative locality [34]. However, this
metric is not sufficient to express all the general relativistic
features we need to describe the particles’ motion in Planck-
scale curved space-time, like for instance connections and
Killing vectors. In order to add those further elements to our
picture we need in fact to delve deeper in the MDR realization
in Finsler geometry.

4 MDR-inspired Finsler geometries

In [20] it was pointed out that the Lagrangian (11) can be
identified with a MDR-related Finsler norm F(g), that is,
the Lagrangian can be expressed as

L(q,q) =mF(q). 7)

It can be straightforwardly verified that the F(g) related to
(1) satisfies the conditions of positivity and homogeneity:

F@)#0 if ¢#0
{F(ecp —elF@) (18)

Therefore, the Finsler metric gF (g, ¢) can be defined, accord-

ing to the metric in (11), just imposing its components to be
homogeneous functions of degree zero, resulting in metric

@ Springer

components which are proportional to the Hessian of the
squared Finsler norm,

po_ 1 9%F? 19)
S = 3 9gmagv
This metric satisfies the relations
aghk agh agh
qot g.;w Zq-p' g.;w Zq-v g.;w =0, (20)
ag* ag* ag”

which allow one to write the equations of motion from the
extremization of the arc-length (geodesic equations) as *

i+ T2, 9)q"q" =0, 1)

where the coefficients I'j, have the usual form of the
Christoffel symbols in terms of the derivatives of the met-
ric with respect to the coordinates, but keeping an explicit
dependence on the four-velocity. Equations (25) describe the
worldlines of massive particles subject to a MDR and coin-
cide with those obtained solving the Hamilton equations sub-
ject to the mass-shell condition.

An important contribution of the Finsler approach to
this framework is undoubtedly the possibility to define a
deformed Killing equation. In fact, assuming the metric to be
g-dependent, in the flat space-time case one easily obtains

" + gahE” + L 0EN =0, @)
from which it is possible to obtain the boost generator (3).
The same equation holds both for the Finsler and the rainbow
approach.

So far we have observed that, in the geometric formal-
ization of Planck-scale MDRs, at least two metrics come
into play: a momentum-space metric ¢, which allows for an
invariant description of the physics of locally-flat observers
and a space-time (Finsler) metric g, whose geodesics are the
worldlines of the particles. Here again, we find intriguing
relations between these metrics:

G (@)

B = 5" (p)paps (23)
@i,

e = ¢ (D) paps. 24)

It is important to notice that on the left hand side of Egs. (23)
and (24) we have tensorial objects, on the right hand side
we have algebraic relations involving the components of the
metrics. It would be interesting to find a unified framework

4 The property (20) results in the cancellation of a considerable amount
of terms that appear in the geodesic equations simplifying significantly
their appearance.
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where these two metrics are a manifestation of a single geo-
metrical object.

4.1 Aside comment on connections in Finsler geometry

In the flat space-time limit [21] a «-Poincaré-inspired MDR

model can be described as a Berwald space in which the

connection does not depend on the space-time coordinates.
Equations (21) can be written as

98ay @9 1084, @D\ cuso _
9g° 2 dq” ’

8ho(q. )§% + (
(25)
where we can identify the spray coefficients

_ 8@ (aggym,q') - 1agfu(q,q>> i

G%(q. ¢
(g.9) > ogh 2 0gP

(26)

Equations (25) describe the worldlines of massive par-
ticles subject to a MDR and coincide with those obtained
solving the Hamilton equations subject to the mass-shell con-
dition. In [38] the curved space-time case have been stud-
ied, finding that only in a very special limit, £ #= 0, H #
0, ¢H — 0 (where H is the Hubble constant), such a model
can still be considered to be a Berwald space.

In Finsler geometry one deals with tensors on the tan-
gent bundle (sometimes called d-tensors). Thus it is useful
to introduce a non-linear connection N to split the tangent
space to the tangent bundle in horizontal and vertical spaces,
which in turn allows one to define a covariant derivative and
the notion of parallel transport. This splitting is characterized
by the coefficients Ng which allow one to define a frame field
for the tangent spaces to the tangent bundle as

5 = 0 Nﬁa
7 9g™ “ayb

= 7 27
ey By7 27

where (g%, y¥ = ¢7) are local coordinates on the tangent
bundle.

Given a spray G, there is a connection N whose spray is
G, defined by

o
- 96" (28)
ayP

for which the paths of the spray coincide with the geodesics
for the connection.

A Finsler connection is a pair (N, V) where N is a non-
linear connection on the tangent bundle and V a linear con-
nection on the vertical space. Then a Finsler connection is

determined locally by the coefficients (Ng , G;‘jv, Cf‘w) where

Gy, and Cy;, are collections of locally defined homogeneous
functions of degree 0 with appropriate transformation rules
[39]. Here G}, and C};,, are the coefficients of the linear con-
nection for derivatives in the direction of the basis vectors of
the horizontal and vertical spaces respectively, (8¢, ;). Let

G%, = 0°G*(q.y)/dy"dy", (29)
1
ro, = 68 (8usly +8u8fs —8psf) (30)
1 .508F,
Cov = gggﬁwﬂf' (31)

Some notable Finsler connections are [25]

Berwald: (Ng, Gy, 0), (32)
Cartan: (Ng, T}, Cj,), (33)
Chern-Rund: (Ng, I, 0), (34)
Hashiguchi: (Ng,Gﬁv,Cﬁv). (35)

Itis verifiable that, due to the validity of (20) [which is a direct
consequence of the definition of the metric as the Hessian
of a 2-homogeneous function (19)], the autoparallel curves
defined from the above Finsler connections coincide with
the extremizing geodesics (25). Therefore, a pure kinematical
analysis of the geodesics would not permit one to distinguish
between these proposals.

However, we should anticipate that in the case here under
scrutiny (a photon with deformed Hamiltonian (1) propagat-
ing in an expanding space-time) the Finsler formalism cannot
be completely applied. We will need to consider a general-
ized case and a slightly different approach will be adopted in
order to study the Euler—Lagrange equations and derive the
particles worldlines.

In the following section we will see that for this MDR-
Finsler metric the massless limit is not well defined and that,
considering the properties formalized in (20), a space-time
metric can be defined for which the limit m — O presents no
complications and properly describes the particle’s dynam-
ics.

5 The massless limit and the space-time metric from a
Polyakov-like action

From Eq. (11) and the Finsler metric in [21], it seems that
the massless case cannot be handled within the MDR-Finsler
approach not even in the a(n) = 1 case, even though the
description from the action (8) does not present inconsis-
tencies when m = 0 and using Hamiltonian dynamics the
massless case can be completely solved.

In the massive case the Lagrange multiplier A was deter-
mined by the extremization of the action § S /61 = 0 yielding
to (9). However, in the massless case the on-shell relation

@ Springer
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written in terms of the four-velocities,

a’(n)
83

a*(n)

Tva (yi® + Bii?) =0, (36)

(* = 5% =2

does not provide any information on A. Notice that Eq. (36)
presents a factor of 2 on its second term, which is different
from the Lagrangian of (8).

In the undeformed case (¢ = 0) finding A from the on-shell
relation and (6) guarantees that the action,

Slql = m / At/ Em @ T, (37)

is invariant under reparametrizations. Nevertheless, it is also
possible to write the action in a classically equivalent way
leaving the extra degree of freedom A unspecified,

1
Slg, Al = /dr<ﬁguv(q)q'“c}” +)»m2>. (38)

These two actions are equivalent since they give rise to the
same equations of motion with the bonus that (38) is invariant
under reparametrizations. The last action can be identified as
a Polyakov-like version of the former, which in turn can be
thought of as a Nambu—Goto-like action.’

For the deformed case we can find a Polyakov-like expres-
sion from which we can obtain in a systematic way a four-
velocity-dependent space-time metric.

Since the Finsler metric derived from the Nambu—Goto-
like action, which can be identified with the arc-length func-
tion, is not well-defined in the massless limit, we will find it
convenient to derive a metric from the Polyakov-like version
of the single particle action.

The solution to this discontinuity problem between mas-
sive and massless particles could be of the highest relevance
since particles with very small but finite masses (e.g. neutri-
nos) may be described as being massive or massless, depend-
ing on the role that their masses play in the phenomenological
model. It is useful then to be able to rely on a single compre-
hensive formalism.

The derivation of a Finsler metric from the arc-length func-
tional is formalism studied for a long time, for which there
exists an extensive literature (see [42] and the references
therein). This procedure was also used in Refs. [20,21] in
order to derive the metric probed by massive particles, given
that the arc-length is the action for this type of particles.

In this paper, the objective of our Polyakov-like approach
is to propose an alternative to Girelli-Liberati—Sindoni [20]
Finsler metric coming from a dispersion relation. In their
paper, the Finsler approach serves to provide a rigorous real-
ization of rainbow metrics, since in their words “it involves

> Interestingly, Refs. [40,41] develop a (super) string approach to grav-
ity in the Finsler scenario.

@ Springer

a metric defined in the tangent bundle, while depending on a
quantity associated to the cotangent bundle (i.e. the energy).”

Although solving that issue, their proposed metric is not
well-behaved in the massless limit. Henceforth, we propose
an alternative way of defining an object that fulfills the defini-
tion of a metric tensor and can be defined from an action func-
tional that is well defined for both the massive and the mass-
less cases which, in fact, unifies them. Despite escaping the
standard Finsler geometry approach, our metric still presents
some properties of the previous case, like a parametrization-
invariant and four-velocity-dependent metric, besides repro-
ducing the dispersion relation from a norm.

The simplest approach in the search for uniqueness is to
realize that the integrand of (8) is an analytic function and
can be expressed as Taylor expansion in the velocities

1 9%L
21 9G19gY

AL
A= [d . | g
Slg. 1] f r[c}q:ﬁaqu q:oq +

a"q gy _|_....|_)m12i|7 (39)

q"q"

§=0

1 ¥C
BTl
31 9gHagYaqY

§=0

where the zeroth and first order terms vanish as well as
those of higher than the third order. The action then can be
expressed as

1 . s ey
S[q,)\]=/dr [ng(q,q,k)q“q +)»m2i|, (40)

for which

v (q. 4. 2) = g0, (@) + 80, (q. 4. 1), (41)
and where we have identified

1 1 9%c 1 1 L )
0 s Hg,lw = 318301937907 qr. (42)
1991947997 | 4o

TR YT Y P

This four-velocity-dependent metric g,,(q, ¢, A) encloses
the massive and massless particle cases through its depen-
dence on A. Notice that this is not a standard Finsler metric,
not even in the m # 0 case, as it is not defined as the Hessian
of the squared Finsler function. In the following subsections
we present the massive and massless particle cases, for which
the limit m — O can be consistently taken.

5.1 Massive and massless particles

For the massive particle case we can define the four-velocity-
dependent metric as in (41) and using the expression for A
given in (9) we can write the action as follows:
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Slql = m/dfy/guvé“é”, (43)

where

l—ty—2 Ly
T G i
1224 _%Zﬂ mx 1 leﬁ mﬂ

(44)

The extremization of this action furnishes the equations
of motion of massive particles.

In the case of a massless particle it is not possible to find a
definite solution for A, as is done in the m # 0 case. This can
be seen from the equations of motion, however, the solution
x(n) for the particle’s worldline is obtained independently
from A. Therefore, we can absorb A in the re-parametrization
s(t) such that 2Adt = ds and the action takes the standard
form

1
Slq] = f ds Zu(q. )4 q" 4s)

where ¢’ = dq/ds. The extremization of this action §S = 0
along with the on-shell condition H = 0 written in terms
of the velocities ¢’ furnishes the equations of motion, whose
solutions describe the trajectory for the massless particle.

5.2 Energy-momentum-dependent metric

From the Lagrangian in (6), the conjugate momenta to g are
dL/dq, that is,

. K 3
=5~ P Gy + pi), (46)
. Z 3
M= —412(;7)2)‘—A - ZA(ZU) Bii. (47)

This allows us to express the metric (41), up to the first order
in £, in terms of the energy and momentum of the particle as

1—LyQ/an)

10 pMl/atn) )
16T /a(n)

- 9
gp_v—a(n)< . ——Z,BQ/a(n)

(48)

This metric describes both cases, that is, massive and mass-
less particles and the limit m — 0O from the massive case
is well-defined through Egs. (46) and (47). Its contravari-
ant version when contracted with the conjugate momen-
tum co-vector P = p,dq" reproduces the Hamiltonian that
describes the particle’s dynamics

(Q2 —T1?%) (y 3 + BQII?)
a’(n) a’(n)

§Wpupv = =H, (49)

fulfilling the rainbow approach main assumption.

6 Worldlines and geodesic equations

In general relativity the Levi-Civita parallel transport gives
rise to free particles motion in the space manifold. If no force
acts on the particle, so that it moves freely along a timelike
path, we expect the four-velocity to coincide at all times with
itself. In other words we require the covariant derivative of
g% to be zero:

§* + 14,4 = 0. (50)

In general, solving this set of differential equations is rather
difficult and, in order to obtain timelike geodesics, it is often
simplest to start from the space-time metric, after dividing by
ds? to obtain the form g,,,¢*¢" = 1 or g,,¢"¢" = 0 in the
massless case. This method has the advantage of bypassing
a tedious calculation of Christoffel symbols.

This is true a fortiori in rainbow gravity where the Euler—
Lagrange equation for a massless particle with Lagrangian

L= 38u(q.4)§"4",

d ( oL ) oL
— (=) - = <o, (51)
dr \ 9g* agh

defines a deformed version for the geodesic equation (50).
In fact since now the metric depends explicitly by ¢ the (51)
becomes

G’ +18 G°q" + AL §°q" + EF 47" q" + 285" " ¢" =0,

(52)
in which
Fgu = %ga (Op8gua + 0u8pa — Ja&pup)
Agu — 0B <3gw + 35’/)#
53)
B g (
Epun = 2806/S aqﬂéq“’
B 32 8uv
Zoww = 38 sarige

Using the Finsler formalism in this case does not simplify
the solution of those differential equations, since in this for-
malism even if the geodesic equation in terms of the metric is
classical, see Eq. (25), the explicit equations, once the metric
is written in terms of its components, are exactly the same.®

6 Smart solutions to find the worldline expression in an MDR-inspired
Finsler formalism without solving the geodesic equations have, how-
ever, been found in [21,35].
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In fact Eq. (52) can be re-expressed in the same form of the
classical geodesic equation

4"+ G5, (@)q*q"* =0, (54)

in which G,,(9) = Q4Th. + Q4 ES,.G" and where, at
first orderin ¢, Q) ~ 8 — AY,g" — Z,,G"¢" . However,
rephrasing the differential equations in a different form does
not decrease the complexity of their explicit expression.

Interestingly, the metric defined in the previous section is
a generalized Finsler metric [43], for which it is also pos-
sible to identify a spray from G” = Gj,,4%g". The major
difference with respect to the previous Finsler approach is
the non-validity of identities (20). In the generalized case we
only have a 0-homogeneous metric,’

guv(q, GQ)ZgMV(qu‘); € >0, (55)
which simply implies that

o8 g, (56)
ag*

Therefore, for all of the above cited connections (32)—(35)
the autoparallel curves are not in general geodesics (which
is only the case for the Berwald connection), as with Finsler
geometry. Then a more precise investigation is required to
determine whether a Berwald connection may or may not be
a compelling candidate in such generalized Finsler space.®

One might be tempted at this point to bypass the issue
using the rainbow line-element and find the expression of
the four-velocities from g,,¢"¢" = 0 as in general rel-
ativity. However, we observed earlier that in the rainbow
case the line-element is not invariant under generalized
(momentum-dependent) space-time transformations. There-
fore this approach does not provide the right particle world-
lines.

A simple example of this feature can be provided using
our toy model (1), in which, using the Hamiltonian formalism
(7), the worldline expression for a massless particle can easily
be calculated:

n " dp,
X(n)—i=/ idn*:n—ﬁ—aﬁw)sz/ Lo
n M= il a(n«)

(57)

The invariance of those worldlines under boost transforma-
tions (4) can easily be checked, observing that

7 This class of geometries was studied in [44] and references therein.

8 The Berwald connection is defined from the spray coefficients of the
geodesic equation, therefore the autoparallel curves are automatically
those that extremize the arc-lenght [45].

@ Springer

x() =0 A=€B+y)) = x(m)—n(1—£(B+y)Q) = 0.
(58)

On the other hand if we try to repeat this procedure with the
worldline we obtain from a rainbow-like light-cone structure
gaﬂdx“dxﬂ = 0, we find that the result explicitly depends
on the rapidity parameter &

B+vy

x(n’)’+n’<1—€ﬁ+y ’)=—£579n¢0, (59)

—Q
2

and therefore the rainbow metric worldlines are not observer-
independent.

Again as in the case of the line-element (16), we can recover
the right worldlines using the momentum-space metric {ug
and its light-cone structure g dx*dx? = 0; in fact,

n T dny
X(n)—i=/ —@dn*:n—ﬁ—aﬁwm/ L
7 {1 7oa()

(60)

The reason why this procedure works with momentum-space
metric and does not work with the rainbow one is that in
the latter case the on-shell relation H = 0 does not imply
ds? = 0. On the other hand, as is seen from the form of the
expression of the Hamiltonian in terms of ¢ (14), this does
apply for the momentum-space metric line-element which
provides the right light-cone structure.

7 Closing remarks

In this paper we discussed the issues related to the definition
of a space-time metric for theories with modified dispersion
relation, with particular attention to the description of the
effective space-time probed by massless particles with ener-
gies high enough to test possible Planck-scale effects. A pre-
vious approach to this idea was that of Magueijo—Smolin’s
rainbow metric [13], which has had a large success in the
quantum gravity phenomenology literature. Here we have
shown that in the last approach the line-element is unable to
produce Lorentz-deformed-invariant geodesics as the world-
lines of the deformed Hamiltonian.

An approach to furnish a coherent picture for four-
velocity-dependent space-time metrics in flat space-time
from the variational point of view can be found in [20] and a
study of its DSR realization in [21]. In these cases the equiva-
lence of the geodesics and the worldlines from the Hamilton
equations were described, along with its MDR and deformed
symmetries, using the language of Finsler geometry.

The integration of a few Finsler geometry features in the rain-
bow gravity approach could give some guidance on how to
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overcome some of the limitations that characterize this line
of research. For instance we pointed out in this short paper
that generally in the literature the rainbow geodesic equa-
tions are assumed (see e.g. [13,15,16]) to be undeformed,
except for the momentum-dependent Christoffel symbols.
This assumption is incompatible with the equations obtained
from the variation of the action (i.e. the Euler—Lagrange equa-
tions) that is obtained by a more systematic study. It would
be interesting to further investigate the role that the differ-
ent connections play in the deformed relativistic theories for
massive particles on curved space-times, generalizing the
analysis presented in [38].

Despite the fact that the approach can be considered as
a step forward in the comprehension of space-time probed
by Planck-scale-sensible particles, the MDR-Finsler metric
structure in some cases does not present a well-defined mass-
less limit, which represents a problem for the description of
particles with tiny but in principle finite masses, which could
be the case of neutrinos.

Therefore, using a Polyakov-like action for a single par-
ticle, we propose a step further in the derivation of this nat-
ural geometry, preserving those cited properties of the pre-
vious approaches about geodesics and dispersion relations,
but with a well-defined massless limit. However, we should
notice that in the strict sense this is not a Finsler metric,
as we lose some properties, like those represented by Eq.
(20). A more complete discussion on the space-time symme-
tries and the particle’s worldlines within this framework can
be found in [35] for the case of a de Sitter space-time. We
would like to stress that, even though a more careful anal-
ysis of the connections for this generalized Finsler metric
that we found would be appropriate, we believe is out of
the scope of this work and we leave these matters for future
work.

We would like to remark that once the relativity princi-
ple is assumed, the rainbow metrics should be considered
as an element of the complex framework described by rel-
ative locality, in which space-time is just a mere inference
characterized by a particle’s energies and momenta. In this
approach the shape of momentum space (which is assumed to
be curved) influences the particle’s dynamics in space-time,
leading to the definition of Planck-scale modified space-time
metrics.

In this work we intended to set forth the complexity of
metric formalism in models with MDR, highlighting how
the properties of the metric formalism, which may seem
obvious in general relativity, should not be taken for granted
in Planck-scale MDR models. Therefore, when approach-
ing quantum gravity phenomenology, one should not just
rely on the simple rainbow metric recipe but try to bal-
ance all the model’s ingredients according to the rich the-
oretical framework here presented, carefully and cum grano
salis.
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